التمايز بين الوظائف المعقدة. إثبات صيغة مشتقة دالة معقدة

مشتق من وظيفة معقدة. أمثلة على الحلول

في هذا الدرس سوف نتعلم كيفية إيجاد مشتق من وظيفة معقدة. الدرس هو استمرار منطقي للدرس كيفية العثور على المشتق؟والتي استعرضنا فيها أبسط المشتقات، وتعرفنا أيضًا على قواعد التفاضل وبعض التقنيات الفنية لإيجاد المشتقات. وبالتالي، إذا لم تكن جيدًا في التعامل مع مشتقات الدوال أو كانت بعض النقاط في هذه المقالة غير واضحة تمامًا، فاقرأ الدرس أعلاه أولاً. من فضلك، كن في حالة مزاجية جدية - المادة ليست بسيطة، لكنني سأظل أحاول تقديمها ببساطة ووضوح.

من الناحية العملية، يتعين عليك التعامل مع مشتقة دالة معقدة في كثير من الأحيان، بل وأود أن أقول، دائمًا تقريبًا، عندما يتم تكليفك بمهام للعثور على المشتقات.

وننظر إلى الجدول في القاعدة (رقم 5) للتمييز بين دالة معقدة:

دعونا معرفة ذلك. بادئ ذي بدء، دعونا ننتبه إلى الإدخال. لدينا هنا وظيفتان - و، والدالة، بالمعنى المجازي، متداخلة داخل الوظيفة. دالة من هذا النوع (عندما تتداخل دالة داخل أخرى) تسمى دالة معقدة.

سأتصل بالوظيفة وظيفة خارجية، والوظيفة - وظيفة داخلية (أو متداخلة)..

! هذه التعريفات ليست نظرية ولا ينبغي أن تظهر في التصميم النهائي للواجبات. أستخدم التعبيرات غير الرسمية مثل "وظيفة خارجية" و"وظيفة داخلية" فقط لتسهيل فهم المادة.

لتوضيح الموقف خذ بعين الاعتبار:

مثال 1

أوجد مشتقة الدالة

تحت جيب الزاوية ليس لدينا الحرف "X" فحسب، بل لدينا تعبير كامل، لذا فإن العثور على المشتقة مباشرة من الجدول لن ينجح. ونلاحظ أيضًا أنه من المستحيل تطبيق القواعد الأربع الأولى هنا، يبدو أن هناك فرقًا، لكن الحقيقة هي أن الجيب لا يمكن "تمزيقه إلى أجزاء":

في هذا المثال، أصبح من الواضح بالفعل من خلال شرحي أن الدالة هي دالة معقدة، وأن كثير الحدود هو دالة داخلية (تضمين)، ودالة خارجية.

الخطوة الأولىما عليك القيام به عند العثور على مشتق دالة معقدة هو فهم أي وظيفة داخلية وأيها خارجية.

في حالة الأمثلة البسيطة، يبدو من الواضح أن كثيرة الحدود مضمنة تحت جيب الجيب. ولكن ماذا لو لم يكن كل شيء واضحًا؟ كيف تحدد بدقة أي وظيفة خارجية وأيها داخلية؟ للقيام بذلك، أقترح استخدام التقنية التالية، والتي يمكن القيام بها عقليًا أو في مسودة.

لنتخيل أننا بحاجة إلى حساب قيمة التعبير على الآلة الحاسبة (بدلاً من واحد يمكن أن يكون هناك أي رقم).

ماذا سنحسب أولا؟ أولاًستحتاج إلى تنفيذ الإجراء التالي: وبالتالي فإن كثيرة الحدود ستكون دالة داخلية:

ثانيًاسوف تحتاج إلى العثور عليها، لذا فإن sine – ستكون دالة خارجية:

بعد نحن نفذمع الوظائف الداخلية والخارجية، حان الوقت لتطبيق قاعدة التفريق بين الوظائف المعقدة.

