حساب مساحة الشكل المسطح عبر الإنترنت. كيفية حساب مساحة الشكل المستوي باستخدام التكامل المزدوج

في الواقع، من أجل العثور على مساحة الشكل، لا تحتاج إلى الكثير من المعرفة بالتكامل غير المحدد والمحدد. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذلك ستكون معرفتك ومهاراتك في الرسم مشكلة أكثر إلحاحًا. في هذا الصدد، من المفيد تحديث ذاكرتك بالرسوم البيانية للوظائف الأولية الأساسية، وعلى الأقل، تكون قادرًا على إنشاء خط مستقيم وقطع زائد.

شبه المنحرف المنحني هو شكل مسطح يحده محور وخطوط مستقيمة ورسم بياني لدالة مستمرة على قطعة لا تتغير الإشارة في هذه الفترة. دع هذا الرقم يكون موجودا ليس أقلالمحور السيني:

ثم مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا. أي تكامل محدد (موجود) له معنى هندسي جيد جدًا.

من وجهة نظر الهندسة، التكامل المحدد هو المساحة.

إنه،تكامل معين (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. على سبيل المثال، النظر في التكامل المحدد. يحدد التكامل منحنى على المستوى الموجود فوق المحور (أولئك الذين يرغبون في ذلك يمكنهم رسم رسم)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.

مثال 1

هذا هو بيان مهمة نموذجية. النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم. علاوة على ذلك، يجب بناء الرسم يمين.

عند إنشاء الرسم، أوصي بالترتيب التالي: في البدايةفمن الأفضل بناء جميع الخطوط المستقيمة (إذا كانت موجودة) وفقط ثم- القطع المكافئ، القطع الزائد، الرسوم البيانية للوظائف الأخرى. يعد بناء الرسوم البيانية للوظائف أكثر ربحية نقطة بنقطة.

في هذه المشكلة، قد يبدو الحل هكذا.
لنرسم الرسم (لاحظ أن المعادلة تحدد المحور):


يوجد على المقطع رسم بياني للوظيفة فوق المحور، لهذا السبب:

إجابة:

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 3

احسب مساحة الشكل المحدد بالخطوط ومحاور الإحداثيات.

حل: دعونا نرسم:


إذا كان موجودا شبه منحرف منحني تحت المحور(أو على الأقل لا أعلىالمحور المحدد)، فيمكن إيجاد مساحتها باستخدام الصيغة:


في هذه الحالة:

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط .

حل: أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ والخط المستقيم. يمكن القيام بذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل هو الحد الأعلى للتكامل.

إذا كان ذلك ممكنا، فمن الأفضل عدم استخدام هذه الطريقة..

إن بناء الخطوط نقطة تلو الأخرى أكثر ربحية وأسرع بكثير، وتصبح حدود التكامل واضحة "في حد ذاتها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). وسننظر أيضًا في مثل هذا المثال.

دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

والآن صيغة العمل: إذا كان هناك بعض الوظائف المستمرة في المقطع أكبر من أو يساويبعض الدوال المستمرة، فيمكن إيجاد مساحة الشكل المحدود بالتمثيلات البيانية لهذه الدوال والخطوط باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الشكل - فوق المحور أو أسفله، وبشكل تقريبي، يهم الرسم البياني الذي هو أعلى(نسبة إلى رسم بياني آخر)، وأيهما أدناه.

في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

قد يبدو الحل المكتمل كما يلي:

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.
على المقطع حسب الصيغة المقابلة:

إجابة:

مثال 4

احسب مساحة الشكل المحدد بالخطوط , , .

حل: أولا، دعونا نرسم:

الشكل الذي نريد إيجاد مساحته مظلل باللون الأزرق(انظر بعناية إلى الحالة - كيف أن الرقم محدود!). لكن من الناحية العملية، وبسبب عدم الانتباه، غالباً ما يحدث "خلل" يجعلك بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين.

حقًا:

1) يوجد في الجزء الموجود فوق المحور رسم بياني لخط مستقيم؛

2) يوجد في المقطع الموجود فوق المحور رسم بياني للقطع الزائد.

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

أ)

حل.

النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم.

