Слуховой путь. Преддверно-улитковый орган — ухо — орган слуха — organum vestibulocochleare. Слуховой анализатор включает в себя

Слуховой анализатор включает в себя три основные части: орган слуха, слуховые нервы, подкорковый и корковые центры мозга. Как работает слуховой анализатор, знают не многие, но сегодня мы вместе попробуем разобраться во всем.

Человек узнает окружающий его мир и адаптируется в социуме благодаря органам чувств. Одними из самых важных являются органы слуха, которые улавливают звуковые колебания и предоставляют человеку информацию о происходящем вокруг него. Совокупность систем и органов, что обеспечивают чувство слуха, называют слуховым анализатором. Давайте рассмотрим устройство органа слуха и равновесия.

Строение слухового анализатора

Функции слухового анализатора, как уже выше упоминалось, воспринимать звук и давать информацию человеку, но при всей, на первый взгляд, простоте, это довольно сложная процедура.Для того чтобы лучше разобраться, как работают отделы слухового анализатора в организме человека, требуется досконально понять, что же такое собой представляет внутренняя анатомия слухового анализатора.

Слуховой анализатор включает в себя:

  • рецепторный (периферический) аппарат – это , и ;
  • проводниковый (средний) аппарат – слуховой нерв;
  • центральный (корковый) аппарат – слуховые центры в височных долях больших полушарий.

Органы слуха у детей и у взрослых идентичны, они включают рецепторы слухового аппарата трех видов:

  • рецепторы, которые воспринимают колебания волн воздуха;
  • рецепторы, что дают человеку понятие о местоположении тела;
  • рецепторные центры, что позволяют воспринимать скорость движения и его направления.

Орган слуха каждого человека состоит из 3 частей, рассматривая детальней каждую из них, можно понять, как человек воспринимает звуки. Итак, — это совокупность и слухового прохода. Раковина являет собой полость из упругого хряща, что покрыта тонким слоем кожи. Внешнее ухо представляет некий усилитель для преобразования звуковых колебаний. Ушные раковины расположены с обеих сторон человеческой головы и роли не играют, так как просто собирают звуковые волны. неподвижны, и даже если отсутствует их внешняя часть, то особого вреда строение слухового анализатора человека не получит.

Рассматривая строение и функции наружного слухового прохода, можно сказать, что он представляет собой небольшой канал длиною 2,5 см, который выстлан кожей с мелкими волосками. В канале присутствуют апокриновые железы, способные вырабатывать ушную серу, которая вместе с волосками позволяет защитить следующие отделы уха от запыления, загрязнения и попадания посторонних частиц. Наружная часть уха помогает только собирать звуки и проводить их в центральный отдел слухового анализатора.

Барабанная перепонка и среднее ухо

Имеет вид небольшого овала диаметром 10 мм, через нее проходит звуковая волна во внутреннее ухо, где создает некие колебания в жидкости, что наполняет этот отдел слухового анализатора человека. Для передачи воздушных колебаний в ухе человека имеется система , именно их движения активизируют колебание жидкости.

Между внешней частью органа слуха и внутренним отделом располагается . Этот отдел уха имеет вид небольшой полости, емкостью не больше 75 мл. Эта полость связывается с глоткой, ячейками сосцевидного отростка и слуховой трубой, которая являет собой некий предохранитель, выравнивающий давление внутри уха и снаружи. Хотелось бы отметить, что барабанная перепонка всегда подвергается одинаковому атмосферному давлению как снаружи, так и внутри, это и позволяет нормально функционировать органу слуха. Если наблюдается разница между давлениями внутри и снаружи, то появятся нарушения остроты слуха.

Строение внутреннего уха

Самой сложноустроенной частью слухового анализатора является , его еще принято называть «лабиринтом». Главный рецепторный аппарат, что улавливает звуки, являет собой волосковые клетки внутреннего уха или, как еще говорят, «улитки».

Проводниковый отдел слухового анализатора состоит из 17 000 нервных волокон, что напоминают строение телефонного кабеля с отдельно изолированными проводами, каждый из которых передает определенную информацию в нейроны. Именно волосистые клетки реагируют на колебания жидкости внутри уха и передают нервные импульсы в виде акустической информации в периферический отдел головного мозга. А периферическая часть мозга отвечает за органы чувств.