لنبدأ في اتخاذ القرار. من الصف كيفية العثور على المشتق؟نتذكر أن تصميم حل أي مشتق يبدأ دائمًا على هذا النحو - نضع التعبير بين قوسين ونضع حدًا في أعلى اليمين:

في البدايةنجد مشتقة الدالة الخارجية (جيب الجيب)، وننظر إلى جدول مشتقات الدوال الأولية ونلاحظ ذلك. جميع صيغ الجدول قابلة للتطبيق أيضًا إذا تم استبدال "x" بتعبير معقد، في هذه الحالة:

يرجى ملاحظة أن الوظيفة الداخلية لم يتغير، نحن لا نلمسه.

حسنًا، من الواضح تمامًا ذلك

تبدو النتيجة النهائية لتطبيق الصيغة كما يلي:

عادة ما يتم وضع العامل الثابت في بداية التعبير:

إذا كان هناك أي سوء فهم، فاكتب الحل على الورق واقرأ الشرح مرة أخرى.

مثال 2

أوجد مشتقة الدالة

مثال 3

أوجد مشتقة الدالة

وكعادتنا نكتب:

دعونا نكتشف أين لدينا وظيفة خارجية وأين لدينا وظيفة داخلية. للقيام بذلك، نحاول (ذهنيًا أو في مسودة) حساب قيمة التعبير عند . ماذا يجب أن تفعل أولا؟ أولًا، عليك أن تحسب ما يساويه الأساس: وبالتالي فإن كثير الحدود هو دالة داخلية:

وعندها فقط يتم تنفيذ الأس، وبالتالي فإن وظيفة الطاقة هي وظيفة خارجية:

وفقًا للصيغة، عليك أولاً إيجاد مشتقة الدالة الخارجية، وهي الدرجة في هذه الحالة. نبحث عن الصيغة المطلوبة في الجدول: . ونكرر مرة أخرى: أي صيغة جدولية صالحة ليس فقط لـ "X"، ولكن أيضًا للتعبير المعقد. وبالتالي فإن نتيجة تطبيق قاعدة اشتقاق دالة معقدة هي كما يلي:

وأؤكد مرة أخرى أنه عندما نأخذ مشتقة الدالة الخارجية، فإن وظيفتنا الداخلية لا تتغير:

الآن كل ما تبقى هو العثور على مشتق بسيط جدًا للدالة الداخلية وتعديل النتيجة قليلاً:

مثال 4

أوجد مشتقة الدالة

هذا مثال يمكنك حله بنفسك (الإجابة في نهاية الدرس).

لتعزيز فهمك لمشتق وظيفة معقدة، سأقدم مثالا دون تعليقات، حاول معرفة ذلك بنفسك، والسبب حيث تكون الوظيفة الخارجية وأين الوظيفة الداخلية، لماذا يتم حل المهام بهذه الطريقة؟

مثال 5

أ) أوجد مشتقة الدالة

ب) أوجد مشتقة الدالة

مثال 6

أوجد مشتقة الدالة

لدينا هنا جذر، ومن أجل التمييز بين الجذر، يجب تمثيله كقوة. وبالتالي، نقوم أولاً بإحضار الدالة إلى الشكل المناسب للتمايز:

وبتحليل الدالة نستنتج أن مجموع الحدود الثلاثة هو دالة داخلية، والرفع إلى قوة هو دالة خارجية. نحن نطبق قاعدة التمايز بين الوظائف المعقدة:

نحن نمثل الدرجة مرة أخرى كجذر (جذر)، وبالنسبة لمشتقة الدالة الداخلية فإننا نطبق قاعدة بسيطة للتمييز بين المجموع:

مستعد. يمكنك أيضًا اختصار التعبير إلى قاسم مشترك بين قوسين وكتابة كل شيء في صورة كسر واحد. إنها جميلة بالطبع، ولكن عندما تحصل على مشتقات طويلة مرهقة، فمن الأفضل عدم القيام بذلك (من السهل أن تتشوش، وترتكب خطأً غير ضروري، وسيكون من غير المناسب للمعلم التحقق منه).

مثال 7

أوجد مشتقة الدالة

هذا مثال يمكنك حله بنفسك (الإجابة في نهاية الدرس).

