Как работает сканер радужной оболочки глаза и для чего он смартфону? Методы аутентификации по сетчатке глаза Вредно ли сканирование сетчатки глаза

Возможно, вы видели такое в фильмах про спецагентов: человек подходит к закрытой двери какой-нибудь секретной лаборатории, нажимает кнопочку, его глаз сканируется каким-то лучом, дверь открывается, и он попадает внутрь. Подобные технологии существуют уже сейчас, они начинают применяться в мобильных устройствах и в будущем получат широкое распространение.

Сканер радужной оболочки глаза уже используется в смартфонах Microsoft Lumia 950 и Lumia 950 XL. Он также будет у смартфона Galaxy Note 7, анонс которого состоится в начале августа.

Как работает этот сканер, для чего он нужен и нужен ли вообще?

Радужная оболочка глаза предопределяет цвет глаз человека. Если рассмотреть глазное яблоко вблизи, на его поверхности можно заметить линии, формирующие определённый рисунок. Этот рисунок уникален у любого человека и разный для каждого глаза (у правого он один, у левого совершенно другой). Он очень сложный и со временем практически не меняется - точно так же, как отпечатки пальцев. Сканер радужной оболочки предназначен для считывания этого рисунка и сопоставления его с ранее сохранёнными рисунками.

Для сканирования рисунка радужной оболочки глаза применяется излучение, близкое к инфракрасному. Оно, во-первых, позволяет сканеру работать даже в темноте, а во-вторых, считывает рисунок намного точнее, чем излучение видимого спектра света. Очки и контактные линзы не препятствуют прохождению лучей света, поэтому не оказывают отрицательное влияние на качество распознавания. По завершению сканирования рисунок переводится в код, а этот код сравнивается с ранее сохранённой записью. Если коды совпадают, происходит разблокировка устройства.

Биометрический сканер, предназначенный для разблокировки Galaxy Note 7, будет работать сложнее. Судя по имеющемуся у компании Samsung патенту, в нём объединены несколько сенсоров - датчик, считывающий рисунок радужной оболочки глаз, а также камера, распознающая лицо пользователя. Проще говоря, разблокировать Galaxy Note 7 можно будет лишь одним взглядом на фронтальную камеру.

Разблокировка при помощи сканирования лица камерой появилась в Android два года назад и доступна на большинстве смартфонов, но почти не используется из-за большой погрешности распознавания. Кроме того, она не работает в темноте.

Существует ещё одна схожая технология - сканирование сетчатки глаза. Сетчатка расположена внутри глазного яблока и тоже строго индивидуальна у каждого человека. Сканирование сетчатки производится только с близкого расстояния, что неудобно - для разблокировки смартфона пользователю пришлось бы подносить его прямо к глазу.

Сканер радужной оболочки глаза лучше, чем сканер отпечатков пальцев?

Он удобнее. Для сканирования отпечатка пальца вам нужно прикасаться к поверхности смартфона, причём ваши руки должны быть чистыми и сухими. Сканеру радужной оболочки глаза трогать не нужно - он считывает нужные данные с относительно большого расстояния.

Сканеры отпечатков пальцев начали использоваться в смартфонах около десяти лет назад, но стали популярны лишь после появления в айфонах. Сейчас их устанавливают даже в недорогие смартфоны. Сканер радужной оболочки глаза сейчас используются только в Lumia 950 и Lumia 950 XL, но эта технология станет намного более распространённой после выхода Galaxy Note 7. Если пользователи оценят её удобство, она появится на десятках новых моделей смартфонов.

Технология сканирования радужной оболочки глаза была впервые предложена в 1936 году офтальмологом Франком Буршем. Он заявил, что радужная оболочка глаза каждого человека является уникальной. Вероятность ее совпадения составляет примерно 10 в минус 78-ой степени, что значительно выше, чем при дактилоскопии. Согласно теории вероятности, за всю историю человечества еще не было двух людей, у которых бы совпал узор глаза. В начале 90-х Джон Дафман из компании Iridian Technologies запатентовал алгоритм для обнаружения различий радужной оболочки глаза. На данный момент этот способ биометрической аутентификации является одним из наиболее эффективных и производится с помощью специального сенсора - иридосканера.

