Магнитные материалы и их применение. Рефераты

Одно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён. До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка. Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля.

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

Как увидеть магнитное поле

Чтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку.

Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы.

Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении.

Виды магнитов

Постоянные магниты разделяют на 2 вида:

  • естественные;
  • искусственные.

Естественные

В природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл». Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось. Это была разработка и добыча естественного магнетита.

Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.

Искусственные

Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.

В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий.

Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

  • «Nd» – ниодия,
  • «Fe» – железа,
  • «B» – бора.

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье.

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Радиотехника

ПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

Видео

Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т.д. .

Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю.

Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками - токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза .

Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

Гальванометр - чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов .

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнитохимия - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинской терапии и диагностике у скорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным .

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой - то вершины, с начала 60 - х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке - сотни болезней .

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов, греков, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно - сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков - электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов .

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключом к решению многих задач магнитобиологии.

Среди технологических революций конца XX века одной из самых главных является перевод потребителей на атомное топливо. И снова магнитные поля оказались в центре внимания. Только они смогут обуздать своенравную плазму в «мирной» термоядерной реакции, которая должна прийти на смену реакциям деления радиоактивных ядер урана и тория.

Что бы еще сжечь? - навязчивым рефреном звучит вопрос, вечно мучающий энергетиков. Довольно долго нас выручали дрова, но у них малая энергоемкость, а потому дровяная цивилизация примитивна. Сегодняшнее наше благосостояние основано на сжигании ископаемого топлива, однако легкодоступные запасы нефти, угля и природного газа медленно, но верно иссякают. Волей-неволей приходится переориентировать топливно-энергетический баланс страны на что-то другое. В будущем веке остатки органического топлива придется сохранять для сырьевых нужд химии. А основным энергосырьем, как известно, станет ядерное топливо.

Идея магнитной термоизоляции плазмы основана на известном свойстве электрически заряженных частиц, движущихся в магнитном поле, искривлять свою траекторию и двигаться по спирали силовых линий поля. Это искривление траектории в неоднородном магнитном поле приводит к тому, что частица выталкивается в область, где магнитное поле более слабое. Задача состоит в том, чтобы плазму со всех сторон окружить более сильным полем. Эта задача решается во многих лабораториях мира. Магнитное удержание плазмы открыли советские ученые, которые в 1950 г. предложили удерживать плазму в так называемых магнитных ловушках (или, как часто их называют, в магнитных бутылках).

Примером весьма простой системы для магнитного удержания плазмы может служить ловушка с магнитными пробками или зеркалами (пробкотрон). Система представляет собой длинную трубу, в которой создано продольное магнитное поле. На концах трубы намотаны более массивные обмотки, чем в середине. Это приводит к тому, что магнитные силовые линии на концах трубы расположены гуще и магнитное поле в этих областях сильнее. Таким образом, частица, попавшая в магнитную бутылку, не может покинуть систему, ибо ей пришлось бы пересекать силовые линии и вследствие лоренцевой силы «накручиваться» на них. На этом принципе была построена огромная магнитная ловушка установки «Огра-1», пущенной в Институте атомной энергии имени И.В. Курчатова в 1958 г. Вакуумная камера «Огра-1» имеет длину 19 м при внутреннем диаметре 1,4 м. Средний диаметр обмотки, создающей магнитное поле, составляет 1,8 м, напряженность поля в середине камеры 0,5 Тл, в пробках 0,8 Тл.

Стоимость электроэнергии, получаемой от термоядерных электростанций, будет очень низкой вследствие дешевизны исходного сырья (воды). Настанет время, когда электростанции будут вырабатывать буквально океаны электроэнергии. С помощью этой электроэнергии станет возможным, быть может, не только кардинально изменить условия жизни на Земле - повернуть вспять реки, осушить болота, обводнить пустыни, - но и изменить облик окружающего космического пространства - заселить и «оживить» Луну, окружить Марс атмосферой.