Обеспечивают быструю передачу нервных импульсов проводящие пути слухового анализатора. Говоря проще, проводящие пути слухового анализатора осуществляют связь органа слуха с центральной нервной системой человека. Возбуждения слухового нерва активируют двигательные пути, что отвечают, к примеру, за дергание глаза вследствие сильного звука. Корковый отдел слухового анализатора связывает между собой периферические рецепторы обеих сторон, и при улавливании звуковых волн этот отдел сопоставляет звуки сразу с двух ушей.

Механизм передачи звуков в разном возрасте

Анатомическая характеристика слухового анализатора с возрастом вовсе не изменяется, но хотелось бы отметить, что имеются некие возрастные особенности.

Органы слуха начинают формироваться у эмбриона на 12 неделе развития. Свою функциональность ухо начинает сразу после рождения, но на начальных этапах слуховая активность человека больше напоминает рефлексы. Разные по частоте и интенсивности звуки вызывают у детей разные рефлексы, это может быть закрывание глаз, вздрагивание, открывание рта или учащенное дыхание. Если новорожденный так реагирует на отчетливые звуки, то понятно, что слуховой анализатор развит нормально. При отсутствии этих рефлексов требуется дополнительно исследование. Иногда реакцию ребенка тормозит тот факт, что изначально среднее ухо новорожденного заполнено некой жидкостью, которая мешает движению слуховых косточек, со временем специализированная жидкость полностью высыхает и вместо нее среднее ухо заполняет воздух.

Разнородные звуки малыш начинает дифференцировать с 3 месяцев, а на 6 месяце жизни начинает различать тона. На 9 месяце жизни ребенок может узнавать голоса родителей, звук машины, пение птицы и другие звуки. Дети начинают определять знакомый и чужой голос, узнают его и начинают аукать, радоваться или вовсе искать глазами источник родного звука, если его нет рядом. Развитие слухового анализатора продолжается до 6 лет, после этого порог слышимости ребенка уменьшается, но при этом увеличивается острота слуха. Так продолжается до 15 лет, затем работает в обратном направлении.

В период от 6 до 15 лет можно заметить, что уровень развития слуха отличается, некоторые дети лучше улавливают звуки и способны без трудностей их повторить, им удается хорошо петь и копировать звуки. Другим детям это удается хуже, но при этом они отлично слышат, на таких детей иногда говорят «медведь на ухо насупил». Огромное значение имеет общение детей со взрослыми, именно оно формирует речевое и музыкально восприятие ребенка.

Что касается анатомических особенностей, то у новорожденных слуховая труба намного короче, чем у взрослых и шире, из-за этого инфекция из дыхательных путей так часто поражает их органы слуха.

Восприятие звука

Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны.

Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.

Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.

Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.

При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация).

Изменения слухового аппарата на протяжении жизни

Возрастные особенности слухового анализатора немного меняются на протяжении всей жизни человека.

У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 месяцам звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.

В пожилом возрасте слуховое восприятие меняет свою частоту. Так, в детстве порог чувствительности намного выше, он составляет 3200 Гц. От 14 до 40 лет мы находимся на частоте 3000 Гц, а в 40-49 лет на 2000 Гц. После 50 лет только на 1000 Гц, именно с этого возраста начинает понижаться верхняя граница слышимости, что объясняет глухоту в старческом возрасте.

У пожилых людей часто отмечается смазанное восприятие или прерывистая речь, то есть слышат они с некими помехами. Часть речи они могут услышать хорошо, а несколько слов пропустить. Для того чтобы человек мог нормально слышать, ему нужны оба уха, одно из которых воспринимает звук, а другое поддерживает равновесие. С возрастом у человека изменятся структура барабанной перепонки, она может под воздействием определенных факторов уплотняться, что будет нарушать равновесие. Что касается гендерной чувствительности к звукам, то мужчины теряют слух намного быстрей, нежели женщины.