ومن المثير للاهتمام ملاحظة أنه في بعض الأحيان بدلاً من قاعدة اشتقاق دالة معقدة، يمكنك استخدام قاعدة اشتقاق خارج القسمة لكن مثل هذا الحل سيبدو وكأنه انحراف مضحك. هنا مثال نموذجي:



مثال 8

أوجد مشتقة الدالة

هنا يمكنك استخدام قاعدة التمايز بين الحاصل ولكن من المربح أكثر العثور على المشتق من خلال قاعدة التمايز لوظيفة معقدة:

نجهز الدالة للاشتقاق - ننقل علامة الطرح من علامة المشتقة، ونرفع جيب التمام إلى البسط:

جيب التمام هو وظيفة داخلية، الأس هو وظيفة خارجية.
دعونا نستخدم قاعدتنا:

نجد مشتقة الوظيفة الداخلية ونعيد تعيين جيب التمام إلى الأسفل:

مستعد. في المثال المذكور، من المهم عدم الخلط بين العلامات. بالمناسبة، حاول حلها باستخدام القاعدة ، يجب أن تتطابق الإجابات.

مثال 9

أوجد مشتقة الدالة

هذا مثال يمكنك حله بنفسك (الإجابة في نهاية الدرس).

لقد نظرنا حتى الآن في الحالات التي كان لدينا فيها تداخل واحد فقط في وظيفة معقدة. في المهام العملية، يمكنك غالبًا العثور على مشتقات، حيث، مثل دمى التعشيش، واحدة داخل الأخرى، 3 أو حتى 4-5 وظائف متداخلة في وقت واحد.

مثال 10

أوجد مشتقة الدالة

دعونا نفهم مرفقات هذه الوظيفة. دعونا نحاول حساب التعبير باستخدام القيمة التجريبية. كيف يمكننا الاعتماد على الآلة الحاسبة؟

تحتاج أولاً إلى العثور على، مما يعني أن arcsine هو التضمين الأعمق:

يجب بعد ذلك تربيع قوس القوس هذا:

وأخيرًا، نرفع سبعة إلى قوة:

أي أنه في هذا المثال لدينا ثلاث دوال مختلفة واثنين من التضمينات، في حين أن الدالة الأعمق هي قوس الجيب، والدالة الخارجية هي الدالة الأسية.

لنبدأ في اتخاذ القرار

وفقًا للقاعدة، عليك أولاً أن تأخذ مشتقة الدالة الخارجية. ننظر إلى جدول المشتقات ونجد مشتقة الدالة الأسية: الفرق الوحيد هو أنه بدلاً من "x" لدينا تعبير معقد، وهو ما لا ينفي صحة هذه الصيغة. وبالتالي فإن نتيجة تطبيق قاعدة اشتقاق دالة معقدة هي كما يلي:

تحت السكتة الدماغية لدينا وظيفة معقدة مرة أخرى! لكن الأمر أسهل بالفعل. من السهل التحقق من أن الوظيفة الداخلية هي قوس الجيب، والدالة الخارجية هي الدرجة. وفقًا لقاعدة اشتقاق دالة معقدة، عليك أولًا أن تأخذ مشتقة القوة.

سنتحدث في هذه المقالة عن مفهوم رياضي مهم كدالة معقدة، وسنتعلم كيفية العثور على مشتقة دالة معقدة.

قبل أن نتعلم كيفية العثور على مشتقة دالة معقدة، دعونا نفهم مفهوم الوظيفة المعقدة، وما هي، "وماذا تؤكل"، و"كيفية طهيها بشكل صحيح".

النظر في وظيفة تعسفية، على سبيل المثال، هذه:

لاحظ أن الوسيطة الموجودة على الجانبين الأيمن والأيسر من معادلة الدالة هي نفس الرقم أو التعبير.

وبدلا من المتغير يمكننا أن نضع مثلا التعبير التالي: . وبعد ذلك نحصل على الدالة

لنسمي التعبير وسيطة وسيطة، والدالة وظيفة خارجية. هذه ليست مفاهيم رياضية صارمة، ولكنها تساعد على فهم معنى مفهوم الدالة المعقدة.

يبدو التعريف الصارم لمفهوم الوظيفة المعقدة كما يلي:

دع الوظيفة يتم تعريفها على مجموعة وتكون مجموعة قيم هذه الوظيفة. اجعل المجموعة (أو مجموعتها الفرعية) هي مجال تعريف الوظيفة. دعونا نخصص رقمًا لكل منهم. وبالتالي، سيتم تعريف الوظيفة على المجموعة. يطلق عليه تكوين الوظيفة أو الوظيفة المعقدة.