Одна из основных трудностей на этом пути - создание магнитного поля заданной геометрии и величины. Магнитные поля в современных термоядерных ловушках относительно невелики. Тем не менее, если учесть громадные объемы камер, отсутствие ферромагнитного сердечника, а также специальные требования к форме магнитного поля, затрудняющие создание таких систем, то следует признать, что имеющиеся ловушки - большое техническое достижение.

Исходя из вышесказанного, можно сделать вывод, что в настоящее время нет отрасли, в которой бы не применялся магнит или явление магнетизма.

  • Ш Магнитные носители информации: VHS кассеты содержат катушки из магнитной ленты. Видео и звуковая информация кодируется на магнитном покрытии на ленте. Также в компьютерных дискетах и жестких дисках запись данных происходит на тонком магнитном покрытии. Однако носители информации не являются магнитами в строгом смысле, так как они не притягивают предметы. Магниты в жёстких дисках используются в ходовом и позиционирующем электродвигателях.
  • Ш Кредитные, дебетовые, и ATM карты: Все эти карточки имеют магнитную полосу на одной стороне. Эта полоса кодирует информацию, необходимую для соединения с финансовым учреждением и связи с их счетами.
  • Ш Обычные телевизоры и компьютерные мониторы: телевизоры и компьютерные мониторы, содержащие электронно-лучевую трубку используют электромагнит для управления пучком электронов и формирования изображения на экране. Плазменные панели и ЖК мониторы используют другие технологии.
  • Ш Громкоговорители и микрофоны: большинство громкоговорителей используют постоянный магнит и токовую катушку для преобразования электрической энергии (сигнала) в механическую энергию (движение, которое создает звук). Обмотка намотана на катушку, прикрепляется к диффузору и по ней протекает переменный ток, который взаимодействует с полем постоянного магнита.
  • Ш Другой пример использования магнитов в звукотехнике -- в головке звукоснимателя электрофона и в кассетных диктофонах в качестве экономичной стирающей головки.
  • Ш Магнитный сепаратор тяжелых минералов
  • Ш Электродвигатели и генераторы: некоторые электрические двигатели (так же, как громкоговорители) основываются на комбинации электромагнита и постоянного магнита. Они преобразовывают электрическую энергию в механическую энергию. Генератор, наоборот, преобразует механическую энергию в электрическую энергию путем перемещения проводника через магнитное поле.
  • Ш Трансформаторы: устройства передачи электрической энергии между двумя обмотками провода, которые электрически изолированы, но связаны магнитно.
  • Ш Магниты используются в поляризованных реле. Такие устройства запоминают своё состояние на время выключения питания.
  • Ш Компасы: компас (или морской компас) является намагниченным указателем, который может свободно вращаться и ориентируется на направление магнитного поля, чаще всего магнитного поля Земли.
  • Ш Искусство: виниловые магнитные листы могут быть присоединены к живописи, фотографии и другим декоративным изделиям, что позволяет присоединять их к холодильникам и другим металлическим поверхностям.
  • Ш Магниты часто используются в игрушках. M-TIC использует магнитные стержни, связанные с металлическими сферами
  • Ш Игрушки: Учитывая их способность противостоять силе тяжести на близком расстоянии, магниты часто используются в детских игрушках с забавными эффектами.
  • Ш Магниты могут использоваться для производства ювелирных изделий. Ожерелья и браслеты могут иметь магнитную застежку, или могут быть изготовлены полностью из серии связанных магнитов и черных бусин.
  • Ш Магниты могут поднимать магнитные предметы (железные гвозди, скобы, кнопки, скрепки), которые либо являются слишком мелкими, либо их трудно достать или они слишком тонкие чтобы держать их пальцами. Некоторые отвертки специально намагничиваются для этой цели.
  • Ш Магниты могут использоваться при обработке металлолома для отделения магнитных металлов (железа, стали и никеля) от немагнитных (алюминия, цветных сплавов и т. д.). Та же идея может быть использована в рамках так называемого «Магнитного испытания», в которой кузов автомобиля обследуется с магнитом для выявления областей, отремонтированых с использованием стекловолокна или пластиковой шпатлевки.
  • Ш Маглев: поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления..
  • Ш Магниты используются в фиксаторах мебельных дверей.
  • Ш Если магниты поместить в губки, то эти губки можно использовать для мытья тонких листовых немагнитных материалов сразу с обеих сторон, причём одна сторона может быть труднодоступной. Это могут быть, например, стёкла аквариума или балкона.
  • Ш Магниты используются для передачи вращающего момента «сквозь» стенку, которой может являться, например, герметичный контейнер электродвигателя. Так была устроена игрушка ГДР «Подводная лодка».
  • Ш Магниты совместно с герконом применяются в специальных датчиках положения. Например, в датчиках дверей холодильников и охранных сигнализаций.
  • Ш Магниты совместно с датчиком Холла используют для определения углового положения или угловой скорости вала.
  • Ш Магниты используются в искровых разрядниках для ускорения гашения дуги.
  • Ш Магниты используются при неразрушающем контроле магнитопорошковым методом (МПК)
  • Ш Магниты используются для отклонения пучков радиоактивных и ионизирующих излучений, например при наблюдении в камерах.
  • Ш Магниты используются в показывающих приборах с отклоняющейся стрелкой, например, амперметр. Такие приборы весьма чувствительны и линейны.
  • Ш Магниты применяются в СВЧ вентилях и циркуляторах.
  • Ш Магниты применяются в составе отклоняющей системы электронно-лучевых трубок для подстройки траектории электронного пучка.
  • Ш До открытия закона сохранения энергии, было много попыток использовать магниты для построения «вечного двигателя». Людей привлекала, казалось бы, неисчерпаемая энергия магнитного поля постоянного магнита, которые были известны очень давно. Но рабочий макет так и не был построен.

