Сосудистое сопротивление. Общее периферическое сосудистое сопротивление Периферическое сосудистое сопротивление повышено что

Если для описания движения крови в сосуде использовать фундаментальные физические законы, то, согласно закону Ома для электрической цепи:

Напряжение (скорость кровотока) = Разница давлений / Сопротивление сосуда .

Таким образом, с увеличением перепада давления скорость кровотока возрастает, а с увеличением сопротивления стенок сосуда, наоборот, снижается.

Сопротивление кровотоку возникает за счет внутреннего трения движении потока. Кровь относительно легко проходит по крупным сосудам, но небольшие артерии, и особенно артериолы и капилляры, обладают маленьким диаметром и, создавая сопротивление, замедляют кровоток (периферическое сопротивление). Таким образом, чем больше периферическое сопротивление, тем большим должно быть давление.

Кровоток в системе кровообращения создается за счет перепада давления между артериями и венами. Поскольку в системном круге среднее артериальное давление снижается от 100 мм рт. ст. до примерно 3 мм рт. ст., то перепад давления составляет 97 мм рт. ст. Поэтому при необходимости кровоток может оптимизироваться за счет изменения скорости (производительность работы сердца = сердечный выброс) и сопротивления сосудистой системы потоку крови (периферическое сопротивление). Отсюда для системного кровообращения получаем выражение:

Сердечный выброс = Перепад кровяного давления / Периферическое сопротивление.

Поскольку повышенное давление крови в системном кровотоке создает значительную нагрузку на стенки сосуда, оно поддерживается на относительно постоянном уровне.

Адаптация системы кровообращения к изменившимся условиям происходит, главным образом, за счет изменения темпа сердечной деятельности или периферического сопротивления.

Распределение сердечного выброса

Приток крови к различным органам в состоянии покоя или при нагрузке сильно колеблется и зависит от функции конкретного органа (степени потребления кислорода, интенсивности обменных процессов) и от местных анатомических особенностей.

Так, система легочного круга получает весь объем сердечного выброса (СВ), а параллельно связанные органы системного круга (мозг, желудочно-кишечный тракт, почки, мышцы, кожа) только его часть. Как правило, работающая мышца должна лучше снабжаться кровью, чем находящаяся в состоянии покоя, хотя кровоснабжение некоторых органов, например, почек, все время должно быть максимально высоким.

Распределение сердечного выброса по органам зависит от величины сопротивления системы сосудов, снабжающих конкретный орган кровью. Это сопротивление изменяется в широких пределах. Например, к мышцам, находящимся в покое, направляется 15-20% сердечного выброса, а при физической нагрузке эта величина может увеличиваться до 75%.

Относительно большая часть сердечного выброса поступает в желудочно-кишечный тракт при переваривании пищи. При физических нагрузках или при подъеме окружающей температуры также усиливается кровоснабжение кожи.

Такие органы, как головной мозг, крайне чувствительны к кислородной недостаточности и нуждаются в постоянном адекватном кровоснабжении (около 15% сердечного выброса). Для поддержания контрольной и выделительной функций почки должны получать 20-25 % сердечного выброса. Таким образом, по отношению к весу почек (0,5% от веса тела) степень их кровоснабжения очень высокая.

Сопротивление представляет собой препятствие кровотоку, которое возникает в кровеносных сосудах. Сопротивление не может быть измерено никаким прямым методом. Оно может быть рассчитано с использованием данных о величине кровотока и разницы давления на обоих концах кровеносного сосуда. Если разница давления равна 1 мм рт. ст., а объемный кровоток равен 1 мл/сек, сопротивление составляет 1 единицу периферического сопротивления (ЕПС).

Сопротивление , выраженное в единицах системы СГС. Иногда для выражения единиц периферического сопротивления используют единицы системы СГС (сантиметры, граммы, секунды). В этом случае единицей сопротивления будет дина сек/см5.