في هذا التعريف، إذا استخدمنا مصطلحاتنا، فإن الدالة الخارجية هي وسيطة وسيطة.

يتم العثور على مشتق دالة معقدة وفقًا للقاعدة التالية:

ولتوضيح الأمر أكثر، أحب أن أكتب هذه القاعدة على النحو التالي:

في هذا التعبير، يشير الاستخدام إلى وظيفة وسيطة.

لذا. للعثور على مشتق دالة معقدة، تحتاج

1. تحديد الوظيفة الخارجية والعثور على المشتقة المقابلة من جدول المشتقات.

2. تحديد وسيطة وسيطة.

الصعوبة الأكبر في هذا الإجراء هي العثور على الوظيفة الخارجية. يتم استخدام خوارزمية بسيطة لهذا:

أ. اكتب معادلة الدالة.

ب. تخيل أنك بحاجة إلى حساب قيمة دالة لبعض قيمة x. للقيام بذلك، يمكنك استبدال قيمة x هذه في معادلة الدالة وإجراء العمليات الحسابية. الإجراء الأخير الذي تقوم به هو الوظيفة الخارجية.

على سبيل المثال، في الدالة

الإجراء الأخير هو الأسي.

دعونا نجد مشتقة هذه الوظيفة. للقيام بذلك، نكتب حجة وسيطة

بعد إعداد المدفعية الأولي، ستكون الأمثلة ذات التعشيش 3-4-5 أقل مخيفة. قد يبدو المثالان التاليان معقدين بالنسبة للبعض، ولكن إذا فهمتهما (سيعاني شخص ما)، فإن كل شيء آخر تقريبًا في حساب التفاضل والتكامل سيبدو وكأنه مزحة طفل.

مثال 2

أوجد مشتقة الدالة

كما ذكرنا سابقًا، عند العثور على مشتق دالة معقدة، فمن الضروري أولاً وقبل كل شيء يمينفهم استثماراتك. في الحالات التي توجد فيها شكوك، أذكرك بتقنية مفيدة: نأخذ القيمة التجريبية لـ "x"، على سبيل المثال، ونحاول (ذهنيًا أو في مسودة) استبدال هذه القيمة في "التعبير الرهيب".

1) نحتاج أولاً إلى حساب التعبير، مما يعني أن المجموع هو التضمين الأعمق.

2) فأنت بحاجة إلى حساب اللوغاريتم:

4) ثم مكعب جيب التمام:

5) في الخطوة الخامسة الفرق:

6) وأخيرًا، الدالة الخارجية هي الجذر التربيعي:

صيغة للتمييز بين وظيفة معقدة يتم تطبيقها بترتيب عكسي، من الوظيفة الخارجية إلى الوظيفة الأعمق. نحن نقرر:

يبدو بدون أخطاء:

1) خذ مشتقة الجذر التربيعي.

2) أوجد مشتقة الفرق باستخدام القاعدة

3) مشتقة الثلاثي هي صفر. وفي الفصل الثاني نأخذ مشتقة الدرجة (المكعب).

4) خذ مشتق جيب التمام.

6) وأخيرا، نأخذ مشتقة التضمين الأعمق.

قد يبدو الأمر صعبا للغاية، ولكن هذا ليس المثال الأكثر وحشية. خذ على سبيل المثال مجموعة كوزنتسوف وسوف تقدر كل جمال وبساطة المشتق الذي تم تحليله. لقد لاحظت أنهم يحبون تقديم شيء مماثل في الاختبار للتحقق مما إذا كان الطالب يفهم كيفية العثور على مشتق دالة معقدة أم لا.

المثال التالي هو الحل بنفسك.

مثال 3

أوجد مشتقة الدالة

تلميح: أولاً، نطبق القواعد الخطية وقاعدة تمايز المنتجات

الحل الكامل والإجابة في نهاية الدرس.