В самом начале работы полезно будет дать несколькоопределений ипояснений.

Если, в каком то месте, на движущиеся тела, обладающиезарядом, действует сила, которая не действует на неподвижные или лишенныезаряда тела, то говорят, что в этом месте присутствует магнитное поле – одна из форм более общего электромагнитного поля .

Есть тела, способные создавать вокруг себя магнитноеполе (и на такое тело тоже действует сила магнитного поля), про них говорят,что эти тела намагничены и обладают магнитным моментом, который и определяетсвойство тела создавать магнитное поле. Такие тела называют магнитами .

Следует отметить, что разные материалы по разномуреагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутрисебяпарамагнетики и усиливающие внешнее поле внутри себядиамагнетики .

Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо,кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют– ферромагнетики.

Есть среди ферромагнетиков материалы которыепосле воздействия на них достаточно сильного внешнего магнитного поля самистановятся магнитами – это магнитотвердые материалы.

Есть материалы концентрирующие в себе внешнее магнитное поле и, пока онодействует, ведут себя как магниты; но если внешнее поле исчезает они нестановятся магнитами – это магнитомягкие материалы

ВВЕДЕНИЕ.

Мы привыкли к магниту иотносимся к нему чуточку снисходительно как к устаревшему атрибуту школьныхуроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В нашихквартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах,в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас,рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на котороймы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнитещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическоегенерирование электроэнергии, ускорение заряженных частиц в синхротронах,подъём затонувших судов – всё это области, где требуются грандиозные,невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных,ультрасильных и ещё более сильных магнитных полей стала одной из основных всовременной физике и технике.

Магнит известен человеку снезапамятных времён. До нас дошли упоминания

о магнитах и их свойствах втрудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 дон.э.). Само слово «магнит» возникло в связи с тем, что природные магниты былиобнаружены греками в Магнесии (Фессалия).

Естественные (илиприродные) магниты встречаются в природе в виде залежей магнитных руд. ВТартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков . Такназываемые «порошковые» магниты (из железа, кобальта и некоторых другихдобавок) могут удержать груз более чем 5000 раз превышающий их собственнуюмассу.

Существуютискусственные магниты двух разных видов:

Одни – так называемыепостоянныемагниты ,изготовляемые из «магнитно-твердых » материалов.Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого » железа.Создаваемые ими магнитные поля обусловлены в основном тем, что по проводуобмотки, охватывающей сердечник, проходит электрический ток.