لنقم بالرسم:

معادلة ص=0 يحدد المحور "س"؛

- س=-2 و س = 1 - مستقيم، موازي للمحور أوه؛

- ص=س 2 +2 - قطع مكافئ، فروعه متجهة نحو الأعلى، رأسه عند النقطة (0؛2).

تعليق.لبناء القطع المكافئ، يكفي العثور على نقاط تقاطعه مع محاور الإحداثيات، أي. وضع س = 0 العثور على التقاطع مع المحور أوه وحل المعادلة التربيعية المقابلة لها، وأوجد التقاطع مع المحور أوه .

يمكن العثور على قمة القطع المكافئ باستخدام الصيغ:

يمكنك أيضًا إنشاء خطوط نقطة بنقطة.

على الفاصل الزمني [-2;1] الرسم البياني للوظيفة ص=س 2 +2 يقع فوق المحور ثور ، لهذا السبب:

إجابة: س =9 وحدات مربعة

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

ماذا تفعل إذا كان شبه المنحرف المنحني موجودًا تحت المحور أوه؟

ب)حساب مساحة الشكل الذي يحده الخطوط ص=-ه س , س = 1 وتنسيق المحاور.

حل.

دعونا نجعل الرسم.

إذا كان شبه منحرف منحني تقع بالكامل تحت المحور أوه , ثم يمكن العثور على مساحتها باستخدام الصيغة:

إجابة: ق=(ه-1) وحدات مربعة "1.72 وحدة مربعة

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

من الناحية العملية، غالبًا ما يقع الشكل في كل من النصف العلوي والسفلي.

مع)أوجد مساحة الشكل المستوي المحدود بالخطوط ص=2س-س 2، ص=-س.

حل.

أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ومستقيم يمكن القيام بذلك بطريقتين. الطريقة الأولى هي التحليلية.

نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ = 0 ، الحد الأعلى للتكامل ب = 3 .

نبني الخطوط المعطاة: 1. القطع المكافئ - الرأس عند النقطة (1؛1)؛ تقاطع المحور أوه -النقاط (0;0) و (0;2). 2. الخط المستقيم - منصف زاويتي الإحداثيات الثانية والرابعة. والآن انتبه! إذا كان على الجزء [ أ ؛ ب] بعض الوظائف المستمرة و (خ)أكبر من أو يساوي بعض الوظائف المستمرة ز (خ)، فيمكن إيجاد مساحة الشكل المقابل باستخدام الصيغة: .


ولا يهم أين يقع الشكل - فوق المحور أو أسفل المحور، ولكن ما يهم هو الرسم البياني الأعلى (بالنسبة إلى رسم بياني آخر) والذي هو أدناه. في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

يمكنك بناء خطوط نقطة نقطة، وتصبح حدود التكامل واضحة "بذاتها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية).

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.

على الجزء ، وفقا للصيغة المقابلة:

إجابة: س = 4.5 وحدة مربعة

نبدأ في النظر في العملية الفعلية لحساب التكامل المزدوج والتعرف على معناها الهندسي.

التكامل المزدوج يساوي عدديا مساحة الشكل المستوي (منطقة التكامل). هذا هو أبسط شكل من أشكال التكامل المزدوج، عندما تكون دالة متغيرين تساوي واحدًا: .

أولا، دعونا ننظر إلى المشكلة بشكل عام. الآن سوف تتفاجأ بمدى بساطة كل شيء حقًا! دعونا نحسب مساحة الشكل المسطح الذي يحده الخطوط. من أجل اليقين، ونحن نفترض أن على هذا الجزء. مساحة هذا الشكل تساوي عددياً:

لنرسم المنطقة في الرسم:

دعنا نختار الطريقة الأولى لاجتياز المنطقة:

هكذا:

وعلى الفور تقنية فنية مهمة: يمكن حساب التكاملات التكرارية بشكل منفصل. أولا التكامل الداخلي، ثم التكامل الخارجي. أوصي بشدة بهذه الطريقة للمبتدئين في هذا الموضوع.