Общее периферическое сосудистое сопротивление и общее легочное сосудистое сопротивление. Объемная скорость кровотока в системе кровообращения соответствует сердечному выбросу, т.е. тому объему крови, которое сердце перекачивает за единицу времени. У взрослого человека это составляет примерно 100 мл/сек. Разница давления между системными артериями и системными венами равна примерно 100 мм рт. ст. Следовательно, сопротивление всего системного (большого) круга кровообращения или, иными словами, общее периферическое сопротивление соответствует 100/100 или 1 ЕПС.

В условиях, когда все кровеносные сосуды организма резко сужены, общее периферическое сопротивление может возрасти до 4 ЕПС. И наоборот, если все сосуды окажутся расширенными, сопротивление может упасть до 0,2 ЕПС.

В сосудистой системе легких артериальное давление в среднем равно 16 мм рт. ст., а среднее давление в левом предсердии - 2 мм рт. ст. Следовательно, общее легочное сосудистое сопротивление составит 0,14 ЕПС (примерно 1/7 общего периферического сопротивления) при обычном сердечном выбросе, равном 100 мл/сек.

Проводимость сосудистой системы для крови и ее взаимосвязь с сопротивлением. Проводимость определяется объемом крови, протекающим по сосудам, за счет данной разницы давления. Проводимость выражается в миллилитрах за секунду на миллиметр ртутного столба, но может быть выражена также в литрах за секунду на миллиметр ртутного столба или в каких-либо других единицах объемного кровотока и давления.
Очевидно, что проводимость - это величина, обратная сопротивлению: проводимость=1/сопротивление.

Незначительные изменения диаметра сосудов могут привести к существенным изменениям их проводимоаи. В условиях ламинарного течения крови незначительные изменения диаметра сосудов могут резко изменить величину объемного кровотока (или проводимость кровеносных сосудов). На рисунке показаны три сосуда, диаметры которых соотносятся как 1, 2 и 4, а разница давления между концами каждого сосуда одинакова - 100 мм рт. ст. Скорость объемного кровотока в сосудах равна 1, 16 и 256 мл/мин, соответственно.

Обратите внимание, что при увеличении диаметра сосуда только в 4 раза объемный кровоток увеличился в нем в 256 раз. Таким образом, проводимость сосуда увеличивается пропорционально четвертой степени диаметра в соответствии с формулой: Проводимость ~ Диаметр.

В норме оно равно 900-2500 дин х с х см- 5 . ПСС (периферическое сосудистое сопротив­ление) представляет собой суммарное сопротивление крови, наблюдаемое в основном, в артериолах. Этот показатель важен для оценки изменения тонуса сосудов при различных физиологических состояниях. Например, известно, что у здоровых людей под влиянием физической нагрузки (к примеру, проба Мартина: 20 приседаний за 30 с) ПСС снижается при неизменном уровне среднего динамического давления. При гипертонической болезни имеет место значительный рост ПСС: в покое у таких больных ПСС может достигать 5000- 7000 дин х с х см- 5 . Для расчёта необходимо знать объёмную скорость кровотока и величину среднего динамического давления.

12.Плетизмография

Это метод регистрации изменений объема органа или части тела, связанных с изменени­ем его кровенаполнения. Он применяется для оценки сосудистого тонуса. Для получения плетизмограммы используют различного типа плетизмографы - водяной (системы Моссо), электроплетизмограф, фотоплетизмограф. Механическая плетизмография состоит в том, что конечность, например, рука, помещается в сосуд, заполненный водой. Изменения объема, возникающие в руке при кровенаполнении, передаются на сосуд, в нем меняется объем воды, что отражается регистрирующим прибором.

Однако в настоящее время наиболее распространен способ, основанный на изменении сопротивления электрическому току, которое возникает при наполнении ткани кровью. Этот метод получил название реографии или реоплетизмографии, в основе которого лежит при­менение электроплетизмографа, или, как его теперь называют, - реографа (реоплетизмографа).