В 1600 году в Лондоне вышла книга королевского врачаВ. Гильберта “О магните, магнитных телах и большом магните - Земле”. Этосочинение явилось первой известной нам попыткой исследования магнитных явленийс позиций науки. В этом труде собраны имевшиеся тогда сведения об электричествеи магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чемсталкивается человек, он прежде всего стремится извлечь практическую пользу. Неминовал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используютсямагниты человеком не для войны, а в мирных целях, в том числе применениемагнитов в биологии, медицине, в быту.

КОМПАС, прибор для определения горизонтальных направлений на местности.Применяется для определения направления, в котором движется морское, воздушноесудно, наземное транспортное средство; направления, в котором идет пешеход;направления на некоторый объект или ориентир. Компасы подразделяются на дваосновных класса: магнитные компасы типа стрелочных, которыми пользуютсятопографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относитсясообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природныхмагнитов и использовании их в навигации.Если

длинная игла из природногомагнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальнойплоскости, то она всегда обращена одним концом к северу, а другим – к югу.Пометив указывающий на север конец, можно пользоваться таким компасом дляопределения направлений.

Магнитные эффектыконцентрировались у концов такой иглы, и поэтому их назвали полюсами(соответственно северным и южным).

Основное применение магнитнаходит в электротехнике, радиотехнике, приборостроении, автоматике ителемеханике. Здесь ферромагнитные материалы идут на изготовлениемагнитопроводов, реле и т.д.

В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник стоком воздействует на магнитную стрелку, поворачивая ее. Буквально неделейпозже Ампер показал, что два параллельных проводника с током одного направленияпритягиваются друг к другу. Позднее он высказал предположение, что всемагнитные явления обусловлены токами, причем магнитные свойства постоянныхмагнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Этопредположение полностью соответствует современным представлениям.

Электромашинныегенераторы и электродвигатели - машинывращательного типа, преобразующие либо механическую энергию в электрическую(генераторы), либо электрическую в механическую (двигатели). Действиегенераторов основано на принципе электромагнитной индукции: в проводе,движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действиеэлектродвигателей основано на том, что на провод с током, помещенный впоперечное магнитное поле, действует сила.

Магнитоэлектрическиеприборы. В таких приборахиспользуется сила взаимодействия магнитного поля с током в витках обмоткиподвижной части, стремящаяся повернуть последнюю

Индукционныесчетчики электроэнергии . Индукционныйсчетчик представляет собой не что иное, как маломощный электродвигательпеременного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящийдиск, помещенный между обмотками, вращается под действием крутящего момента,пропорционального потребляемой мощности. Этот момент уравновешивается токами,наводимыми в диске постоянным магнитом, так что частота вращения дискапропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работытребуется гораздо меньше деталей, чем в механических часах; так, в схемутипичных электрических портативных часов входят два магнита, две катушкииндуктивности и транзистор.

Замок- механическое, электрическое или электронное устройство,ограничивающее возможность несанкционированного пользования чем-либо. Замокможет приводиться в действие устройством (ключом), имеющимся в распоряженииопределенного лица, информацией (цифровым или буквенным кодом), вводимой этимлицом, или какой либо индивидуальной характеристикой (например, рисункомсетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узлаили две детали в одном устройстве. Чаще всего замки бывают механическими, новсе более широкое применение находят электромагнитные замки.

Магнитные замки . Вцилиндровых замках некоторых моделей применяются магнитные элементы. Замок иключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочнуюскважину вставляется правильный ключ, он притягивает и устанавливает в нужноеположение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр - механический или электрический прибор для измерениясилы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различныхконструкций; к ним относятся, например, тормоз Прони, гидравлический иэлектромагнитный тормоза.

Электромагнитный динамометр может бытьвыполнен в виде миниатюрного прибора, пригодного для измерений характеристикмалогабаритных двигателей.

Гальванометр –чувствительный прибор для измерения слабых токов. В гальванометре используетсявращающий момент, возникающий при взаимодействии подковообразного постоянногомагнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешеннойв зазоре между полюсами магнита. Вращающий момент, а следовательно, иотклонение катушки пропорциональны току и полной магнитной индукции в воздушномзазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.Приборы на его базе - самый распространенный вид приборов.