1) لنحسب التكامل الداخلي، ويتم التكامل على المتغير "y":

التكامل غير المحدد هنا هو الأبسط، ومن ثم يتم استخدام صيغة نيوتن-لايبنتز المبتذلة، مع الاختلاف الوحيد الذي حدود التكامل ليست أرقاما، بل وظائف. أولاً، قمنا باستبدال الحد الأعلى في "y" (دالة الاشتقاق العكسي)، ثم الحد الأدنى

2) يجب استبدال النتيجة التي تم الحصول عليها في الفقرة الأولى بالتكامل الخارجي:

يبدو التمثيل الأكثر إحكاما للحل بأكمله كما يلي:

الصيغة الناتجة هي بالضبط صيغة العمل لحساب مساحة الشكل المستوي باستخدام التكامل المحدد "العادي"! شاهد الدرس حساب المساحة باستخدام التكامل المحدد، ها هي في كل خطوة!

إنه، مسألة حساب المساحة باستخدام التكامل المزدوج لا يختلف كثيرامن مشكلة إيجاد المساحة باستخدام التكامل المحدد!في الواقع، إنه نفس الشيء!

وبناء على ذلك، لا ينبغي أن تنشأ أي صعوبات! لن ألقي نظرة على العديد من الأمثلة، لأنك في الواقع واجهت هذه المهمة مرارًا وتكرارًا.

مثال 9

حل:لنرسم المنطقة في الرسم:

دعونا نختار الترتيب التالي لاجتياز المنطقة:

هنا، لن أتطرق إلى كيفية اجتياز المنطقة، حيث تم تقديم تفسيرات مفصلة للغاية في الفقرة الأولى.

هكذا:

كما أشرت سابقًا، من الأفضل للمبتدئين حساب التكاملات التكرارية بشكل منفصل، وسألتزم بنفس الطريقة:

1) أولاً، باستخدام صيغة نيوتن-لايبنتز، نتعامل مع التكامل الداخلي:

2) يتم استبدال النتيجة التي تم الحصول عليها في الخطوة الأولى بالتكامل الخارجي:

النقطة 2 هي في الواقع إيجاد مساحة الشكل المستوي باستخدام تكامل محدد.

إجابة:

هذه مهمة غبية وساذجة.

مثال مثير للاهتمام لحل مستقل:

مثال 10

باستخدام التكامل المزدوج، احسب مساحة الشكل المستوي المحدد بالخطوط، ،،

مثال تقريبي للحل النهائي في نهاية الدرس.

في الأمثلة 9-10، يكون استخدام الطريقة الأولى لاجتياز المنطقة أكثر ربحية؛ وبالمناسبة، يمكن للقراء الفضوليين تغيير ترتيب الاجتياز وحساب المناطق باستخدام الطريقة الثانية. إذا لم ترتكب أي خطأ، فمن الطبيعي أن تحصل على نفس قيم المنطقة.

لكن في بعض الحالات، تكون الطريقة الثانية لاجتياز المنطقة أكثر فعالية، وفي نهاية دورة الطالب الذي يذاكر كثيرا، دعونا نلقي نظرة على بضعة أمثلة أخرى حول هذا الموضوع:

مثال 11

باستخدام التكامل المزدوج، حساب مساحة الشكل المستوي المحدد بخطوط،

حل:نحن نتطلع إلى قطعتين مكافئتين مع غرابة تقع على جانبيهما. ليست هناك حاجة للابتسام؛ فأشياء مماثلة تحدث غالبًا في تكاملات متعددة.

ما هي أسهل طريقة لعمل الرسم؟

دعونا نتخيل القطع المكافئ في شكل وظيفتين:
- الفرع العلوي و - الفرع السفلي.

وبالمثل، تخيل القطع المكافئ على شكل العلوي والسفلي الفروع.

بعد ذلك، الرسم البياني لقواعد الرسوم البيانية، يؤدي إلى هذا الشكل الغريب:

نحسب مساحة الشكل باستخدام التكامل المزدوج وفقًا للصيغة:

ماذا يحدث إذا اخترنا الطريقة الأولى لعبور المنطقة؟ أولاً، يجب تقسيم هذه المنطقة إلى قسمين. وثانياً سنلاحظ هذه الصورة الحزينة: . التكاملات، بالطبع، ليست بمستوى فائق التعقيد، ولكن... هناك مقولة رياضية قديمة: أولئك الذين يقتربون من جذورهم لا يحتاجون إلى اختبار.