13.Реография

В настоящее время в литературе можно встретить различное употребление терминов «реография», «реоплетизмография». В принципе, это означает один и тот же метод. Ана­логично, приборы, используемые для этой цели - реографы, реоплетизмографы, - это различные модификации прибора, предназначенного для регистрации изменения сопротив­ления электрическому току.

Итак, реография - это бескровный метод исследования общего и органного кровообра­щения, основанный на регистрации колебаний сопротивления ткани организма переменно­му току высокой частоты (40-500 кГц) и малой силы (не более 10 мА). С помощью специ­ального генератора в реографе создаются безвредные для организма токи, которые подают­ся через токовые электроды. Одновременно на теле располагаются и потенциальные, или потенциометрические электроды, которые регистрируют проходящий ток. Чем выше со­противление участка тела, на котором расположены электроды, тем меньше будет волна. При наполнении данного участка кровью его сопротивление снижается, и это вызывает повышение проводимости, т. е. рост регистрируемого тока. Напомним, что полное сопро­тивление (импеданс) зависит от омического и емкостного сопротивлений. Емкостное со­противление зависит от поляризации клетки. При высокой частоте тока (40-1000 кГц) величина емкостного сопротивления приближается к нулю, поэтому общее сопротивление ткани (импеданс) в основном зависит от омического сопротивления и от кровенаполнения в том числе.

По своей форме реограмма напоминает сфигмограмму.

Так, для проведения реографкй аорты активные электроды (3x4 см) и пассивные (6x10 см) фиксируют на грудине на уровне 2-го межреберья и на спине в области IV-VI груд­ных позвонков. Для реографии ле­гочной артерии активные электроды (3x4 см) располагают на уровне 2-го межреберья по правой среднеключичной линии, а пассивные электро­ды (6х10см) - в области нижнего угла правой лопатки. При реовазографии (регистрации кровенаполнения конечностей) ис­пользуют прямоугольные или циркулярные электроды, располагаемые на областях, ко­торые подвергаются исследованию. Также используется для определения систолического объёма сердца.

    Реакция сердечно-сосудистой системы на физическую нагрузку.

Увеличение доставки кислорода работающим скелетным мышцам в соот­ветствии с их резко возросшими потребностями обеспечивается:

1) увеличением мышечного кровотока в результате: а) увеличения МОС; б) выраженной дилатации артериальных сосудов работающих мышц в со­ четании с сужением сосудов других органов, в частности органов брюш­ ной полости (перераспределение кровотока). Поскольку при рабочей ги­ перемии в сосудах мышц аккумулируется 25-30 % ОЦК, это приводит к уменьшению ОПСС; 2) увеличением экстракции кислорода из притека­ ющей крови и артериовенозной разницы;

3) активацией анаэробного гликолиза.

Увеличение объема крови в сосудах работающих мышц, а также кожи (для терморегуляции) приводит к временному уменьшению объема эффек­ тивно циркулирующей крови. Оно усугубляется потерей жидкости вслед­ ствие усиления потоотделения, и повышения фильтрации плазмы крови в капиллярах мышц при их рабочей гиперемии. Поддержание адекватного венозного возврата и преднагрузки в этих условиях обеспечивается: а) су­ жением вен (основной адаптационный механизм); б) "мышечной пом­ пой" сокращающихся скелетных мышц; в) повышением внутрибрюшно- го давления; г) снижением внутригрудного давления при форсированном вдохе.

Увеличение МОС, который у спортсменов может составлять 30 л/мин, достигается путем повышения ЧСС и УОС. Ударный выброс возрастает вслед­ ствие снижения постнагрузки (ОПСС) и повышения сократимости и со­ провождается увеличением систолического АД. При этом, благодаря более полному систолическому опорожнению желудочков, КДО либо не изме­ няется, либо несколько снижается. Лишь при тяжелой физической на­ грузке присоединяется механизм Франка-Старлинга в результате значи­ тельного увеличения венозного притока. Изменения основных показате­ лей гемодинамики при физической нагрузке представлены в табл. 5.