Хотелось бы отметить, что при специальных тренировках даже в пожилом возрасте можно добиться повышения порога слышимости. Аналогично и воздействие громкого шума в постоянном режиме, что может отрицательно повлиять на слуховую систему даже в молодом возрасте. Для того чтобы избежать негативных последствий от постоянного воздействия громкого звука на организм человека, требуется следить за . Это комплекс мер, которые направлены на создание нормальных условий для функционирования слухового органа. У людей молодого возраста критический предел шума составляет 60 дБ, а у детей школьного возраста критический порог 60 дБ. Достаточно пробыть в помещении с таким уровнем шума в течение часа и негативные последствия не заставят себя ждать.

Еще одним возрастным изменением слухового аппарата является тот факт, что со временем ушная сера затвердевает, это препятствует нормальному колебанию воздушных волн. Если у человека есть склонность к сердечно-сосудистым заболеваниям. Вполне вероятно, что кровь в поврежденных сосудах будет циркулировать быстрей, и человек с возрастом будет различать в ушах посторонние шумы.

Современная медицина давно разобралась, как устроен слуховой анализатор и очень успешно работает над слуховыми аппаратами, которые позволяют вернуть слух людям после 60 лет и дают возможность детям с дефектами развития слухового органа жить полноценной жизнью.

Физиология и схема работы слухового анализатора очень сложная, и понять ее людям без соответствующих навыков очень непросто, но в любом случае теоретически ознакомленным должен быть каждый человек.

Теперь вам известно, как работают рецепторы и отделы слухового анализатора.

Список используемой литературы:

  • А. А. Дроздов «Лор-заболевания: конспект лекций», ISBN: 978-5-699-23334-2;
  • Пальчун В.Т. «Краткий курс оториноларингологии: руководство для врачей». ISBN: 978-5-9704-3814-5;
  • Швецов А.Г. Анатомия, физиология и патология органов слуха, зрения и речи: Учебное пособие. Великий Новгород, 2006 г.

Подготовлено под редакцией Резникова А.И., врача первой категории

Первый нейрон про­водящих путей слухового анализатора - упомянутые выше бипо­лярные клетки. Их аксоны образуют улитковый нерв, волокна ко­торого входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела,

Рис. 5. Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где " расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (ниж­няя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.

главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5).

Помимо основного, проводящего пути, связывающего перифери­ческий отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуще­ствляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий. Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм ко­торого идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Корковый отдел слухового анализатора.

У человека ядро кор­кового отдела слухового анализатора расположено ^в височной, области коры больших, полушарий. В той части поверхности височ­ной" области, которая представляет собой нижнюю стенку попереч­ной, или сильвиевой, щели, расположено поле 41. К нему, а возмож­но и к соседнему полк» 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при дву­стороннем разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу­шарием, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слу­хового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осу­ществляются корковые двигательные рефлексы на звуковые раздра­жители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.). Анализ и синтез звуковых раздражении. Анализ звуковых раздражений начинается в периферическом отделе слухового анализа­тора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражении, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспри­нимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными кле­точными группами, которые повторно приходил.i в состояние возбуждения пэд влиянием опргделеннэго звукового раздражения или комплекса последовательных звуковых раздражении, устанав­ливаются все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражи­телей, действуюдих на другие анализаторы. Так образуются все новые и новыэ условные связи, обогащзюд ie анализ и синтез звуко­вых раздражении.

В основе анализа и синтеза звуковых речевых раздражении ле­жит установление условных связей между очагами возбуждения. которые возникают под влиянием непосредственных раздражителей, действуюдих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обэзначаюдими эти раздражители. Так называемый слуховой центр речи, т. е. тот учас­ток слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражении, иными словами, с пониманием слышимой речи, расположен в основном в левом полу­шарии и занимает задний конец поля и прилегающий участок поля.

Факторы, определяющие чувствительность слухового анализатора.