Радужная оболочка глаза - это тонкая подвижная диафрагма со зрачком в центре, которая расположена за роговицей перед хрусталиком глаза. Она образовывается ещё до рождения человека и не меняется на протяжении всей жизни. По текстуре радужная оболочка напоминает сеть с большим количеством кругов, при этом ее рисунок очень сложен, что позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации.

Сканер радужной оболочки глаза часто ошибочно называют сканером сетчатки. Отличие заключается в том, что сетчатка расположена внутри глаза и просканировать ее оптическим сенсором невозможно, только с помощью инфракрасного излучения. При этом анализируется не сама сетчатка, а узор кровеносных сосудов глазного дна. Называть подобный сенсор иридосканером неправильно, так как iris – это радужка, сетчатка же имеет название retina.

В основе иридосканера современного смартфона лежит высококонтрастная камера, подобная обычной камере. Иногда роль сканера радужной оболочки может выполнять и обычная фронтальная камера. Процесс аутентификации начинается с получения детального изображения глаза человека. Для этой цели используют монохромную камеру с неяркой подсветкой, которая чувствительна к инфракрасному излучению и позволяет работать в условиях недостаточной освещенности. Обычно делается серия из нескольких фотографий, так как зрачок чувствителен к свету и постоянно меняет свой размер. Затем из полученных фотографий выбирается одна наиболее удачная, определяются границы радужки и контрольная область. К каждой точке выбранной области применяют специальные фильтры, чтобы извлечь фазовую информацию и преобразовать рисунок оболочки в цифровой формат. Очки и контактные линзы, даже цветные, не влияют на качество аутентификации.

Внедрение сканера радужной оболочки глаза в смартфоны началось в 2015 году. Первыми его стали устанавливать китайские и японские производители. В частности первопроходцем был ViewSonic V55, так и не поступивший в массовую продажу. Из самых новых устройств, оснащенных иридосканером, можно выделить Samsung Galaxy S8, однако его сканер с легкостью удалось обмануть хакерам, распечатавшим фотографию на принтере и положившим на нее контактную линзу.

Технология сканирования радужной оболочки глаза была впервые предложена в 1936 году офтальмологом Франком Буршем. Он заявил, что радужная оболочка глаза каждого человека является уникальной. Вероятность ее совпадения составляет примерно 10 в минус 78-ой степени, что значительно выше, чем при дактилоскопии. Согласно теории вероятности, за всю историю человечества еще не было двух людей, у которых бы совпал узор глаза. В начале 90-х Джон Дафман из компании Iridian Technologies запатентовал алгоритм для обнаружения различий радужной оболочки глаза. На данный момент этот способ биометрической аутентификации является одним из наиболее эффективных и производится с помощью специального сенсора - иридосканера.

Радужная оболочка глаза - это тонкая подвижная диафрагма со зрачком в центре, которая расположена за роговицей перед хрусталиком глаза. Она образовывается ещё до рождения человека и не меняется на протяжении всей жизни. По текстуре радужная оболочка напоминает сеть с большим количеством кругов, при этом ее рисунок очень сложен, что позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации.

Сканер радужной оболочки глаза часто ошибочно называют сканером сетчатки. Отличие заключается в том, что сетчатка расположена внутри глаза и просканировать ее оптическим сенсором невозможно, только с помощью инфракрасного излучения. При этом анализируется не сама сетчатка, а узор кровеносных сосудов глазного дна. Называть подобный сенсор иридосканером неправильно, так как iris – это радужка, сетчатка же имеет название retina.