حان الوقت للانتقال إلى شيء أصغر وأجمل.
ليس من غير المألوف أن يُظهر المثال منتجًا ليس وظيفتين، بل ثلاث وظائف. كيفية العثور على مشتق المنتج من ثلاثة عوامل؟

مثال 4

أوجد مشتقة الدالة

أولًا، دعونا نرى ما إذا كان من الممكن تحويل حاصل ضرب ثلاث دوال إلى حاصل ضرب دالتين؟ على سبيل المثال، إذا كان لدينا كثيرتا حدود في حاصل الضرب، فيمكننا فتح القوسين. ولكن في المثال قيد النظر، جميع الوظائف مختلفة: الدرجة والأس واللوغاريتم.

في مثل هذه الحالات فمن الضروري بالتتابعتطبيق قاعدة تمايز المنتج مرتين

الحيلة هي أننا نشير بالحرف "y" إلى حاصل ضرب وظيفتين: وبالحرف "ve" نشير إلى اللوغاريتم: . لماذا يمكن القيام بذلك؟ هل هو حقا - هذا ليس نتاج عاملين والقاعدة لا تعمل؟! لا يوجد شيء معقد:


الآن يبقى تطبيق القاعدة مرة ثانية بين قوسين:

يمكنك أيضًا التحريف ووضع شيء ما خارج الأقواس، ولكن في هذه الحالة من الأفضل ترك الإجابة بالضبط في هذا النموذج - سيكون من الأسهل التحقق منها.

يمكن حل المثال المدروس بالطريقة الثانية:

كلا الحلين متكافئان تمامًا.

مثال 5

أوجد مشتقة الدالة

هذا مثال للحل المستقل؛ في العينة تم حله باستخدام الطريقة الأولى.

دعونا نلقي نظرة على أمثلة مماثلة مع الكسور.

مثال 6

أوجد مشتقة الدالة

هناك عدة طرق يمكنك الذهاب إليها هنا:

أو مثل هذا:

لكن الحل سيكون مكتوبًا بشكل أكثر إحكامًا إذا استخدمنا قاعدة اشتقاق خارج القسمة أولًا ، مع الأخذ في الاعتبار البسط بأكمله:

ومن حيث المبدأ فالمثال محلول، وإذا ترك كما هو فلا يكون خطأ. ولكن إذا كان لديك الوقت، فمن المستحسن دائمًا التحقق من المسودة لمعرفة ما إذا كان من الممكن تبسيط الإجابة؟

دعونا نختصر تعبير البسط إلى قاسم مشترك ونتخلص من بنية الكسر المكونة من ثلاثة طوابق:

عيب التبسيط الإضافي هو أن هناك خطر ارتكاب خطأ ليس عند العثور على المشتق، ولكن أثناء التحولات المدرسية المبتذلة. من ناحية أخرى، غالبًا ما يرفض المعلمون المهمة ويطلبون "إحضارها إلى الذهن" المشتقة.

مثال أبسط لحلها بنفسك:

مثال 7

أوجد مشتقة الدالة

نواصل إتقان طرق العثور على المشتق، والآن سننظر في حالة نموذجية عندما يتم اقتراح لوغاريتم "فظيع" للتمايز

تعريف.دع الدالة \(y = f(x)\) محددة في فترة معينة تحتوي على النقطة \(x_0\) بداخلها. دعونا نعطي الوسيطة زيادة \(\Delta x \) بحيث لا تترك هذه الفترة. دعونا نوجد الزيادة المقابلة للدالة \(\Delta y \) (عند الانتقال من النقطة \(x_0 \) إلى النقطة \(x_0 + \Delta x \)) وننشئ العلاقة \(\frac(\Delta ذ)(\دلتا س) \). إذا كان هناك حد لهذه النسبة عند \(\Delta x \rightarrow 0\)، فسيتم استدعاء الحد المحدد مشتق من وظيفة\(y=f(x) \) عند النقطة \(x_0 \) وتدل على \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

غالبًا ما يستخدم الرمز y للإشارة إلى المشتق. لاحظ أن y" = f(x) هي دالة جديدة، ولكنها مرتبطة بطبيعة الحال بالدالة y = f(x)، المحددة في جميع النقاط x التي يوجد عندها الحد أعلاه. تسمى هذه الوظيفة مثل هذا: مشتقة الدالة y = f(x).