لذلك، من سوء الفهم الوارد في الشرط، نعبر عن الوظائف العكسية:

تتميز الدوال العكسية في هذا المثال بأنها تحدد القطع المكافئ بالكامل مرة واحدة دون أي أوراق أو جوز أو فروع أو جذور.

ووفقا للطريقة الثانية، فإن اجتياز المنطقة سيكون على النحو التالي:

هكذا:

كما يقولون، اشعر بالفرق.

1) نتعامل مع التكامل الداخلي :

نعوض بالنتيجة في التكامل الخارجي:

التكامل على المتغير "y" لا ينبغي أن يكون مربكًا؛ إذا كان هناك حرف "zy"، فسيكون من الرائع التكامل فوقه. على الرغم من قراءة الفقرة الثانية من الدرس كيفية حساب حجم الجسم أثناء دورانهلم يعد يواجه أدنى قدر من الإحراج مع التكامل وفقًا لطريقة "Y".

انتبه أيضًا إلى الخطوة الأولى: التكامل زوجي، وفترة التكامل متماثلة حوالي الصفر. لذلك يمكن خفض المقطع إلى النصف، ويمكن مضاعفة النتيجة. تم التعليق على هذه التقنية بالتفصيل في الدرس. طرق فعالة لحساب التكامل المحدد.

ماذا تضيف... الجميع!

إجابة:

لاختبار تقنية التكامل الخاصة بك، يمكنك محاولة الحساب . يجب أن تكون الإجابة هي نفسها تمامًا.

مثال 12

باستخدام التكامل المزدوج، احسب مساحة الشكل المسطح الذي يحده الخطوط

هذا مثال لك لحله بنفسك. ومن المثير للاهتمام أن نلاحظ أنه إذا حاولت استخدام الطريقة الأولى لاجتياز المنطقة، فلن يتعين بعد الآن تقسيم الشكل إلى قسمين، بل إلى ثلاثة أجزاء! وبناء على ذلك، نحصل على ثلاثة أزواج من التكاملات المتكررة. يحدث هذا أيضًا.

لقد انتهى الفصل الرئيسي، وحان الوقت للانتقال إلى مستوى الأستاذ الكبير - كيفية حساب التكامل المزدوج؟ أمثلة على الحلول. سأحاول ألا أكون مهووسًا جدًا في المقالة الثانية =)

أتمنى لك النجاح!

الحلول والأجوبة:

مثال 2:حل: دعونا نصور المنطقة على الرسم:

دعونا نختار الترتيب التالي لاجتياز المنطقة:

هكذا:
دعنا ننتقل إلى الوظائف العكسية:


هكذا:
إجابة:

مثال 4:حل: دعنا ننتقل إلى الوظائف المباشرة:


لنقم بالرسم:

دعونا نغير ترتيب اجتياز المنطقة:

إجابة:

في القسم السابق المخصص لتحليل المعنى الهندسي للتكامل المحدد، تلقينا عددًا من الصيغ لحساب مساحة شبه منحرف منحني الأضلاع:

Yandex.RTB RA-A-339285-1

S (G) = ∫ a b f (x) d x لدالة مستمرة وغير سالبة y = f (x) على الفترة [ a ; ب ]،

S (G) = - ∫ a b f (x) d x لدالة مستمرة وغير موجبة y = f (x) على الفترة [ a ; ب ] .

تنطبق هذه الصيغ على حل المشكلات البسيطة نسبيًا. في الواقع، سيتعين علينا في كثير من الأحيان العمل مع شخصيات أكثر تعقيدًا. وفي هذا الصدد، سنخصص هذا القسم لتحليل خوارزميات حساب مساحة الأشكال التي تقتصر على وظائف في شكل صريح، أي. مثل y = f(x) أو x = g(y).

نظرية

دع الوظائف y = f 1 (x) و y = f 2 (x) محددة ومستمرة على الفاصل الزمني [ a ; b ] و f 1 (x) ≥ f 2 (x) لأي قيمة x من [ a ; ب ] . ثم صيغة حساب مساحة الشكل G، المحصورة بالخطوط x = a، x = b، y = f 1 (x) و y = f 2 (x) ستبدو هكذا S (G) = ∫ أ ب و 2 (س) - و 1 (س) د س .