В основе иридосканера современного смартфона лежит высококонтрастная камера, подобная обычной камере. Иногда роль сканера радужной оболочки может выполнять и обычная фронтальная камера. Процесс аутентификации начинается с получения детального изображения глаза человека. Для этой цели используют монохромную камеру с неяркой подсветкой, которая чувствительна к инфракрасному излучению и позволяет работать в условиях недостаточной освещенности. Обычно делается серия из нескольких фотографий, так как зрачок чувствителен к свету и постоянно меняет свой размер. Затем из полученных фотографий выбирается одна наиболее удачная, определяются границы радужки и контрольная область. К каждой точке выбранной области применяют специальные фильтры, чтобы извлечь фазовую информацию и преобразовать рисунок оболочки в цифровой формат. Очки и контактные линзы, даже цветные, не влияют на качество аутентификации.

Внедрение сканера радужной оболочки глаза в смартфоны началось в 2015 году. Первыми его стали устанавливать китайские и японские производители. В частности первопроходцем был ViewSonic V55, так и не поступивший в массовую продажу. Из самых новых устройств, оснащенных иридосканером, можно выделить Samsung Galaxy S8, однако его сканер с легкостью удалось обмануть хакерам, распечатавшим фотографию на принтере и положившим на нее контактную линзу.

Биометрические системы аутентификации - системы аутентификации , использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация - процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определенным протоколом аутентификации .

Не следует путать данные системы с системами биометрической идентификации , каковыми являются к примеру системы распознавания лиц водителей и биометрические средства учёта рабочего времени . Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию . Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Энциклопедичный YouTube

Методы аутентификации

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

1) Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).

1. Всеобщность: Данный признак должен присутствовать у всех людей без исключения.

2. Уникальность : Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.

3. Постоянство: для корректной аутентификации необходимо постоянство во времени.

4. Измеряемость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.

5. Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.

Статические методы

Аутентификация по отпечатку пальца

Идентификация по отпечаткам пальцев - самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток , полученный с помощью сканера, преобразовывается в цифровой код , а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев - легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.

Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.

Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые [ ] [ ] .

Аутентификация по радужной оболочке глаза

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка - тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей , между передней и задней камерами глаза, перед хрусталиком . Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации . [ ] [ ] .

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Аутентификация по сетчатке глаза

Аутентификация по геометрии руки

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки , расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит » может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), затем строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура , ни влажность , ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы .

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов . [ ] [ ]

Аутентификация по геометрии лица

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации . Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий , с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определенному человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды . [ ] [ ]

Аутентификация по термограмме лица

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона . В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения .

Динамические методы

Аутентификация по голосу

Биометрический метод аутентификации по голосу , характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы . В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция , интонация , высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу - низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.

Одной из наиболее важных проблем при использовании сетчатки глаза для распознавания личности является движение головы или глаза во время сканирования. Из-за этих движений может возникнуть смещение, вращение и масштабирование относительно образца из базы данных (рис. 1).

Рис. 1. Результат движения головы и глаза при сканировании сетчатки.

Влияние изменения масштаба на сравнение сетчаток не так критично, как влияние других параметров, поскольку положение головы и глаза более или менее зафиксировано по оси, соответствующей масштабу. В случае, когда масштабирование всё же есть, оно столь мало, что не оказывает практически никакого влияния на сравнение сетчаток. Таким образом, основным требованием к алгоритму является устойчивость к вращению и смещению сетчатки.

Алгоритмы аутентификации по сетчатке глаза можно разделить на два типа: те, которые для извлечения признаков используют алгоритмы сегментации (алгоритм, основанный на методе фазовой корреляции; алгоритм, основанный на поиске точек разветвления) и те, которые извлекают признаки непосредственно с изображения сетчатки (алгоритм, использующий углы Харриса).

1. Алгоритм, основанный на методе фазовой корреляции

Суть алгоритма заключается в том, что при помощи метода фазовой корреляции оцениваются смещение и вращение одного изображения относительно другого. После чего изображения выравниваются и вычисляется показатель их схожести.