Первоначальные адаптационные изменения функционирования сер­ дечно-сосудистой системы в ответ на физическую нагрузку обусловлены возбуждением высших корковых и гипоталамических структур, которые повышают активность симпатической части вегетативной нервной систе­ мы и выброс в кровь адреналина и норадреналина надпочечниками. Это приводит к заблаговременной мобилизации системы кровообращения к предстоящему повышению метаболической активности путем: 1) умень­ шения сопротивления сосудов скелетных мышц; 2) сужения сосудов прак­ тически всех остальных бассейнов; 3) повышения частоты и силы сердеч­ ных сокращений,

С началом физической работы включаются нервные рефлекторные меха­ низмы и метаболическая саморегуляция сосудистого тонуса работающих мышц.

При легкой и умеренной нагрузке, достигающей 80 % от максималь­ ной физической работоспособности, имеется практически линейная за­висимость между интенсивностью работы и ЧСС, МОС и поглощением кислорода. В дальнейшем ЧСС и МОС выходят на "плато", а дополни­тельное увеличение потребления кислорода (около 500 мл) обеспечива­ ется повышением его экстракции из крови. Величина этого плато, отра­жающая эффективность гемодинамического обеспечения нагрузки, за­висит от возраста и составляет для лиц в возрасте 20 лет примерно 200 уд/мин, 65 лет - 170 уд/мин.

Необходимо иметь в виду, что изометрическая нагрузка (например, поднятие тяжестей), в отличие от ритмической (бег), вызывает неадек­ ватное повышение АД, отчасти рефлекторное, отчасти вследствие механи­ ческого сдавления сосудов мышцами, что значительно увеличивает пост­ нагрузку.

Определение реакции сердечно-сосудистой системы на нагрузку по­ зволяет дать объективную оценку функции сердца в клинике.

Физические тренировки оказывают благоприятное действие на функ­ цию сердечно-сосудистой системы. В покое они приводят к уменьшению ЧСС, вследствие чего МОС обеспечивается увеличением УОС за счет боль­ шего КДО. Выполнение стандартной субмаксимальной физической на­ грузки достигается меньшим приростом ЧСС и систолического АД, что требует меньшего количества кислорода и обусловливает большую эко­ номичность гемодинамического обеспечения нагрузки. В миокарде увели­ чиваются калибр коронарных артерий и площадь поверхности капилля­ ров на единицу массы и возрастает синтез белков, что способствует его *гипертрофии. В миоцитах скелетных мышц возрастает количество мито­ хондрий. Тренирующий эффект дают регулярные физические упражне­ ния продолжительностью 20-30 мин не менее 3 раз в неделю, при кото- пых ппстигяется ЧСС не менее 60 % от мяксимяпьнпй

    Субмаксимальный тест - РWС 170 . Велоэргометрический вариант. Шаговый вариант.

Тест предназначен для определения физической работоспособности спортсменов и физкультурников. Всемирной организацией здравоохранения этот тест обозначается следующим образом - W170.

    Физическая работоспособность в тесте PWC170 выражается в величинах той мощности физической нагрузки, при которой ЧСС достигает 170 уд/мин. Выбор именно этой частоты основан на следующих двух положениях: 1) зона оптимального функционирования кардио-респираторной системы ограничивается диапазоном пульса от 170 до 195-200 уд/мин. Таким образом, с помощью этого теста можно установить ту минимальную интенсивность физической нагрузки, которая «выводит» деятельность сердечно-сосудистой системы, а вместе с ней и всей кардио-респираторной системы в область оптимального функционирования; 2) взаимосвязь между ЧСС и мощностью выполняемой физической нагрузки имеет линейный характер у большинства спортсменов вплоть до пульса, равного 170 уд/мин. При более высокой ЧСС этот характер нарушается.

