Функциональное состояние гипоталамо-гипофизарно-надпочечниковой системы. Гормоны гипофизарно-надпочечниковой системы Обратимое подавление гипоталамо гипофизарно надпочечниковой системы

Реактивность. Резистентность. Адаптация. Болезни адаптации.

I. Понятие и виды реактивности и резистентности.

Реактивность - свойство организма как целого отвечать изменениями жизнедеятельности на воздействие окружающей среды. Реактивность - один из важнейших факторов патогенеза болезней.

Течение болезни может быть :

· Гиперэргическое (гиперэргия ) - быстрое, яркое, выраженное.

· Гипоэргическое (гипоэргия ) - затяжное, вялое со стертыми симптомами, низким уровнем фагоцитоза и образования антител.

  • Дисэргическое (дизэргия ) - извращенная реактивность.

Виды реактивности:

1. Биологическая (видовая, первичная) – изменения жизнедеятельности, возникающие под влиянием обычных для каждого животного воздействий окружающей среды. Например, невосприимчивость человека к чумке собак, к гонорее и сифилису крупного рогатого скота и т. д. Зимняя спячка - видовой вариант изменения реактивности (суслики не болеют в период спячки чумой и туберкулезом).

2. Групповая – формируется у групп индивидуумов, находящихся под влиянием общего фактора чаще всего внутренней среды. Например, чувствительность к психо-эмоциональному стрессу у гипер- и астеников. Реактивность мужчин и женщин. Возрастные изменения реактивности. Группы крови.

3. Индивидуальная – формируется в зависимости от совокупности конкретных факторов, в которых обитает и формируется организм (наследственность, возраст, пол, питание, температура, содержание кислорода).

  • физиологическая - адекватная реакция в физиологических условиях без нарушения гомеостаза. Иммунитет (специфическая), ФН (неспецифическая).
  • патологическая - при воздействии болезнетворных факторов или неадекватных реакций на физиологические воздействия. Аллергия, иммунодефицитные состояния (специфическая), шок, наркоз (неспецифическая).

· специфическая – характерна для одного конкретного фактора (иммунная, реакция зрачка на свет).

· неспецифическая - характерна для различных факторов (стресс-реакция, парабиоз, фагоцитоз, биологические барьеры).

Группы препаратов, влияющих на реактивность

1. Повышающие и понижающие реактивность ЦНС при неврозах (седативные или психостимуляторы).

2. Изменяющие реактивность водителей сердечного ритма и проводящей системы сердца к воздействию симпатической и парасимпатической нервной системы при аритмиях.

3. Изменяющие реактивность к нервным влияниям (путем блокады или стимуляции рецепторов препаратами синантотропного действия):

· скелетной мускулатуры (при повышении или понижении тонуса мышц),

· сосудистой мускулатуры (при гипо-и гипертонических состояниях),

· кишечной мускулатуры (при спазмах и атониях кишечника).

Резистентность (устойчивость) – это свойство организма противостоять различным воздействиям или невосприимчивость к воздействиям повреждающих факторов внешней среды.

Формы резистентности

· Абсолютная – реализуется всегда. · Относительная – реализуется при определенных условиях.
· Пассивная , связанная с анатомо-физиологическими особенностями организма. · Активная , связанная с одной стороны с устойчивостью биологической системы, с другой - способностью перестраиваться при изменении внешних условий (лабильностью) и которая осуществляется благодаря механизмам активной адаптации.
· Первичная или наследственная форма. · Вторичная , приобретенная или измененная форма.
· Специфическая - устойчивость к действию какого-то одного агента. · Неспецифическая - устойчивость к действию многих факторов.
· Общая - устойчивость всего организма. · Местная - устойчивость отдельных участков органов или систем тела.

Резистентность организма фармакологически в большинстве случаев стремятся повысить . Например, стимуляторы иммунной системы повышают устойчивость, сопротивляемость организма к микроорганизмам и опухолям.

Реактивность и резистентность организма не всегда изменяются однонаправлено . В некоторых случаях, повышенная иммунная реактивность организма может спровоцировать так называемые аллергические заболевания, вызывающие или повреждение структур организма (аутоиммунные заболевания), или иногда - даже летальный исход (анафилактический шок). В подобных случаях, требуется фармакологическая коррекция данного вида реактивности препаратами, угнетающими иммунный ответ.

II. Специфическая и неспецифическая адаптация. Кратковременная и долговременная адаптация.

Адаптация - приспособление организма к условиям существования, обеспечивающее повышение устойчивости организма к условиям среды (резистентности).

  • Специфическая адаптация – активация функциональной системы, ответственной за повышение устойчивости к конкретному фактору (физической нагрузке, холоду, гипоксии).
  • Неспецифическая адаптация – стандартная активация стресс-реализующей системы при действии нового или сильного раздражителя.

Адаптационные реакции проходят2 этапа :

1. Срочный этап – возникает непосредственно после начала действия раздражителя и, может реализоваться лишь на основе ранее сформировавшихся физиологических механизмов (увеличение ЧСС, ЧД, бегство животного от опасности). При этом деятельность организма протекает на пределе его возможностей, но не всегда обеспечивает необходимый эффект.