В реализации метод фазовой корреляции работает с бинарными изображениями, однако может применяться и для изображений в 8-битном цветовом пространстве.

Пусть и – изображения, одно из которых сдвинуто на относительно другого, а и – их преобразования Фурье, тогда:

Где – кросс-спектр;
– комплексно сопряженное

Вычисляя обратное преобразование Фурье кросс-спектра, получим импульс-функцию:

Найдя максимум этой функции, найдём искомое смещение.

Теперь найдём угол вращения при наличии смещения , используя полярные координаты:

Данная техника не всегда показывает хорошие результаты на практике из-за наличия небольших шумов и того, что часть сосудов может присутствовать на одном изображении и отсутствовать на другом. Чтобы это устранить применяется несколько итераций данного алгоритма, в том числе меняется порядок подачи изображений в функцию и порядок устранения смещения и вращения. На каждой итерации изображения выравниваются, после чего вычисляется их показатель схожести, затем находится максимальный показатель схожести, который и будет конечным результатом сравнения.

Показатель схожести вычисляется следующим образом:

2. Алгоритм, использующий углы Харриса

Данный алгоритм, в отличие от предыдущего, не требует сегментации сосудов, поскольку может определять признаки не только на бинарном изображении.

В начале изображения выравниваются при помощи метода фазовой корреляции, описанного в предыдущем разделе. Затем на изображениях ищутся углы (рис. 2).


Рис. 2. Результат поиска углов Харриса на изображениях сетчатки.

Пусть найдена M+1 точка, тогда для каждой j-й точки её декартовы координаты преобразуются в полярные и определяется вектор признаков где

Модель подобия между неизвестным вектором и вектором признаков размера N в точке j определяется следующим образом:

Где – константа, которая определяется ещё до поиска углов Харриса.

Функция описывает близость и похожесть вектора ко всем признакам точки j.

Пусть вектор – вектор признаков первого изображения, где размера K–1, а вектор – вектор признаков второго изображения, где размера J–1, тогда показатель схожести этих изображений вычисляется следующим образом:

Нормировочный коэффициент для similarity равняется

Коэффициент в оригинальной статье предлагается определять по следующему критерию: если разница между гистограммами изображений меньше заранее заданного значения, то = 0.25, в противном случае = 1.

3. Алгоритм, основанный на поиске точек разветвления

Данный алгоритм, как и предыдущий, ищет точки разветвления у системы кровеносных сосудов. При этом он более специализирован на поиске точек бифуркации и пересечения (рис. 3) и намного более устойчив к шумам, однако может работать только на бинарных изображениях.


Рис. 3. Типы признаков (слева – точка бифуркации, справа – точка пересечения).

Для поиска точек, как на рис. 3, сегментированные сосуды сжимаются до толщины одного пикселя. Таким образом, можно классифицировать каждую точку сосудов по количеству соседей S:

  1. если S = 1, то это конечная точка;
  2. если S = 2, то это внутренняя точка;
  3. если S = 3, то это точка бифуркации;
  4. если S = 4, то это точка пересечения.
3.1. Алгоритм сжатия сосудов до толщины одного пикселя и классификация точек разветвления
Вначале выполняется поиск пикселя, являющегося частью сосуда, сверху вниз слева направо. Предполагается, что каждый пиксель сосуда может иметь не более двух соседних пикселей сосудов (предыдущий и следующий), во избежание двусмысленности в последующих вычислениях.

Далее анализируются 4 соседних пикселя найденной точки, которые ещё не были рассмотрены. Это приводит к 16 возможным конфигурациям (рис. 4). Если пиксель в середине окна не имеет соседей серого цвета, как показано на рис. 4 (a), то он отбрасывается и ищется другой пиксель кровеносных сосудов. В других случаях это либо конечная точка, либо внутренняя (не включая точки бифуркации и пересечения).