В практике спорта применяются два варианта теста - в е л о-эргометрический, получивший широкое распространение и принятый Всемирной организацией здравоохранения, и тест, в котором выполняется специфическая нагрузка.

Величину PWC170 находят либо путем графической экстраполяции (рис. 36), либо по специальной формуле. В первом случае испытуемому предлагается выполнить две 5-минутные нагрузки (с 3-минутным перерывом) разной мощности (W1 и W2) . В конце каждой нагрузки определяется ЧСС (соответственно f1 и f2). По этим данным строятся две точки - 1 и 2. Учитывая, что между ЧСС и мощностью физической нагрузки имеется линейная взаимосвязь, через точки 1 и 2 проводится прямая вплоть до пересечения ее с линией, характеризующей ЧСС, равную 170 уд/мин. Из точки пересечения этих двух прямых (точки 3) опускается перпендикуляр на ось абсцисс; место пересечения перпендикуляра и оси абсцисс и соответствует величине PWC170- У этого способа определения величины PWC170 есть определенные недостатки, связанные с неизбежными погрешностями, возникающими в процессе графических работ. В связи с этим было предложено простое математическое выражение, позволяющее определять величину PWC170, не прибегая к чертежу: PWC170 = W1+(W2-W1) * (170 - f1)/(f2 - f1) , где PWC170 - мощность физической нагрузки на велоэргометре (в кг/мин), при которой достигается тахикардия, равная 170 уд/мин; W1 и W2 - мощность 1-й и 2-й нагрузок в кгм/мин; f1 и f2 - ЧСС в конце 1-й и 2-й нагрузок.

При проведении теста PWC170 в лабораторных условиях необходим велоэргометр, с помощью которого задаются две нагрузки. Частота педалирования поддерживается постоянной, равной 60- 70 об/мин (использование для этих целей степ-тестов дает менее надежные результаты).

Для получения воспроизводимых результатов необходимо строго придерживаться описанной процедуры. Дело в том, что предварительная разминка понижает величину PWC170 в среднем на 8%. Если же PWC170 рассчитывается при ступенчато повышающейся нагрузке без интервалов отдыха, эта величина оказывается заниженной на 10%. Если продолжительность нагрузок меньше 5 мин, величина PWC170 оказывается заниженной, если больше 5 мин - завышенной.

Определение физической работоспособности по тесту PWC170 дает обширную информацию, которая может быть использована как при углубленных диспансерных исследованиях, так и при динамических наблюдениях за спортсменами в процессе различных тренировочных циклов. Учитывая, что вес испытуемых может изменяться, а также для нивелирования индивидуальных различий в весе у разных спортсменов величины PWC170 рассчитываются на 1 кг веса тела.

У здоровых молодых нетренированных мужчин величины PWC170 чаще всего колеблются в пределах 700-1100 кгм/мин, а у женщин - 450-750 кгм/мин. Относительная величина PWC170 у нетренированных мужчин составляет в среднем 15,5 кгм/мин/кг, а у женщин - 10,5 кгм/мин/кг. У спортсменов эти величины, как правило, выше и достигают у некоторых 2600 кгм/мин (относительные величины-28 кгм/мин/кг).

Если сравнивать спортсменов разных специализаций, то наибольшие величины общей физической работоспособности отмечаются у тренирующихся на выносливость. У представителей скоростно-силовых видов спорта величины PWC170 относительно невелики (рис. 37). Табл. 24 дает возможность ориентировочно оценивать индивидуальную физическую работоспособность у спортсменов различных специализаций.

