Неспецифическая трансдукция бактерий. Специфическая трансдукция. Перенос фрагментов ДНК бактерии


Трансдукция - это перенос генетического материала из одной бактериальной клетки в другую бактериофагом. Трансдукция была открыта в 1952 г. Н. Циндером и Е. Ледербергом на двух ауксотрофных мутантах Salmonella typhimurium. Опыт проводился в {/-образной трубке, разделенной стеклянным ультратонким пористым фильтром. В одну часть ее помещали гистидин - зависимый штамм 2А, в другую - триптофан - зависимый штамм 22А. Спустя некоторое время в культуре штамма 22А появлялись прототрофы, синтезирующие триптофан. Было установлено, что штамм 22А содержал фаг (Р22), способный лизировать клетки штамма 2А. Проникая через стеклянный фильтр, фаг Р22 лизировал клетки штамма 2А. При этом высвобождался неизвестный агент, названный фильтрующимся. Этот агент проходил через фильтр и сообщал некоторым клеткам штамма 22А способность к синтезу триптофана. Поэтому при высеве культуры 22А на среду, не содержащую триптофан, появлялся рост этой культуры.
Изучение величины (по размерам пор фильтра), скорости седиментации, чувствительности к нагреванию этого фильтрующегося агента показало, что он идентичен таковыми фага Р22. На основании этого было сделано заключение, что содержащийся в культуре 22А фаг проходил через фильтр, инфицировал чувствительные к нему клетки штамма 2А и в процессе репродукции в состав своего генома включал фрагмент хромосомы бактерий этого штамма. Высвободившись из лизированных клеток, фаг проходил обратно в колено трубки, где были клетки штамма 22А. При инфицировании этих клеток фаг передавал им унесенный фрагмент хромосомы клеток штамма 2А, которые были независимы по триптофану. В результате интеграции этого фрагмента в хромосому клеток штамма 22А образовывались прототрофные рекомбинанты. В культуре штамма 2А прототрофы не появлялись, так как клетки лизировались.
Фаг может переносить гены, ответственные за различные свойства клетки: устойчивость к антибиотикам, токсинообразова- ние, прототрофность. При трансдукции, как и при трансформации, переносятся только небольшие фрагменты ДНК - не более 1/100 длины бактериальной хромосомы.
Трансдуцирующими свойствами обладают только некоторые умеренные фаги, а именно: фаги, которые несут в составе своего генома фрагмент бактериальной хромосомы. Эти фаги дефектны: они не содержат полный набор собственных генов. Часть их генов остается в хромосоме бактерий (вместо взятых генов хромосомы).
Различают три типа трансдукции: общую, или неспецифическую, специфическую и абортивную.
Тип трансдукции определяется условиями формирования трансдуцирующих фагов.
Общая трансдукция осуществляется фагами, которые образуются в ходе литического цикла. При внутриклеточном размножении фага происходит разрушение бактериальной хромосомы и отдельные случайные фрагменты ее включаются в созревающие частицы фага. Размер включенного фрагмента определяется емкостью головки фага. Например, трансдуцирующий фаг Р1 включает 2,3 % хромосомы Е. coli, фаг Р22, геном которого в 2,3 раза меньше, чем у Р1 (следовательно, и емкость головки также меньше), включает 1 % хромосомы сальмонелл. У отдельных трансдуцирующих фагов вся их ДНК может быть заменена на бактериальную. Поэтому такие фаги могут переносить любые хромосомные гены и включаться в любой участок хромосомы реципиента. Фаги, обеспечивающие такую трансдукцию, могут переносить гены, контролирующие пищевые потребности бактерий, ферментативные свойства, устойчивость к лекарственным препаратам, серологические и вирулентные свойства, т. е. любые свойства донорной клетки.
Специфическая трансдукция осуществляется фагами, образовавшимися в результате индукции лизогенных бактерий (например, облучением их УФ), либо при спонтанном освобождении профага из хромосомы. В общих случаях формирующийся фаг при исключении из хромосомы может включать в свой геном только рядом расположенный сегмент хромосомы, оставив часть своего генома в хромосоме. В отличие от фагов, осуществляющих общую трансдукцию, в геноме которых преобладает бактериальная ДНК, у фагов специфической трансдукции основную часть генома составляет фаговая ДНК. При лизогенизации чувствительных бактерий геном фага специфической трансдукции соединяется только с определенными участками i хромосомы бактерий, т. е. фаг имеет определенную точку прикрепления на хромосоме. Поэтому при освобождении такой фаг захватывает только рядом расположенную строго определенную область хромосомы бактерий и передает ее реципиентной клетке. Эта способность к специфической трансдукции была установлена у фага X Е. coli, который при лизогенизации клеток всегда фиксируется на бактериальной хромосоме рядом с генами, контролирующими ферментацию галактозы (галактокиназы и галактозилтрансферазы), и трансдуцирует их в клетку реципиента gal-. При специфической трансдукции клетка- реципиент получает строго определенные гены.
Абортивная трансдукция происходит так же, как и неспецифическая, но фрагмент хромосомы донора, привнесенный фагом в реципиентную клетку, не включается в хромосому и не реплицируется, а располагается в цитоплазме клетки. Этот фрагмент при делении клетки передается только одной дочерней клетке, и только эта клетка несет новое свойство, контролируемое привнесенным геном донорной клетки.
Трансдукцию необходимо отличать от фаговой конверсии. При трансдукции любого типа изменения происходят лишь в тех инфицированных фагом клетках, в которые была внесена ДНК бактерий-доноров, т. е. которые были инфицированы трансдуци- рующими фагами. Это весьма небольшое количество бактериальной популяции. Изменения, вызванные трансдуцирующими фагами, очень стойкие, передаются потомству и сохраняются даже тогда, когда клетка теряет фаг.
Фаговая, гаи лизогенная, конверсия - это изменения фенотипа (свойства клетки), обусловленные заражением клетки умеренным фагом. Изменения здесь вызывают гены фага. Они могут непосредственно контролировать синтез отдельного фрагмента или, взаимодействуя с бактериальными, приводить к изменению фенотипа клетки. Чаще всего фаговая конверсия затрагивает синтез или активность ферментов, контролирующих образование клеточных компонентов, что сопровождается изменениями морфологии колоний. Так, лизогенизация шероховатых штаммов микобактерий приводит к образованию гладких колоний. Изменение испытывают все инфицированные фагом клетки (при трансдукции - одиночные). При фаговой конверсии изменения фенотипа бактерий сохраняются до тех пор, пока в клетке присутствует фаг.