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 40ЭЭ в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 ООЭ раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низ­ким же (до 1000 колебаний в секунду) остается почти неизмен­ной вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение гром­кости снижается сначала быстро, а потом все более медленно. Од­новременно, хотя и в меньшей степени, понижается чувствитель­ность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звуча­ния вследствие адаптации к тишине уже через 10-15 секунд вос­станавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анали­затора, а именно от изменения как усиливающей функции звуко­проводящего аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствитель­ности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в резуль­тате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов. Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, воз­никающий в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Проводящие пути состоят пз нескольких невронов. Первый неврон - кохлеарный нерв, кохлеарный корешокслу- хового нерва, берет начало в спиральном, или кортиевом, узле (gang !, spirale s .Cortii cochleae ), расположенном в основании спиральной пластинки (lamina spiralis ) улитки. Клетки узла биполярны, их тонкий периферический отросток направляется в кор- тиев орган и заканчивается, разветвляясь между эпителиальными клетками слухового пятна (macula acustica ). Центральный отросток образует кохлеарный корешок (ramus cochlearis ) слухового нерва, который выходит из внутреннего уха через внутренний слуховой проход вместе с вестибулярным корешком слухового нерва. При входе в мозговой ствол, на уровне мозжечково-мостового угла над ретрооливарной бороздой оба корешка слухового нерва расходятся и оканчиваются различно.

К слуху имеет отношение только кохлеарный корешок, который, проходя кнаружи от веревчатого тела, заканчивается в двух ядрах продолговатого мозга:

1) в переднем ядре слухового нерва, расположенном по передней поверхности веревчатого тела, между ним и клочком мозжечка, кнутри от корешка слухового нерва, а отчасти между его пучками;

2) в заднем ядре слухового нерва, слуховом бугорке, лежащем на задне-боковой поверхности веревчатого нерва по дну IV желудочка, на уровне его бокового выступа. Из этих двух ядер начинаются вторые невроны слухового пути.

Волокна, выходящие из переднего ядра, образуют систему волокон, известную под названием трапециевидного тела. При выходе из ядра волокна сначала принимают восходящее направление, затем загибаются кнутри, часть волокон заканчивается в верхней оливе и в ядрах трапециевидного тела своей стороны, другая же, большая. часть, пересекая внутреннюю петлю, переходит на противоположную сторону и заканчивается частично в верхней оливе и в трапециевидном теле, частично же, не прерываясь в ядрах, входит в состав латеральной петли, которая берет начало в верхней оливе. Трапециевидное тело, помимо волокон от переднего ядра, образуется волокнами от верхней оливы и от ядер трапециевидного тела той же стороны В состав латеральной петли входят и волокна трапециевидного тела, не закончившиеся в верхней оливе, а также волокна от заднего слухового ядра, имеющие другой путь, чем волокна от переднего ядра. Часть волокон, берущая начало в заднем ядре кохлеарного нерва, идет по дну IV желудочка в виде белых полосок; у средней линии они входят в продольную борозду ромбовидной ямки и на некотором расстоянии идут вдоль шва в восходящем направлении, а затем переходят среднюю линию и в нижних отделах варолиева моста на уровне верхней оливы присоединяются к латеральной петле. Другая часть волокон, берущая начало в слуховом бугорке, направляется к средней линии не по поверхности, а в глубине; у средней линии она образует перекрест, а затем идет в восходящем направлении и входит также в боковую петлю. Таким образом, боковая петля является очень сложным образованием: кроме волокон от верхней оливы той же стороны, в нее входят волокна из передних и задних слуховых ядер своей и противоположной стороны, из верхней оливы противоположной стороны и из ядер трапециевидного тела, а несколько выше, в верхних отделах варолиева моста к вышеописанным волокнам латеральной петли присоединяются волокна от собственного ядра латеральной петли. Латеральная петля заканчивается в первичных слуховых центрах - в заднем бугорке четверохолмия и во внутреннем коленчатом теле. Волокна латеральной петли вокруг заднего бугорка двухолмия образуют капсулу, из которой часть волокон заканчивается в соответствующем бугорке заднего двухолмия, а часть идет в бугорок переднего двухолмия и через спайку - в бугорок заднего двухолмия противоположной стороны. Через ручку заднего двухолмия. Т ип posterius , волокна латеральной петли направляются во внутреннее коленчатое тело и заканчиваются вокруг клеток итого ядра. В них 6epei начало четвертый неврон (центральный слуховой), который через подчечевичную часть внутренней сумки направляется к височной доле. Среди волокон, направляющихся к коре, идут волокна и в обратном направлении - от коры к первичным слуховым центрам. Относительно точного окончания слуховых путей мнения расходятся.