المعنى الهندسي للمشتقعلى النحو التالي. إذا كان من الممكن رسم مماس للرسم البياني للدالة y = f(x) عند النقطة ذات الإحداثي السيني x=a، وهي ليست موازية للمحور y، فإن f(a) يعبر عن ميل المماس :
\(ك = و"(أ)\)

بما أن \(k = tg(a) \)، فإن المساواة \(f"(a) = tan(a) \) صحيحة.

والآن دعونا نفسر تعريف المشتقة من وجهة نظر المساواة التقريبية. دع الدالة \(y = f(x)\) لها مشتق عند نقطة محددة \(x\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
هذا يعني أنه بالقرب من النقطة x توجد المساواة التقريبية \(\frac(\Delta y)(\Delta x) \approx f"(x) \)، أي \(\Delta y \approx f"(x) \cdot\ دلتا x\). المعنى المنطقي للمساواة التقريبية الناتجة هو كما يلي: زيادة الدالة "متناسبة تقريبًا" مع زيادة الوسيطة، ومعامل التناسب هو قيمة المشتق عند نقطة معينة x. على سبيل المثال، بالنسبة للدالة \(y = x^2\) تكون المساواة التقريبية \(\Delta y \approx 2x \cdot \Delta x \) صالحة. إذا قمنا بتحليل تعريف المشتق بعناية، فسنجد أنه يحتوي على خوارزمية للعثور عليه.

دعونا صياغة ذلك.

كيف تجد مشتقة الدالة y = f(x)؟

1. أصلح قيمة \(x\)، ابحث عن \(f(x)\)
2. قم بزيادة الوسيطة \(x\) \(\Delta x\)، وانتقل إلى نقطة جديدة \(x+ \Delta x \)، ابحث عن \(f(x+ \Delta x) \)
3. أوجد زيادة الدالة: \(\Delta y = f(x + \Delta x) - f(x) \)
4. قم بإنشاء العلاقة \(\frac(\Delta y)(\Delta x) \)
5. احسب $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
هذه النهاية هي مشتقة الدالة عند النقطة x.

إذا كانت الدالة y = f(x) لها مشتق عند النقطة x، فإنها تسمى قابلة للتفاضل عند النقطة x. يتم استدعاء الإجراء الخاص بإيجاد مشتق الدالة y = f(x). التمايزوظائف ص = و(خ).

دعونا نناقش السؤال التالي: كيف ترتبط استمرارية الوظيفة واختلافها عند نقطة ما ببعضها البعض؟

دع الدالة y = f(x) تكون قابلة للاشتقاق عند النقطة x. بعد ذلك يمكن رسم ظل للرسم البياني للدالة عند النقطة M(x; f(x))، وتذكر أن المعامل الزاوي للظل يساوي f "(x). مثل هذا الرسم البياني لا يمكن أن "ينكسر" عند النقطة M، أي أن الدالة يجب أن تكون متصلة عند النقطة x.

وكانت هذه حجج "عملية". دعونا نعطي سببا أكثر صرامة. إذا كانت الدالة y = f(x) قابلة للاشتقاق عند النقطة x، فإن المساواة التقريبية \(\Delta y \approx f"(x) \cdot \Delta x\) تظل ثابتة. إذا كانت في هذه المساواة \(\Delta x\) \) يميل إلى الصفر، ثم \(\Delta y \) سوف يميل إلى الصفر، وهذا هو شرط استمرارية الدالة عند نقطة ما.

لذا، إذا كانت الدالة قابلة للاشتقاق عند نقطة x، فهي متصلة عند تلك النقطة.

البيان العكسي غير صحيح. على سبيل المثال: الدالة y = |x| تكون مستمرة في كل مكان، خاصة عند النقطة x = 0، لكن مماس الرسم البياني للدالة عند "نقطة الوصل" (0؛ 0) غير موجود. إذا لم يكن من الممكن في مرحلة ما رسم مماس على الرسم البياني للدالة، فإن المشتقة غير موجودة عند تلك النقطة.