Таблица 24. Оценка физической работоспособности по тесту PWC170 (кгм/мин) у квалифицированных спортсменов, тренирующих различные физические качества (с учетом массы тела по 3. Б. Белоцерковскому)

Вес тела, кг

Физическая работоспособность

ниже средней

выше средней

1200-1399 1000-1199 700-899

1400-1799 1200-1599 900-1299

1800-1999 1600-1799 1300-1499

1400-1599 1200-1399 900-1099

1600-1999 1400-1799 1100-1499

2000-2199 1800-1999 1500-1699

1450-1649 1300-1499 1000-1199

1650-2049 1500-1899 1200-1599

2050-2249 1900-2099 1600-1799

Примечание. Верхняя строка в каждом весовом диапазоне - спортсмены, тренирующиеся на выносливость, средняя строка - специально не тренирующиеся на выносливость, нижняя строка - представители скоростно-силовых и сложнокоор-динационных видов спорта.

Необходимо иметь в виду, что величина PWC170 может быть определена не только путем экстраполяции, но и прямым путем. В последнем случае определяется мощность физической нагрузки, при которой ЧСС реально достигла 170 уд/мин. Для этого спортсмен вращает педали велоэргометра под контролем специального прибора - автокардиолидера (В. М. Зациорский), с помощью которого путем произвольного изменения мощности нагрузки можно увеличить ЧСС до любого заданного уровня (в данном случае до 170 уд/мин). Величины PWC170, определенные прямым путем и путем экстраполяции, практически одинаковы (А. Ф. Синяков).

Большие возможности представляют варианты этого теста, в которых велоэргометрические нагрузки заменены другими видами мышечной работы, по своей двигательной структуре аналогичными нагрузкам, применяемым в естественных условиях спортивной деятельности.

В основу проб со специфическими нагрузками положена та же физиологическая закономерность: между ЧСС и скоростью легкоатлетического бега, езды на велосипеде, плавания, бега на лыжах, гребли и других локомоций наблюдается линейная зависимость. При этом скорость движения изменяется в относительно большом диапазоне, при котором ЧСС не превышает 170 уд/мин. Такая зависимость позволяет применить методические принципы велоэргометрическои пробы PWC170 для определения физической работоспособности на основе анализа величин скорости перемещения спортсмена.

Расчет скорости перемещения при пульсе 170 уд/мин производится по формуле:

PWC170 (v)= v1 + (v2-v1) * (170 - f1)/(f2 - f1) , где PWC170 (v) - физическая работоспособность, выраженная в величинах скорости перемещения (м/с) при пульсе 170 уд/мин; f1 и f2 - ЧСС во время 1-й и 2-й физических нагрузок; v1 и v2 - скорость перемещения (м/с) соответственно во время 1-й и 2-й нагрузок.

Для определения величины PWC170 (v) спортсмену достаточно выполнить две физические нагрузки с умеренной, но различающейся по величине скоростью, которую необходимо замерить. Длительность нагрузки принимается равной 4-5 мин, чтобы сердечная деятельность достигла устойчивого состояния.

Величины PWC170 (v), естественно, сильно отличаются в различных видах спорта циклического характера. Поэтому для объективной оценки полученных данных для сравнения рассчитанной таким способом физической работоспособности в разных видах спорта производится пересчет PWC170 (v) величины мощности физической нагрузки, определяемые при велоэргометрическом тестировании. В табл. 25 приведены линейные выражения, подстановка в которые величин PWC170 (v) и решение этих выражений дает ориентировочные величины PWC170 в кгм/мин.

Таблица 25. Некоторые формулы для ориентировочного пересчета величин PWC170, определенных по скорости перемещения, кгм/мин (по 3. Б. Белоцерковскому)

Вид локомоций

Формулы для пересчета PWC170, кгм/мин

417 * PWC170(v) - 83

299 * PWC170(v) - 36

Бег на лыжах

498 * PWC170(v) - 716

359 * PWC170(v) - 469

Фигурное катание на коньках

388 * PWC170(v) - П38

173 * PWC170(v) - 309

Плавание

2724 * PWC170(v) - 2115

1573 * PWC170(v) - 975

Езда на велосипеде

230 * PWC170(v) - 673

Тест PWC170, который относится к субмаксимальным, являясь необременительным для испытуемого, весьма удобен для динамического наблюдения за его работоспособностью (как общей, так и специальной) в тренировочном микроцикле. Он широко применяется также в УМО и ЭКО.