Оглавление темы "Генетические элементы бактерий. Мутации у бактерий. Трансдукция.":
1. Мигрирующие генетические элементы бактерий. Транспозоны. Бактериофаги, как мигрирующие генетические элементы.
2. Мутация. Мутации у бактерий. Мутагены. Спонтанные мутации. Обратные мутации (реверсии).
3. Индуцированные мутации бактерий. Химический мутагенез. Радиационный мутагенез. Типы мутаций.
4. Репарация ДНК бактерий. Системы репарации днк. Компенсация функций нарушенных в результате мутаций. Интрагенная супрессия. Экстрагенная супрессия.
5. Перенос бактериальной ДНК. Конъюгация бактерий. F-фактор бактерии.
6. Трансформация бактерий. Стадии трансформации бактерии. Картирование хромосом бакетерий.

8. Свойства бактерий. Ненаследуемые изменения свойств бактерий. S - колонии. R - колонии. M - колонии. D - колонии бактерий.

Трансдукция - перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг. Трансдуцирующий бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент).

Выделено три типа трансдукции : неспецифическая (общая), специфическая и абортивная . В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов вместе с вирусной ДНК могут проникнуть фрагменты бактериальной ДНК или плазмиды. Вирусы ограничены в объёме генетического материала в соответствии с объёмом головки. Если ДНК бактериальной клетки расщепляется фагом в нетипичном месте, то чтобы освободить пространство для фрагмента хромосомной ДНК, некоторые участки вирусных ДНК «приносятся в жертву», что приводит к утере определённых их функций. При этом фаговая частица может стать дефектной. Количество аномальных фагов может достигать 0,3% всей дочерней популяции.

Образовавшийся фаг и есть частица, вызывающая неспецифическую (общую) трансдукцию . При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены.

При неспецифической трансдукции фагом может быть перенесён любой фрагмент ДНК хозяина, а при специфической лишь строго определённые фрагменты ДНК. Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при транедукции. При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в генофор реципиента, а остаётся в цитоплазме, где его ДНК транскрибируется, но не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток (то есть наследуется однолинейно) и затем теряется в потомстве.