Рис. 4. 16 возможных конфигураций четырёх соседних пикселей (белые точки – фон, серые – сосуды). 3 верхних пикселя и один слева уже были проанализированы, поэтому игнорируются. Серые пиксели с крестиком внутри также игнорируются. Точки со стрелочкой внутри – точки, которые могут стать следующим центральным пикселем. Пиксели с чёрной точкой внутри – это конечные точки.

На каждом шаге сосед серого цвета последнего пикселя помечается как пройденный и выбирается следующим центральным пикселем в окошке 3 x 3. Выбор такого соседа определяется следующим критерием: наилучший сосед тот, у которого наибольшее количество непомеченных серых соседей. Такая эвристика обусловлена идеей поддержания однопиксельной толщины в середине сосуда, где большее число соседей серого цвета.

Из вышеизложенного алгоритма следует, что он приводит к разъединению сосудов. Также сосуды могут разъединиться ещё на этапе сегментации. Поэтому необходимо соединить их обратно.

Для восстановления связи между двумя близлежащими конечными точками определяются углы и как на рис. 5, и если они меньше заранее заданного угла то конечные точки объединяются.


Рис. 5. Объединение конечных точек после сжатия.

Чтобы восстановить точки бифуркации и пересечения (рис. 6) для каждой конечной точки вычисляется её направление, после чего производится расширение сегмента фиксированной длины Если это расширение пересекается с другим сегментом, то найдена точка бифуркации либо пересечения.


Рис. 6. Восстановление точки бифуркации.

Точка пересечения представляет собой две точки бифуркации, поэтому для упрощения задачи можно искать только точки бифуркации. Чтобы удалить ложные выбросы, вызванные точками пересечения, можно отбрасывать точки, которые находится слишком близко к другой найденной точке.

Для нахождения точек пересечения необходим дополнительный анализ (рис. 7).


Рис. 7. Классификация точек разветвления по количеству пересечений сосудов с окружностью. (a) Точка бифуркации. (b) Точка пересечения.

Как видно на рис. 7 (b), в зависимости от длины радиуса окружность с центром в точке разветвления может пересекаться с кровеносными сосудами либо в трех, либо в четырёх точках. Поэтому точка разветвления может быть не правильно классифицирована. Чтобы избавиться от этой проблемы используется система голосования, изображённая на рис. 8.


Рис. 8. Схема классификации точек бифуркации и пересечения.

В этой системе голосования точка разветвления классифицируется для трёх различных радиусов по количеству пересечений окружности с кровеносными сосудами. Радиусы определяются как: где и принимают фиксированные значения. При этом вычисляются два значения и означающие количество голосов за то, чтобы точка была классифицирована как точка пересечения и как точка бифуркации соответственно:

Где и – бинарные значения, указывающие идентифицирована ли точка с использованием радиуса как точка пересечения либо как точка бифуркации соответственно.

В случае если то тип точки не определён. Если же значение отличаются друг от друга, то при точка классифицируется как точка пересечения, в противном случае как точка бифуркации.

3.2. Поиск преобразования подобия и определение метрики схожести
После того, как точки найдены, необходимо найти преобразование подобия. Это преобразование описывается 4 параметрами – смещение по оси и , масштаб и вращение соответственно.

Само преобразование определяется как:

Где – координаты точки на первом изображении
– на втором изображении

Для нахождения преобразования подобия используются пары контрольных точек. Например, точки определяют вектор где – координаты начала вектора, – длина вектора и – направление вектора. Таким же образом определяется вектор для точек Пример представлен на рис. 9.


Рис. 9. Пример двух пар контрольных точек.

Параметры преобразования подобия находятся из следующих равенств:

Пусть количество найденных точек на первом изображения равняется M, а на втором N, тогда количество пар контрольных точек на первом изображении равно а на втором Таким образом, получаем возможных преобразований, среди которых верным выбирается то, при котором количество совпавших точек наибольшее.