سيتم تطبيق صيغة مماثلة على مساحة الشكل الذي يحده الخطوط y = c و y = d و x = g 1 (y) و x = g 2 (y): S (G) = ∫ c d ( ز 2 (ص) - ز 1 (ص) د ص .

دليل

دعونا نلقي نظرة على ثلاث حالات تكون الصيغة صالحة لها.

في الحالة الأولى، مع الأخذ بعين الاعتبار خاصية إضافة المساحة، فإن مجموع مساحات الشكل الأصلي G وشبه المنحرف المنحني G1 يساوي مساحة الشكل G2. وهذا يعني ذلك

وبالتالي، S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

يمكننا إجراء الانتقال الأخير باستخدام الخاصية الثالثة للتكامل المحدد.

وفي الحالة الثانية تكون المساواة صحيحة: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( س) - و 1 (س)) د س

سيبدو الرسم التوضيحي كما يلي:

إذا كانت كلتا الدالتين غير موجبة، نحصل على: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f) 2 (س) - و 1 (س)) د س . سيبدو الرسم التوضيحي كما يلي:

دعنا ننتقل إلى النظر في الحالة العامة عندما يتقاطع y = f 1 (x) و y = f 2 (x) مع المحور O x.

نشير إلى نقاط التقاطع بـ x i, i = 1, 2, . . . , ن - 1 . هذه النقاط تقسم المقطع [a؛ ب ] إلى أجزاء n x i - 1 ; س ط، ط = 1، 2، . . . ، ن، حيث α = س 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

لذلك،

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) د x = ∫ أ ب و 2 (س) - و 1 (س) د س

يمكننا إجراء الانتقال الأخير باستخدام الخاصية الخامسة للتكامل المحدد.

دعونا نوضح الحالة العامة على الرسم البياني.

يمكن اعتبار الصيغة S (G) = ∫ a b f 2 (x) - f 1 (x) d x مثبتة.

الآن دعنا ننتقل إلى تحليل أمثلة لحساب مساحة الأشكال المحدودة بالخطين y = f (x) و x = g (y).

سنبدأ النظر في أي من الأمثلة من خلال إنشاء رسم بياني. ستسمح لنا الصورة بتمثيل الأشكال المعقدة كإتحادات لأشكال أبسط. إذا كان إنشاء الرسوم البيانية والأشكال عليها أمرًا صعبًا بالنسبة لك، فيمكنك دراسة القسم الخاص بالدوال الأولية الأساسية، والتحويل الهندسي للرسوم البيانية للدوال، بالإضافة إلى إنشاء الرسوم البيانية أثناء دراسة الدالة.

مثال 1

من الضروري تحديد مساحة الشكل المحدد بالقطع المكافئ y = - x 2 + 6 x - 5 والخطوط المستقيمة y = - 1 3 x - 1 2, x = 1, x = 4.

حل

لنرسم الخطوط على الرسم البياني في نظام الإحداثيات الديكارتية.

على القطعة [ 1 ; 4 ] الرسم البياني للقطع المكافئ y = - x 2 + 6 x - 5 يقع أعلى الخط المستقيم y = - 1 3 x - 1 2. وفي هذا الصدد، للحصول على الإجابة نستخدم الصيغة التي حصلنا عليها سابقًا، وكذلك طريقة حساب التكامل المحدد باستخدام صيغة نيوتن-لايبنتز:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 س 2 - 9 2 x 1 4 = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

الجواب: س(ز) = 13

دعونا ننظر إلى مثال أكثر تعقيدا.

مثال 2

من الضروري حساب مساحة الشكل، والتي تقتصر على الخطوط y = x + 2، y = x، x = 7.

حل

في هذه الحالة، لدينا خط مستقيم واحد فقط موازي لمحور x. هذا هو س = 7. وهذا يتطلب منا أن نجد الحد الثاني للتكامل بأنفسنا.

دعونا نبني رسمًا بيانيًا ونرسم عليه الخطوط الواردة في بيان المشكلة.

بوجود الرسم البياني أمام أعيننا، يمكننا بسهولة تحديد أن الحد الأدنى للتكامل سيكون حدود نقطة تقاطع الرسم البياني للخط المستقيم y = x وشبه القطع المكافئ y = x + 2. للعثور على الإحداثي السيني نستخدم المعادلات:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

يتبين أن حدود نقطة التقاطع هي x = 2.