Спектр выпускаемых приборов широк иразнообразен: приборы щитовые постоянного и переменного тока(магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитнойсистем), комбинированные приборы ампервольтомметры, для диагностирования ирегулировки электрооборудования автомашин, измерения температуры плоскихповерхностей, приборы для оснащения школьных учебных кабинетов, тестеры иизмерители всевозможных электрических параметров

Производство абразивов- мелких, твердых, острых частиц, используемых в свободном или связанномвиде для механической обработки (в т.ч. для придания формы, обдирки,шлифования, полирования) разнообразных материалов и изделий из них (от большихстальных плит до листов фанеры, оптических стекол и компьютерных микросхем).Абразивы бывают естественные или искусственные. Действие абразивов сводится кудалению части материала с обрабатываемой поверхности. Впроцессе производства искусственных абразивов ферросилиций, присутствующий всмеси, оседает на дно печи, но небольшие его количества внедряются в абразив ипозже удаляются магнитом.

Магнитные свойства вещества находят широкое применение внауке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнетохимия (магнитохимия) - раздел физической химии, в которомизучается связь между магнитными и химическими свойствами веществ; кроме того,магнитохимия исследует влияние магнитных полей на химические процессы.магнитохимия опирается на современную физику магнитных явлений. Изучение связимежду магнитными и химическими свойствами позволяет выяснить особенностихимического строения вещества.

Магнитная дефектоскопия , методпоиска дефектов, основанный на исследовании искажений магнитного поля,возникающих в местах дефектов в изделиях из ферромагнитных материалов.

. Техника сверхвысокочастотного диапазона

Сверхвысокочастотный диапазон (СВЧ)- частотный диапазон электромагнитногоизлучения (100¸300 000 млн. герц), расположенный в спектре между ультравысокимителевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широкоприменяются в технике связи. Кроме различных радиосистем военного назначения,во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи.Поскольку такие радиоволны не следуют за кривизной земной поверхности, араспространяются по прямой, эти линии связи, как правило, состоят изретрансляционных станций, установленных на вершинах холмов или на радиобашнях синтервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучениеприменяется для термообработки пищевых продуктов в домашних условиях и в пищевойпромышленности. Энергия, генерируемая мощными электронными лампами, может бытьсконцентрирована в малом объеме для высокоэффективной тепловой обработкипродуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой,бесшумностью и компактностью. Такие устройства применяются на самолетныхбортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, гдетребуются быстрые подготовка продуктов и приготовление блюд. Промышленностьвыпускает также СВЧ-печи бытового назначения.

Быстрый прогресс в области СВЧ-техники в значительной мересвязан с изобретением специальных электровакуумных приборов – магнетрона иклистрона, способных генерировать большие количества СВЧ-энергии. Генератор наобычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазонеоказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобританииперед Второй мировой войной, эти недостатки отсутствуют, поскольку за основувзят совершенно иной подход к генерации СВЧ-излучения – принцип объемногорезонатора

В магнетроне предусмотрено несколько объемных резонаторов,симметрично расположенных вокруг катода, находящегося в центре. Прибор помещаютмежду полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще одинэлектровакуумный прибор для генерации и усиления электромагнитных волнСВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачаннуютрубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц , установка, в которой с помощью электрических и магнитных полейполучаются направленные пучки электронов, протонов, ионов и других заряженныхчастиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные иразнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинскойтерапии и диагностике у скорители играют важную практическую роль. Многиебольничные учреждения во всем мире сегодня имеют в своем распоряжении небольшиеэлектронные линейные ускорители, генерирующие интенсивное рентгеновскоеизлучение, применяемое для терапии опухолей. В меньшей мере используютсяциклотроны или синхротроны, генерирующие протонные пучки. Преимущество протоновв терапии опухолей перед рентгеновским излучением состоит в болеелокализованном энерговыделении. Поэтому протонная терапия особенно эффективнапри лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканейдолжно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля всвоих исследованиях. Физик измеряет магнитные поля атомов и элементарныхчастиц, астроном изучает роль космических полей в процессе формирования новыхзвёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитныхруд, с недавнего времени биология тоже активно включилась в изучение ииспользование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе неучитывая существования каких-либо магнитных полей. Более того, некоторыебиологи считали нужным подчеркнуть, что даже сильное искусственное магнитноеполе не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влияниимагнитных полей на биологические процессы ничего не говорилось. В научнойлитературе всего мира ежегодно появлялись единичные позитивные соображения отом или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёкне мог растопить айсберг недоверия даже к постановке самой проблемы… И вдругручеёк превратился в бурный поток. Лавина магнитобиологических публикаций,словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанноувеличивается и заглушает скептические высказывания.