Некоторые авторы предполагают, что главным местом окончания слуховых путей является кора верхней височной извилины; по мнению других авторов, только кора извилины Гешля имеет отношение к слуху. Есть и компромиссное мнение, что кора всей верхней височной извилины (поля 41, 42, 22) имеют отношение к слуховым ощущениям. Слуховые волокна в кору идут только через внутреннее коленчатое тело; в четверохолмие идут рефлекторные волокна.

В слуховой области коры (на основании некоторых опытов на собаках) были выделены особые центры для звуков различной высоты, при этом было доказано, что задние отделы слуховой области служат для восприятия низких, а передние-высоких тонов. В последнее время некоторые стараются доказать, что и у человека высокие и низкие тона воспринимаются разными частями слуховой области: высокие - внутренней частью извилины Гешля, а низкие-наружной ее частью. Имеются и противоположны мнения, отрицающие существование таких тоновых центров.

Помимо окончания в образованиях, имеющих отношение к слуху, слуховые волокна и их коллатерали присоединяются к заднему продольному пучку, при помощи которого они приходят в связь с ядрами глазодвигательных мышц и с двигательными ядрами других черепномозговых нервов и спинного мозга. Этими связями объясняются рефлекторные ответы на слуховые раздражения.

Слуховые пути начинаются в улитке в нейронах спирального узла (первый нейрон). Дендриты этих нейронов иннервируют кортиев орган, аксоны оканчиваются в двух ядрах моста – переднем (вентральном) и в заднем (дорзальном) улитковых ядрах. От вентрального ядра импульсы поступают к следующим ядрам (оливам) своей и чужой стороны, нейроны которых, таким образом, получают сигналы от обоих ушей. Именно здесь проходит сравнение акустических сигналов, поступающих с двух сторон от организма. От дорзальных ядер импульсы поступают через нижние холмики четверохолмия и медиальное коленчатое тело в первичную слуховую кору – задний отдел верхней височной извилины.

Схема путей слухового анализатора

1 - улитка;

2 - спиральный ганглий;

3 - переднее (вентральное) улитковое ядро;

4 - заднее (дорзальное) улитковое ядро;

5 - ядро трапециевидного тела;

6 -верхняя олива;

7 - ядро латеральной петли;

8 - ядра задних холмиков;

9 -медиальные коленчатые тела;

10 - проекционная слуховая зона.

Возбуждение нейронов периферических слуховых нейронов, подкорковых и корковых первичных клеток происходит при предъявлении слуховых раздражителей разной сложности. Чем дальше от улитки по слуховому тракту, тем более сложные звуковые характеристики требуются для активации нейронов. Первичные нейроны спирального ганглия могут возбуждаться чистыми тонами, в то время как уже в ядрах улитки одночастотный звук может вызвать торможение. Для возбуждения нейронов требуются звуки различных частот.

В нижних холмиках четверохолмия есть клетки, реагирующие на частотно-модулированные тоны со специфическим направлением. В слуховой зоне коры есть нейроны, которые отвечают только на начало звукового стимула, другие – только на его окончание. Некоторые нейроны возбуждаются при звуках определенной длительности, другие – при повторяющихся звуках. Информация, содержащаяся в звуковом стимуле, многократно перекодируется по мере прохождения через все уровни слухового тракта. Благодаря сложным процессам интерпретации происходит распознавание слуховых образов, что очень важно для понимания речи.

Ухо млекопитающих как орган равновесия

У позвоночных органы равновесия расположены в перепончатом лабиринте, который развивается из переднего конца системы боковой линии рыб. Они состоят из двух камер – круглого мешочка (саккулюса) и овального мешочка (маточки, утрикулюса) – и отходящих от овального мешочка трех полукружных каналов , которые лежат в трех взаимно перпендикулярных плоскостях, в полостях одно­именных костных каналов. Одна из ножек каждого про­тока, расширяясь, образует перепончатые ампулы. Участки стенки мешочков, выстланные чувствительными рецепторными клетками, называются пятнами , анало­гичные участки ампул полукружных каналов – гребешками .