نلفت انتباهك إلى حقيقة أنه في المثال العام في الرسم، تتقاطع الخطوط y = x + 2، y = x عند النقطة (2؛ 2)، لذلك قد تبدو مثل هذه الحسابات التفصيلية غير ضرورية. لقد قدمنا ​​مثل هذا الحل التفصيلي هنا فقط لأنه في الحالات الأكثر تعقيدًا قد لا يكون الحل واضحًا جدًا. وهذا يعني أنه من الأفضل دائمًا حساب إحداثيات تقاطع الخطوط بشكل تحليلي.

على الفاصل الزمني [ 2 ; 7] الرسم البياني للدالة y = x يقع أعلى الرسم البياني للدالة y = x + 2. دعونا نطبق الصيغة لحساب المساحة:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

الجواب: س (ز) = 59 6

مثال 3

من الضروري حساب مساحة الشكل، والتي تقتصر على الرسوم البيانية للوظائف y = 1 x و y = - x 2 + 4 x - 2.

حل

دعونا نرسم الخطوط على الرسم البياني.

دعونا نحدد حدود التكامل. للقيام بذلك، نحدد إحداثيات نقاط تقاطع الخطوط عن طريق مساواة التعبيرات 1 x و - x 2 + 4 x - 2. بشرط ألا تكون x صفراً، فإن المساواة 1 x = - x 2 + 4 x - 2 تصبح معادلة لمعادلة الدرجة الثالثة - x 3 + 4 x 2 - 2 x - 1 = 0 بمعاملات صحيحة. لتحديث ذاكرتك عن الخوارزمية الخاصة بحل مثل هذه المعادلات، يمكننا الرجوع إلى قسم "حل المعادلات التكعيبية".

جذر هذه المعادلة هو x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

بقسمة التعبير - x 3 + 4 x 2 - 2 x - 1 على ذات الحدين x - 1، نحصل على: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

يمكننا إيجاد الجذور المتبقية من المعادلة x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 د = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3؛ س 2 = 3 - 13 2 ≈ - 0 . 3

لقد وجدنا الفاصل الزمني x ∈ 1؛ 3 + 13 2، حيث يكون الشكل G موجودًا فوق الخط الأزرق وتحت الخط الأحمر. وهذا يساعدنا على تحديد مساحة الشكل:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ع 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ع 1 = 7 + 13 3 - ع 3 + 13 2

الجواب: س (ز) = 7 + 13 3 - l 3 + 13 2

مثال 4

من الضروري حساب مساحة الشكل، والتي تقتصر على المنحنيات y = x 3، y = - log 2 x + 1 ومحور الإحداثي السيني.

حل

دعونا نرسم جميع الخطوط على الرسم البياني. يمكننا الحصول على الرسم البياني للدالة y = - log 2 x + 1 من الرسم البياني y = log 2 x إذا وضعناها بشكل متماثل حول المحور x وحركناها للأعلى بمقدار وحدة واحدة. معادلة المحور السيني هي y = 0.

دعونا نحدد نقاط تقاطع الخطوط.

كما يتبين من الشكل، فإن الرسوم البيانية للدالتين y = x 3 و y = 0 تتقاطع عند النقطة (0; 0). يحدث هذا لأن x = 0 هو الجذر الحقيقي الوحيد للمعادلة x 3 = 0.

x = 2 هو الجذر الوحيد للمعادلة - log 2 x + 1 = 0، وبالتالي فإن الرسوم البيانية للوظائف y = - log 2 x + 1 و y = 0 تتقاطع عند النقطة (2؛ 0).

x = 1 هو الجذر الوحيد للمعادلة x 3 = - log 2 x + 1 . في هذا الصدد، تتقاطع الرسوم البيانية للوظائف y = x 3 و y = - log 2 x + 1 عند النقطة (1؛ 1). العبارة الأخيرة قد لا تكون واضحة، لكن المعادلة x 3 = - log 2 x + 1 لا يمكن أن يكون لها أكثر من جذر واحد، لأن الدالة y = x 3 تتزايد بشكل صارم، والدالة y = - log 2 x + 1 هي يتناقص بشدة.