От алхимиков XVIвека и до наших дней биологическое действие магнита много раз находилопоклонников и критиков. Неоднократно в течение нескольких веков наблюдалисьвсплески и спады интереса к лечебному действию магнита. С его помощью пыталисьлечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли впечени и в желудке – сотни болезней.

Для лечебных целей магнитстал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружноесредство и в качестве амулета магнит пользовался большим успехом у китайцев,индусов, египтян, арабов. ГРЕКОВ, римлян и т.д. О его лечебных свойствахупоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XXвека широко распространились магнитные браслеты, благотворно влияющие набольных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитовиспользуются и электромагниты. Их также применяют для широкого спектра проблемв науке, технике, электронике, медицине (нервные заболевания, заболеваниясосудов конечностей, сердечно – сосудистые заболевания, раковыезаболевания).

Более всего учёныесклоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитныеизмерители скорости движения крови, миниатюрные капсулы, которые с помощью внешнихмагнитных полей можно перемещать по кровеносным сосудам чтобы расширять их,брать пробы на определённых участках пути или, наоборот, локально выводить изкапсул различные медикаменты.

Широко распространёнмагнитный метод удаления металлических частиц из глаза.

Большинству из нас известноисследование работы сердца с помощью электрических датчиков –электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создаютмагнитное поле сердца, которое в max значениях составляет 10-6 напряжённостимагнитного поля Земли. Ценность магнитокардиографии в том, что она позволяетполучить сведения об электрически “немых” областях сердца.

Надо отметить, что биологисейчас просят физиков дать теорию первичного механизма биологического действиямагнитного поля, а физики в ответ требуют от биологов побольше проверенныхбиологических фактов. Очевидно, что успешным будет тесное сотрудничестворазличных специалистов.

Важным звеном, объединяющиммагнитобиологические проблемы, является реакция нервной системы на магнитныеполя. Именно мозг первым реагирует на любые изменения во внешней среде. Именноизучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, которыйможно сделать из выше сказанного – нет области прикладной деятельностичеловека, где бы не применялись магниты.

Использованная литература:

1) БСЭ, второе издание, Москва, 1957г.

2) Холодов Ю.А. “Человек в магнитнойпаутине”, “Знание”, Москва, 1972 г.

3) Материалы из интернет - энциклопедии

4) Путилов К.А. «Курс физики»,«Физматгиз», Москва, 1964г.