Эпителий пятен содержит рецепторные волосковые клетки, на верхних поверхностях ко­торых имеется по 60 – 80 волосков (микроворсинок), об­ращенных в полость лабиринта. Кроме волосков, каждая клетка снабжена одной ресничкой. Поверхность клеток покрыта студенистой мембраной, содержащей статолиты – кристал­лы углекислого кальция. Мембрана поддер­живается статическими волосками волосковых клеток. Рецепторные клетки пятен воспринимают изменения силы тяжести, прямолинейные движения и линейные ускорения.

Гребешки ампул полукружных каналов выстланы аналогичными волосковыми клетками и покрыты желатинообразным куполом – купулой , в который проникают реснич­ки. Они воспринимают изменение углового ускорения. Три полукружных канала великолепно приспособлены для сигнализации о движениях головы в трехмерном пространстве.

При изменении силы тяжести, положения головы, тела, при ускорении движения и т. п. мембраны пятен и купулы гребешков смещаются. Это приводит к напряжению волос­ков, что вызывает изменение активности различных ферментов волосковых клеток и возбуждение мембра­ны. Возбуждение передается нервным окончаниям, которые разветвлены, и окружают рецепторные клетки напо­добие чаш, формируя синапсы с их телами. В конечном итоге возбуждение передается ядрам моз­жечка, спинному мозгу и коре теменной и височной долей больших полушарий, где находится корковый центр анализатора равновесия.

1. Периферический отдел – это рецепторный аппарат со вставочными образованиями.

2. Проводниковый отдел: от рецепторов нервные импульсы передаются на 1-й нейрон – спиральный ганглий, который залегает в базальной мембране. Аксоны этих клеток идут в составе предверно - улиткового нерва (YIII пара) и заканчиваются синапсами на клетках 2-го нейрона, который залегает вы продолговатом мозге (дно 4-го желудочка мозга – ромбовилная ямка). Из продолговатого мозга аксоны 2-х нейронов идут в средний мозг (нижние бугры четверохолмия) и медиальное коленчатое тело. До коленчатого тела происходит перекрест части волокон. Часть информации дальше не идет, а замыкается на двигательном пути безусловных рефлексов слуховой системы (двигательные реакции на слуховые раздражения).

3-й нейрон находится в таламусе (замыкаются простейшие рефлексы, выделяется главное, группируется информация).

3. Корковый отдел слухового анализатора – кора височной доли больших полушарий. Поступившие нервные импульсы преобразуются в виде звуковых ощущений.

КОСТНАЯ И ВОЗДУШНАЯ ПРОВОДИМОСТЬ ЗВУКОВ. АУДИОМЕТРИЯ

Воздушная и костная проводимость

Барабанная перепонка включается в звуковые колебания и передает их энергию по цепи косточек среднего уха перилимфе вестибулярной лестницы. Звук, передаваемый по этому пути, распространяется в воздушной среде – это воздушная проводимость.

Ощущение звука возникает и тогда, когда колеблющийся предмет, например камертон, помещен непосредственно на череп; в этом случае основная часть энергии передается через кости черепа – это костная проводимость. Для возбуждения внутреннего уха необходимо движение жидкости внутреннего уха. Звук, передаваемый через кости, вызывает такое движение двумя путями:

1. Области сжатия и разрежения, проходящие по костям черепа, перемещают жидкость из объемистого вестибулярного лабиринта в улитку и обратно («компрессионная теория»).

2. Косточки среднего уха обладают некоторой массой, и поэтому колебания косточек из-за инерции задерживаются по сравнению с колебаниями костей черепа.



Тестирование нарушений слуха

Наиболее важным клиническим тестом является пороговая аудиометрия (рис. 32) .