Поскольку значение параметра S близко к единице, то T можно уменьшить, отбрасывая пары точек, неудовлетворяющие следующему неравенству:

Где – это минимальный порог для параметра
– это максимальный порог для параметра
– пара контрольных точек из
– пара контрольных точек из

После применения одного из возможных вариантов выравнивания для точек и вычисляется показатель схожести:

Где – пороговая максимальная дистанция между точками.
В случае если то

В некоторых случаях обе точки могут иметь хорошее значение похожести с точкой . Это случается, когда и находятся близко друг к другу. Для определения наиболее подходящей пары вычисляется вероятность схожести:

Где

Если то

Чтобы найти количество совпавших точек строится матрица Q размера M x N так, что в i-й строке и j-м столбце содержится

Затем в матрице Q ищется максимальный ненулевой элемент. Пусть этот элемент содержится в -й строке и -м столбце, тогда точки и определяются как совпавшие, а -я строка и -й столбец обнуляются. После чего опять ищется максимальный элемент. Поиск таких максимумов повторяется до тех пор, пока все элементы матрицы Q не обнулятся. На выходе алгоритма получаем количество совпавших точек C.

Метрику схожести двух сетчаток можно определить несколькими способами:

Где – параметр, который вводится для настройки влияния количества совпавших точек;
f выбирается одним из следующих вариантов:

Метрика нормализуется одним из двух способов:

Где и – некоторые константы.

3.3. Дополнительные усложнения алгоритма
Метод, основанный на поиске точек разветвления, можно усложнить, добавляя дополнительные признаки, например углы, как на рис. 10.


Рис. 10. Углы, образованные точками разветвления, в качестве дополнительных признаков.

Также можно применять шифр гаммирования. Как известно, сложение по модулю 2 является абсолютно стойким шифром, когда длина ключа равна длине текста, а поскольку количество точек бифуркации и пересечения не превышает порядка 100, но всё же больше длины обычных паролей, то в качестве ключа можно использовать комбинацию хешей пароля. Это избавляет от необходимости хранить в базе данных сетчатки глаза и хеши паролей. Нужно хранить только координаты, зашифрованные абсолютно стойким шифром.

Заключение

Аутентификация по сетчатке действительно показывает точные результаты. Алгоритм, основанный на методе фазовой корреляции, не допустил ни одной ошибки при тестировании на базе данных VARIA. Также алгоритм был протестирован на неразмеченной базе MESSIDOR с целью проверки алгоритма на ложные срабатывания. Все найденные алгоритмом пары похожих сетчаток были проверены вручную. Они действительно являются одинаковыми. На сравнение кровеносных сосудов двух сетчаток глаз из базы VARIA уходит в среднем 1.2 секунды на двух ядрах процессора Pentium Dual-CoreT4500 с частотой 2.30 GHz. Время исполнения алгоритма получилось довольно большое для идентификации, но оно приемлемо для аутентификации.

Также была предпринята попытка реализации алгоритма, использующего углы Харриса, но получить удовлетворительных результатов не удалось. Как и в предыдущем алгоритме, возникла проблема в устранении вращения и смещения при помощи метода фазовой корреляции. Вторая проблема связана с недостатками алгоритма поиска углов Харриса. При одном и том же пороговом значении для отсева точек, количество найденных точек может оказаться либо слишком большим либо слишком малым.

В дальнейших планах стоит разработка алгоритма, основанного на поиске точек разветвления. Он требует гораздо меньше вычислительных ресурсов по сравнению с алгоритмом, основанном на методе фазовой корреляции. Кроме того, существуют возможности для его усложнения в целях сведения к минимуму вероятности взлома системы.

Другим интересным направлением в дальнейших исследованиях является разработка автоматических систем для ранней диагностики заболеваний, таких как глаукома, сахарный диабет, атеросклероз и многие другие.

P.s. по немногочисленным просьбам выкладываю