يتضمن الحل الإضافي عدة خيارات.

الخيار رقم 1

يمكننا أن نتخيل الشكل G كمجموع شبه منحرفين منحنيين يقعان فوق المحور السيني، يقع أولهما أسفل خط الوسط على القطعة x ∈ 0؛ 1، والثاني أسفل الخط الأحمر على القطعة x ∈ 1؛ 2. هذا يعني أن المساحة ستكون مساوية S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

الخيار رقم 2

يمكن تمثيل الشكل G بالفرق بين شكلين، يقع أولهما فوق المحور السيني وتحت الخط الأزرق على المقطع x ∈ 0؛ 2، والثاني بين الخطين الأحمر والأزرق على القطعة x ∈ 1؛ 2. هذا يتيح لنا العثور على المنطقة على النحو التالي:

S (G) = ∫ 0 2 x 3 د x - ∫ 1 2 x 3 - (- سجل 2 x + 1) د x

في هذه الحالة، للعثور على المساحة، سيتعين عليك استخدام صيغة من الصيغة S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. في الواقع، يمكن تمثيل الخطوط التي تربط الشكل كدوال للوسيطة y.

دعونا نحل المعادلات y = x 3 و - log 2 x + 1 بالنسبة إلى x:

y = x 3 ⇒ x = y 3 y = - سجل 2 x + 1 ⇒ سجل 2 x = 1 - y ⇒ x = 2 1 - y

نحصل على المساحة المطلوبة:

S (G) = ∫ 0 1 (2 1 - y - y 3) د y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

الجواب: S (G) = 1 ln 2 - 1 4

مثال 5

من الضروري حساب مساحة الشكل المحدد بالخطوط y = x، y = 2 3 x - 3، y = - 1 2 x + 4.

حل

باستخدام الخط الأحمر، نرسم الخط المحدد بواسطة الدالة y = x. سنرسم الخط y = - 1 2 x + 4 باللون الأزرق، والخط y = 2 3 x - 3 باللون الأسود.

دعونا نحدد نقاط التقاطع.

لنجد نقاط تقاطع الرسوم البيانية للدوال y = x و y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 × 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 تحقق: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 ليس حل المعادلة x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 هو حل المعادلة ⇒ (4; 2) نقطة التقاطع i y = x و y = - 1 2 x + 4

لنجد نقطة تقاطع الرسوم البيانية للوظائف y = x و y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 × 1 = 45 + 729 8 = 9، × 2 45 - 729 8 = 9 4 تحقق: × 1 = 9 = 3، 2 3 × 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 هو حل المعادلة ⇒ (9 ; 3) النقطة a s y = x و y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 لا يوجد حل للمعادلة

لنوجد نقطة تقاطع الخطين y = - 1 2 x + 4 و y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1) ) نقطة التقاطع y = - 1 2 x + 4 و y = 2 3 x - 3

الطريقة رقم 1

دعونا نتخيل مساحة الشكل المطلوب كمجموع مساحات الأشكال الفردية.

ثم مساحة الشكل هي:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - س 2 3 + 3 × 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

الطريقة رقم 2

يمكن تمثيل مساحة الشكل الأصلي كمجموع شكلين آخرين.

ثم نحل معادلة الخط بالنسبة لـ x، وبعد ذلك فقط نطبق صيغة حساب مساحة الشكل.

y = x ⇒ x = y 2 خط أحمر y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 خط أسود y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

إذن المنطقة هي:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 ص + 9 2 - ص 2 د ص = = 7 4 ص 2 - 7 4 ص 1 2 + - ص 3 3 + 3 ص 2 4 + 9 2 ص 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

كما ترون، القيم هي نفسها.

الجواب: س (ز) = 11 3

نتائج

للعثور على مساحة شكل محدد بخطوط معينة، نحتاج إلى إنشاء خطوط على المستوى، وإيجاد نقاط تقاطعها، وتطبيق الصيغة للعثور على المساحة. في هذا القسم، قمنا بفحص المتغيرات الأكثر شيوعًا للمهام.

إذا لاحظت وجود خطأ في النص، فيرجى تحديده والضغط على Ctrl+Enter