Питание в школе должно быть хорошо организованным. Школьник должен быть обеспечен в столовой обедом и горячим завтраком. Интервал между первым и вторым приемом пищи не должен превышать четыре часа. Наиболее оптимальным вариантом должен быть завтрак ребенка дома, в школе же он съедает второй завтрак
  • Детская агрессия в школе и сложности в процессе обучения
    Между детской агрессией и трудностями в процессе обучения установлена определенная взаимосвязь. Каждый школьник хочет иметь в школе много друзей, иметь хорошую успеваемость и хорошие оценки. Когда это у ребенка не получается, он делает агрессивные поступки. Каждое поведение на что-то нацелено, имеет смысловую
  • Советы психологов родителям
    В любых олимпиадах и всевозможных конкурсах ребенок, прежде всего, самовыражается и самореализовывается. Родители обязательно должны поддерживать своего ребенка, если он увлечен интеллектуальными соревнованиями. Ребенку важно осознавать себя частью общества интеллектуалов, в котором царят сопернические настроения, и ребенок сравнивает свои достигнутые
  • Ребенок отказывается от приема пищи в столовой школы
    Разборчивому ребенку школьная еда может прийтись не по вкусу. Зачастую, это самая распространенная причина отказа школьника от еды. Все происходит от того, что меню в школе не учитывает вкусовые потребности каждого отдельного ребенка. В школе никто не будет исключать какой-либо продукт из питания отдельного ребенка дабы
  • Как родители относятся к школе
    Для того чтобы понять как родители относятся к школе, то важно для начала охарактеризовать современных родителей, возрастная категория которых весьма разнообразна. Не смотря на это большую часть из них составляют родители, которые относятся к поколению девяностых годов, которые отличаются тяжелым временем для всего населения.
  • Школьная форма
    Первые школьные сборы навсегда остаются в памяти каждого из нас. Родители начинают закупать всю необходимую канцелярию, начиная с августа. Главным школьным атрибутом является форма школьника. Наряд должен быть тщательно подобран, чтобы первоклассник чувствовал себя уверенно. Введение школьной формы обосновывается многими причинами.
  • Уважаемые школьники и студенты!

    Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

    Вы согласны передать свой реферат (диплом, курсовую работу и т.п.?

    Спасибо за ваш вклад в коллекцию!

    Применение магнитов

    Дата добавления: март 2006г.

    В самом начале работы полезно будет дать несколько определений и пояснений. Если, в каком то месте, на движущиеся тела, обладающие зарядом, действует сила, которая не действует на неподвижные или лишенные заряда тела, то говорят, что в этом месте присутствуетмагнитное поле – одна из форм более общего электромагнитного поля.

    Есть тела, способные создавать вокруг себя магнитное поле (и на такое тело тоже действует сила магнитного поля), про них говорят, что эти тела намагничены и обладают магнитным моментом, который и определяет свойство тела создавать магнитное поле. Такие тела называютмагнитами.

    Следует отметить, что разные материалы по разному реагируют на внешнее магнитное поле.

    Есть материалы ослабляющие действие внешнего поля внутри себя – парамагнетики и усиливающие внешнее поле внутри себя – диамагнетики. Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо, кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют – ферромагнетики.

    Есть среди ферромагнетиков материалы которые после воздействия на них достаточно сильного внешнего магнитного поля сами становятся магнитами– это магнитотвердые материалы. Есть материалы концентрирующие в себе внешнее магнитное поле и, пока оно действует, ведут себя как магниты; но если внешнее поле исчезает они не становятся магнитами– это магнитомягкие материалы

    ВВЕДЕНИЕ.

    Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы–тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце– жёлтый плазменный шар –магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов–всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

    Магнит известен человеку с незапамятных времён. До нас дошли упоминания о магнитах и их свойствах в трудах Фалеса Милетского (прибл. 600 до н. э.) и Платона (427–347 до н. э.). Само слово «магнит» возникло в связи с тем, что природные магниты были обнаружены греками в Магнесии (Фессалия).

    Естественные (или природные) магниты встречаются в природе в виде залежей магнитных руд. В Тартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

    Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков. Так называемые «порошковые» магниты (из железа, кобальта и некоторых других добавок) могут удержать груз более чем 5000 раз превышающий их собственную массу.

    Существуют искусственные магниты двух разных видов:

    Одни – так называемые постоянные магниты, изготовляемые из «магнитно-твердых» материалов. Их магнитные свойства не связаны с использованием внешних источников или токов.

    К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого» железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток. В 1600 году в Лондоне вышла книга королевского врача В. Гильберта “О магните, магнитных телах и большом магните - Земле”. Это сочинение явилось первой известной нам попыткой исследования магнитных явлений с позиций науки. В этом труде собраны имевшиеся тогда сведения об электричестве и магнетизме, а также результаты собственных экспериментов автора.

    Из всего, с чем сталкивается человек, он прежде всего стремится извлечь практическую пользу. Не миновал этой судьбы и магнит

    В моей работе я попытаюсь проследить, как используются магниты человеком не для войны, а в мирных целях, в том числе применение магнитов в биологии, медицине, в быту.