Свойства трансдуцирующих фаговых частиц следующие:

Частицы несут лишь часть ДНК фага , то есть не являются функциональными вирусами, а скорее ёмкостями, переносящими фрагменты бактериальной ДНК.

Подобно прочим дефектным вирусам , частицы не способны к репликации.

Трансдуцирующие фаги могут содержать какую-либо часть хромосомы хозяина с генами, дающими реципиентной бактерии некоторые преимущества (например, гены устойчивости к антибиотикам или гены, кодирующие способность к синтезу различных веществ). Подобное приобретение бактериями новых свойств получило название феномен лизогении .

Феномен трансдукции может быть использован для картирования бактериальной хромосомы, если следовать тем же принципам, что и при картировании с использованием феномена трансформации.

Специфическая трансдукция

Отличается от неспецифической тем, что в этом случае трансдуцирующие фаги всегда переносят только определенные гены, а именно, те из них, которые располагаются в хромосоме лизогенной клетки слева от attL или справа от attR. Специфическая трансдукция всегда связана с интеграцией умеренного фага в хромосому клетки-хозяина. При выходе (исключении) из хромосомы профаг может захватить ген с левого или правого фланга, например или gal, или bio. Но в этом случае он должен лишиться такого же размера своей ДНК с противоположного конца, чтобы ее общая длина оставалась неизменной (иначе она не может быть упакована в головку фага). Поэтому при такой форме исключения обр

Специфическую трансдукцию у E. coli осуществляет не только фаг лямбда, но и родственные ему лямбдоидные и другие фаги. В зависимости от места расположения сайтов attB на хромосоме они при своем исключении могут включать различные бактериальные гены, сцепленные с профагом, и трансдуцировать их в другие клетки. Встраивающийся в геном материал может замещать до 1 / 3 генетического материала фага.

Трансдуцирующий фаг в случае инфицирования реципиентной клетки интегрируется в ее хромосому и привносит в нее новый ген (новый признак), опосредуя не только лизогенизацию, но и лизогенную конверсию.

Таким образом, если при неспецифической трансдукции фаг является только пассивным переносчиком генетического материала, то при специфической фаг включает этот материал в свой геном и передает его, лизогенизируя бактерии, реципиенту. Однако лизогенная конверсия может произойти и в том случае, если геном умеренного фага содержит такие собственные гены, которые у клетки отсутствуют, но отвечают за синтез существенно важных белков. Например, способностью вырабатывать экзотоксин обладают только те возбудители дифтерии, в хромосому которых интегрирован умеренный профаг, несущий оперон tox. Он отвечает за синтез дифтерийного токсина. Иначе говоря, умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

Метод агаровых слоев заключается в следующем. Вначале в чашку наливают слой питательного агара. После застывания на этот слой добавляют 2 мл расплавленного и охлажденного до 45 °C агара 0,7 %-ного, в который предварительно добавляют каплю концентрированной суспензии бактерий и определенный объем суспензии фага. После того как верхний слой застынет, чашку помещают в термостат. Бактерии размножаются внутри мягкого слоя агара, образуя сплошной непрозрачный фон, на котором хорошо видны колонии фага в виде стерильных пятен (рис. 84, 2). Каждая колония образуется за счет размножения одного исходного фагового вириона. Применение этого метода позволяет: а) путем подсчета колоний точно определить количество жизнеспособных фаговых вирионов в данном материале;

б) по характерным признакам (размер, прозрачность и др.) изучать наследственную изменчивость у фагов.

По спектру своего действия на бактерии фаги подразделяются на поливалентные (лизируют родственные бактерии, например поливалентный сальмонеллезный фаг лизирует почти все сальмонеллы), монофаги (лизируют бактерии только одного вида, например фаг Vi-I лизирует только возбудителей брюшного тифа) и типоспецифические фаги, которые избирательно лизируют отдельные варианты бактерий внутри вида. С помощью таких фагов производится наиболее тонкая дифференциация бактерий внутри вида, с разделением их на фаговарианты. Например, с помощью набора фагов Vi-II возбудитель брюшного тифа делится более чем на 100 фаговариантов. Поскольку чувствительность бактерий к фагам является относительно стабильным признаком, связанным с наличием соответствующих рецепторов, фаготипирование имеет важное диагностическое и эпидемиологическое значение.