2.Велоэргометрия (ВЭМ) - диагностический метод электрокардиографического исследования для выявления латентной (скрытой)коронарной недостаточности и определения индивидуальной толерантности к физической нагрузке с применением возрастающей ступенчатой физической нагрузки, выполняемой исследуемым на велоэргометре.

В основе данного метода лежит тот факт, что ишемия миокарда, возникающая при физической нагрузке у лиц страдающих ИБС, сопровождается характерными изменениями на ЭКГ (депрессией или элевацией сегмента ST, изменениями зубцов Т и/или R, нарушениями сердечной проводимости и/или возбудимости, связанными с физической нагрузкой). Велоэргометрия относится к пробам с дозированной физической нагрузкой, среди которых известны также степ-тест и тредмил. При выполнение степ-теста больной поочерёдно наступает на две ступеньки, высотой 22,5 см. Проба на тредмиле представляет собой бег на движущейся дорожке с меняющимся углом уклона.

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол.

Од­нако изменения тонуса в различных отделах сердечно-сосудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других - вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических на­рушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта - бесконечно большое ОПСС и отсутствие его току крови.

При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС.

При нуле­вом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5-6 раз и более.

Одна­ко в живом организме ОПСС никогда не может стать равным 0, как и бес­конечно большим.

В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.

text_fields

text_fields

arrow_upward

Основными параметрами, характеризующими системную гемоди­намику, являются: системное артериальное давление, общее перифе­рическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови

Системное артериальное давление

Внутрисосудистое давление крови является одним из основных параметров, по которому судят о функционировании сердечно-сосудистой системы. Артериальное давление есть интегральная величина, составляющими и определя­ющими которую являются объемная скорость кровотока (Q) и со­противление (R) сосудов. Поэтому системное артериальное давление (САД) является результирующей величиной сердечного выброса (СВ) и обшего периферического сопротивления сосудов (ОПСС):

САД = СВ x ОПСС

Равным образом давление в крупных ветвях аорты (собственно артериальное) определяется как

АД = Q x R

Применительно к артериальному давлению различают систоличес­кое, диастолическое, среднее и пульсовое давления. Систоличес­ кое - определяется в период систолы левого желудочка сердца, диа­ столическое - в период его диастолы, разница между величиной систолического и диастолического давлений характеризует пульсовое давление, а в упрощенном варианте среднее арифметическое между ними - среднее давление (рис.7.2).

Рис.7.2. Систолическое, диастолическое, среднее и пульсовое давления в сосудах.

Величина внутрисосудистого давления при прочих равных услови­ях определяется расстоянием точки измерения от сердца. Различают, поэтому, аортальное давление, артериальное давление, артериоляр- ное, капиллярное, венозное (в мелких и крупных венах) и централь­ное венозное (в правом предсердии) давление.

В биологических и медицинских исследованиях общепринятым яв­ляется измерение артериального давления в миллиметрах ртутного столба (мм рт.ст.), а венозного - в миллиметрах водного столба (мм вод.ст.).

Измерение давления в артериях производится с помощью прямых (кровавых) или косвенных (бескровных) методов. В первом случае, катетер или игла вводятся непосредственно в просвет сосуда, а регистрирующие установки могут быть различные (от ртутного ма­нометра до совершенных электроманометров, отличающихся боль­шой точностью измерения и разверсткой пульсовой кривой). Во втором случае, используются манжеточные способы сдавливания со­суда конечности (звуковой метод Короткова, пальпаторный - Рива-Роччи, осциллографический и др.).