1. Испытуемому через один телефонный наушник предъявляются различные тоны. Врач, начиная с некоторой интенсивности звука, которая определена как подпороговая, постепенно увеличивает звуковое давление до тех пор, пока испытуемый не сообщит, что он слышит звук. Это звуковое давление наносится на график. На аудиографических бланках уровень нормального слухового порога выделяется жирной чертой и помечается «О дБ». В противоположность графику на рис. 31 более высокие значения слухового порога наносятся ниже нулевой линии (что характеризует степень утраты слуха); таким образом, демонстрируется, насколько поро­говый уровень для данного больного (в дБ) отличается от нормального. Отметим, что в этом случае речь идет не об уровне звуко­вого давления, который измеряется в деци­белах УЗД. Когда определено, на сколько дБ слуховой порог у больного ниже нормы, говорят, что утрата слуха составляет столь­ко-то дБ. Например, если заткнуть пальца­ми оба уха, снижение слуха составит при­близительно 20 дБ (при выполнении этого эксперимента не следует, по возможности, создавать шум самими пальцами). С по­мощью телефонных наушников тестируется восприятие звука при воздушной проводимо­сти . Костная проводимость тестируется сходным образом, но вместо наушников ис­пользуется камертон, который помещают на сосцевидный отросток височной кости с проверяемой стороны, так что колебания распространяются через кости черепа. Срав­нивая пороговые кривые для костной и воз­душной проводимости, можно отличить глухоту, связанную с повреждением средне­го уха, от вызванной нарушениями внутрен­него уха.

ОПЫТЫ РИННЕ И ВЕБЕРА

2. С помощью камертонов (с частотой 256 Гц) нарушения проведения очень легко отличить от повреждения внутреннего уха или от ретрокохлеарных повреждений в случае, если известно, какое ухо повреждено.

А. Опыт Вебера.

Ножка звучащего камертона помещается по средней линии черепа; в этом случае больной с поражением внутреннего уха сообщает, что он слышит тон здоровым ухом; у больного с поражением среднего уха ощущение тона смещается на поврежденную сторону.

Существует простое объяснение:

В случае повреждения внутреннего уха: поврежденные рецепторы вызывают более слабое возбуждение в слуховом нерве, поэтому тон кажется более громким в здоровом ухе.

В случае поражения среднего уха: во-первых, пораженное ухо подвергается изменениям вследствие воспаления, при этом вес слуховых косточек увеличивается. Это улучшает условия возбуждения внутреннего уха за счет костной проводимости. Во-вторых, т.к. при нарушениях проведения меньше звуков достигают внутреннего уха и оно адаптируется к более низкому уровню шума, рецепторы становятся более чувствительными, чем на здоровой стороне.

Б. Тест Ринне.

Позволяет сравнить воздушную и костную проводимость в одном и том же ухе. Звучащий камертон помещают на сосцевидный отросток (костная проводимость) и держат там, пока больной не перестанет слышать звук, после этого переносят камертон непосредственно к наружному уху (воздушная проводимость). Люди с нормальным слухом и те, у кого нарушено восприятие. Снова слышат тон (тест Ринне положительный), а те, у кого нарушено проведение – не слышат (тест Ринне отрицательный).

46. ПАТОЛОГИЧЕСКИЕ НАРУШЕНИЯ СЛУХА И ИХ ОПРЕДЕЛЕНИЕ Глухота – частая патология. Причины ухудшения слуха:

1. Нарушение проведения звука. Повреждение среднего уха – аппарата проведения звука. Например, при воспалении слуховые косточки не передают нормального количества звуковой энергии на внутреннее ухо.

2. Нарушение восприятия звука (нейросенсорная утрата слуха). В этом случае повреждены волосковые рецепторы кортиева органа. В результате нарушается передача информации из улитки в ЦНС. Такое поражение может произойти при звуковой травме при действии звука высокой интенсивности (более 130 дБ) или при действии ототоксических веществ (происходит поражение ионного аппарата внутреннего уха) – это антибиотики, некоторые диуретики.

3. Ретрокохлеарные повреждения. При этом внутреннее и среднее ухо не повреждены. Поражены либо центральная часть первичных афферентных слуховых волокон, либо другие компоненты слухового тракта (например, при опухоли мозга).