    КОМПАС, прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

    К 11 в. относится сообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природных магнитов и использовании их в навигации. Если

    длинная игла из природного магнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальной плоскости, то она всегда обращена одним концом к северу, а другим–к югу. Пометив указывающий на север конец, можно пользоваться таким компасом для определения направлений.

    Магнитные эффекты концентрировались у концов такой иглы, и поэтому их назвали полюсами (соответственно северным и южным).

    Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т. д.

    В 1820 Г. Эрстед (1777–1851) обнаружил, что проводник с током воздействует на магнитную стрелку, поворачивая ее. Буквально неделей позже Ампер показал, что два параллельных проводника с током одного направления притягиваются друг к другу. Позднее он высказал предположение, что все магнитные явления обусловлены токами, причем магнитные свойства постоянных магнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Это предположение полностью соответствует современным представлениям.

    Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

    Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками–токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

    Электрические наручные часыпитаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор. Замок - механическое, электрическое или электронное устройство, ограничивающее возможность несанкционированного пользования чем-либо. Замок может приводиться в действие устройством (ключом), имеющимся в распоряжении определенного лица, информацией (цифровым или буквенным кодом), вводимой этим лицом, или какой либо индивидуальной характеристикой (например, рисунком сетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узла или две детали в одном устройстве. Чаще всего замки бывают механическими, но все более широкое применение находят электромагнитные замки.

    Магнитные замки. В цилиндровых замках некоторых моделей применяются магнитные элементы. Замок и ключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочную скважину вставляется правильный ключ, он притягивает и устанавливает в нужное положение внутренние магнитные элементы замка, что и позволяет открыть замок.

    Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

    Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза.

    Электромагнитный динамометрможет быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

    Гальванометр –чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов.

    Спектр выпускаемых приборов широк и разнообразен: приборы щитовые постоянного и переменного тока (магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитной систем), комбинированные приборы ампервольтомметры, для диагностирования и регулировки электрооборудования автомашин, измерения температуры плоских поверхностей, приборы для оснащения школьных учебных кабинетов, тестеры и измерители всевозможных электрических параметров

    Производство абразивов - мелких, твердых, острых частиц, используемых в свободном или связанном виде для механической обработки (в т. ч. для придания формы, обдирки, шлифования, полирования) разнообразных материалов и изделий из них (от больших стальных плит до листов фанеры, оптических стекол и компьютерных микросхем). Абразивы бывают естественные или искусственные. Действие абразивов сводится к удалению части материала с обрабатываемой поверхности. В процессе производства искусственных абразивов ферросилиций, присутствующий в смеси, оседает на дно печи, но небольшие его количества внедряются в абразив и позже удаляются магнитом.

    Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возниклинауки:

    Магнетохимия(магнитохимия) - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

    Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

    Техника сверхвысокочастотного диапазона

    Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области

    Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами около 50 км.

    Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т. н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения. Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов–магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

    Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения– принцип объемного резонатора

    В магнетроне предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита.

    Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона–лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку.

    Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

    В современных ускорителях используются многочисленные и разнообразные виды техники, в т. ч. мощные прецизионные магниты.

    В медицинской терапии и диагностике ускорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным.

    Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

    Биологическая наукапервой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

    В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой– то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

    От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке– сотни болезней.

    Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

    Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов. ГРЕКОВ, римлян и т. д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

    Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

    Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно–сосудистые заболевания, раковые заболевания).

    Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

    Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

    Широко распространён магнитный метод удаления металлических частиц из глаза.

    Большинству из нас известно исследование работы сердца с помощью электрических датчиков–электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

    Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов.

    Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключём к решению многих задач магнитобиологии.

    Самый простой вывод, который можно сделать из выше сказанного – нет области прикладной деятельности человека, где бы не применялись магниты.

    Использованная литература:
    БСЭ, второе издание, Москва, 1957 г.

    Холодов Ю. А. “Человек в магнитной паутине”, “Знание”, Москва, 1972 г. Материалы из интернет - энциклопедии

    Путилов К. А. «Курс физики» , «Физматгиз», Москва, 1964г.