У человека в покое наиболее усредненным из всех средних ве­личин считается систолическое давление - 120-125 мм рт.ст., диа-столическое - 70-75 мм рт.ст. Эти величины зависят от пола, возраста, конституции человека, условий его работы, географическо­го пояса проживания и т.д.

Являясь одним из важных интегральных показателей состояния системы кровообращения, уровень АД, однако, не позволяет судить о состоянии кровоснабжения органов и тканей или объемной ско­рости кровотока в сосудах. Выраженные перераспределительные сдвиги в системе кровообращения могут происходить при неизмен­ном уровне АД благодаря тому, что изменения ОПСС могут ком­пенсироваться противоположными сдвигами СВ, а сужение сосудов в одних регионах сопровождается их расширением в других. При этом одним из важнейших факторов, определяющих интенсивность кровоснабжения тканей, является величина просвета сосудов, коли­чественно определяемая через их сопротивление кровотоку.

Общее периферическое сопротивление сосудов ОПСС

text_fields

text_fields

arrow_upward

Под этим терми­ном понимают общее сопротивление всей сосудистой системы вы­брасываемому сердцем потоку крови. Это соотношение описывается уравнением:

ОПСС = САД / СВ

которое используется в физиологической и клинической практике для расчета величины этого параметра или его изменений. Как сле­дует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления пока не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

R = 8lη / πr 4

где R - гидравлическое сопротивление, l - длина сосуда, η - вязкость крови, r - радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обыч­но неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

R = (P 1 – P 2)/Q x 1332

где P 1 P 2 - разность давлений в начале и в конце участка сосудистой системы, Q - величина кровотока через этот участок, 1332 - коэффициент перевода единиц сопротивления в систему CGS .

Уравнение Франка широко используется на практике для опреде­ления сопротивления сосудов, хотя оно во многих случаях не от­ражает истинных физиологических взаимоотношений между объем­ным кровотоком, АД и сопротивлением сосудов кровотоку у тепло­кровных. Другими словами, эти три параметра системы действи­тельно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время изменения этих параметров могут быть в разной мере взаимозависимыми. Так, в определенных условиях уровень САД может определяться преиму­щественно величиной ОПСС или СВ.

В обычных физиологических условиях ОПСС может составлять от 1200 до 1600 дин.с.см -5 ; при гипертонической болезни эта величина может возрастать в два раза против нормы и составлять от 2200 до 3000 дин.с.см -5 .

Величина ОПСС состоит из сумм (не арифметических) сопротив­лений регионарных отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис.7.3 показана более выраженная степень повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плече-головной артерии при прессорном рефлексе.

В соответствии со степенью повышения сопротивления сосудов этих бассейнов прирост кровото­ка (по отношению к его исходной величине) в плече-головной артерии будет относительно больше, чем в грудной аорте. На этом механизме построен так называемый эффект «централизации» кро­ вообращения, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) направление крови, прежде все­го, к головному мозгу и миокарду.

В практической медицине нередко делаются попытки отождест­влять уровень артериального давления (или его изменения) с вели деленным термином «тонус» сосудов).

Во-первых , это не следует из уравнения Франка, где показана роль в поддержании и изменении артериального давления и сердечного выброса (Q).
Во-вторых , спе­циальные исследования показали, что между изменениями АД и ОПСС не всегда имеет место прямая зависимость. Так, нарастание величин этих параметров при нейрогенных влияниях может идти параллельно, но затем ОПСС возвращается к исходному уровню, а артериальное давление оказывается еще повышенным (рис.7.4), что указывает на роль в его поддержании и сердечного выброса.

Рис. 7.4. Повышение суммарного сопротивления сосудов большого круга кровообращения и аортального давления при прессорном рефлексе.

Сверху вниз:
аортальное давление,
перфузионное давление в сосудах большого круга (мм рт.ст.),
отметка нанесения раздражения,
отметка времени (5 с).