مثال آخر. الدالة \(y=\sqrt(x)\) متصلة على خط الأعداد بأكمله، بما في ذلك عند النقطة x = 0. ويكون مماس الرسم البياني للدالة موجودًا عند أي نقطة، بما في ذلك النقطة x = 0 لكن عند هذه النقطة يتزامن المماس مع المحور y، أي أنه عمودي على محور الإحداثي السيني، ومعادلته لها الشكل x = 0. مثل هذا الخط المستقيم ليس له معامل زاوية، مما يعني أن \(f). "(0)\) غير موجود.

لذلك، تعرفنا على خاصية جديدة للوظيفة - التمايز. كيف يمكن للمرء أن يستنتج من الرسم البياني للدالة أنها قابلة للاشتقاق؟

الجواب في الواقع مذكور أعلاه. إذا كان من الممكن في مرحلة ما رسم مماس للرسم البياني لدالة ليست متعامدة مع محور الإحداثي السيني، عند هذه النقطة تكون الدالة قابلة للاشتقاق. إذا كان ظل الرسم البياني للدالة غير موجود في مرحلة ما أو كان عموديًا على محور الإحداثي السيني، فإن الدالة عند هذه النقطة غير قابلة للاشتقاق.

قواعد التمايز

تسمى عملية إيجاد المشتق التمايز. عند إجراء هذه العملية، غالبًا ما يتعين عليك العمل مع خارج القسمة، والمبالغ، وحاصل الدوال، بالإضافة إلى "وظائف الوظائف"، أي الوظائف المعقدة. استنادًا إلى تعريف المشتقة، يمكننا استخلاص قواعد الاشتقاق التي تسهل هذا العمل. إذا كان C رقمًا ثابتًا وكانت f=f(x) وg=g(x) بعض الدوال القابلة للتفاضل، فإن ما يلي صحيح قواعد التمايز:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ مشتق من دالة معقدة:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

جدول مشتقات بعض الوظائف

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

في الكتب المدرسية "القديمة" يطلق عليها أيضًا قاعدة "السلسلة". فإذا ص = و (ش)، و ش = φ (س)، إنه

ص = و (φ (س))

    معقدة - وظيفة مركبة (تكوين الوظائف) إذن

أين ، بعد النظر في الحساب في ش = φ(س).



لاحظ أننا هنا أخذنا تركيبات "مختلفة" من نفس الوظائف، ومن الطبيعي أن نتيجة التمايز تعتمد على ترتيب "المزج".

تمتد قاعدة السلسلة بشكل طبيعي إلى التراكيب المكونة من ثلاث وظائف أو أكثر. في هذه الحالة، سيكون هناك ثلاثة "روابط" أو أكثر في "السلسلة" التي تشكل المشتق. هنا تشبيه بالضرب: "لدينا" جدول المشتقات؛ "هناك" - جدول الضرب؛ "معنا" هي قاعدة السلسلة و"هناك" هي قاعدة الضرب "في العمود". عند حساب مثل هذه المشتقات "المعقدة"، لا يتم تقديم أي وسيطات مساعدة (u¸v، وما إلى ذلك)، بالطبع، ولكن بعد ملاحظة عدد وتسلسل الوظائف المشاركة في التكوين، يتم "ربط" الروابط المقابلة بالترتيب المشار إليه.

.

هنا، باستخدام "x" للحصول على معنى "y"، يتم تنفيذ خمس عمليات، أي أن هناك تركيبة من خمس وظائف: "خارجية" (آخرها) - الأسي - e  ؛

ثم بترتيب عكسي، السلطة. (♦) 2 ؛

الخطيئة المثلثية();

رزين. () 3 وأخيراً الخط اللوغاريتمي ().

.

7. للتمييز بين المماس (ظل التمام)، نستخدم قاعدة اشتقاق خارج القسمة:

للحصول على مشتقات الدوال المثلثية العكسية، نستخدم العلاقة التي تتحقق بمشتقات دالتين عكسيتين، أي الدالتين φ (x) وf (x) المرتبطتين بالعلاقات:

هذه هي النسبة

ومن هذه الصيغة للوظائف العكسية المتبادلة

و
,

وأخيرا، دعونا نلخص هذه وبعض المشتقات الأخرى التي يمكن الحصول عليها بسهولة أيضا في الجدول التالي.