  1. Долговременный этап – возникает постепенно, в результате длительного и многократного действия на организм факторов среды, т. е. на основе многократного повторения срочной адаптации.

В результате усиления физиологической функции клеток, специфически ответственных за адаптацию, происходит активация генетического аппарата: увеличивается синтез нуклеиновых кислот и белков, образующие важные структуры клетки. Так формируется системный структурный след – основа перехода ненадежной срочной адаптации в устойчивую долговременную.

III. Механизмы адаптации организма к ксенобиотикам. Феномен привыкания к лекарственным веществам.

Большинство фармакотерапевтических средств относятся к ксенобиотикам , то есть к веществам, чужеродным организму.

Защищаясь от них, организм включает:

1. Механизмы их инактивации:

· повышенное разрушение в печени и других клетках (защитные синтезы),

· микросомальное окисление.

2. Механизмы их выведения путем:

· усиления канальцевой секреции в почках,

· снижения всасывания в кишечнике,

· реабсорбции в почечных канальцах.

Эффекты препаратов на организм при этом снижаются, требуется возрастающая доза. Возникает феномен привыкания к лекарственному средству.

IV. Феномен пристрастия к лекарственным веществам. Патофизиологические механизмы лекарственной зависимости.

Иногда лекарственное средство, вытесняя из метаболизма какое-то вещество, на практике чаще всего - нейромедиатор, полностью заменяет его в эффектах последнего. Синтез медиатора по механизму обратной связи прекращается, восстановить его организму порой трудно, поэтому после прекращения применения лекарства в этом случае возникает ощущение нехватки, "абстиненции". Этот феномен особой реактивности организма на фармакотерапию получил название лекарственной зависимости или пристрастия , лежащий в основе всех наркоманий (никотин, кокаин, опиаты). Лекарственная зависимость также относится к побочным эффектам лекарств, поскольку иногда является тяжелым ятрогенным заболеванием.

V. Общий адаптационный синдром. Схема развития симпато-адреналовой реакции при стрессе с выделением структур нервной и эндокринной систем, принимающих в ней участие, названия рецепторов и медиаторов. Сходные реакции, возникающие при курении или назначении Н-холиномиметиков. Схема развития гипоталамо-гипофизарно-адреналовой реакции при стрессе. Гормоны, выделяющиеся в результате этой реакции, их положительные эффекты. Стресс-реализующие и стресс-лимитирующие системы. Возможности фармакологической коррекции стресса. Адаптогены.

Стресс - неспецифический ответ организма на любое предъявляемое ему повышенное требование, адаптация к возникшей трудности независимо от ее характера.

Впервые стресс описал в 1936 году канадский физиолог Ганс Селье как общий адаптационный синдром .

Стресс возникает при воздействии сильного раздражителя . Сила раздражителя такова, что существующие защитные барьеры не могут прекратить эффекты, вызываемые этим раздражителем. В результате организм включает цепь реакций, которые и стали объединять под названием «стресс».

Таким образом, стресс играет защитную роль , направленную на нейтрализацию последствий, вызванных воздействием сильных раздражителей. Стресс-реакция присуща всем живым организмам, однако наибольшего совершенства она достигла у человека, поскольку здесь имеет значение социальный фактор.

Г. Селье «От мечты к открытию»: «… Я не мог понять, почему с самого зарождения медицины врачи всегда старались сосредоточить все свои усилия на распознавании индивидуальных заболеваний и на открытии специфических лекарств от них, не уделяя никакого внимания значительно более очевидному "синдрому недомогания" как таковому. Я знал, что синдромом называется "группа признаков и симптомов, в своей совокупности характеризующих заболевание". Несомненно, у только что виденных нами больных присутствовал синдром, но он скорее напоминал синдром болезни как таковой, а не какого-то определенного заболевания. А нельзя ли проанализировать механизм этого общего "синдрома недомогания" и, быть может, попытаться найти лекарства против неспецифического фактора болезни? Впрочем, выразить все это на точном языке экспериментально обоснованного научного описания я сумел лишь спустя десять лет.

В то время я работал в отделении биохимии Университета Мак Гилл, пытаясь обнаружить новый гормон в экстрактах яичников крупного рогатого скота. Все экстракты, независимо от того, как они готовились, вызывали один и тот же синдром, характеризовавшийся увеличением коры надпочечников …, желудочно-кишечными язвами, уменьшением тимуса и лимфатических узлов . Хотя на первых порах я приписывал эти изменения некоему новому гормону яичников в моем экстракте, вскоре обнаружилось, что экстракты других органов - и даже любые токсические вещества - также вызывают аналогичные изменения. И лишь тогда я внезапно вспомнил свое студенческое впечатление от "синдрома недомогания" как такового. Меня осенило: то, что я вызывал своими неочищенными экстрактами и токсичными препаратами, было экспериментальным воспроизведением этого состояния. Затем эта модель была применена при анализе синдрома стресса, а увеличение надпочечников, желудочно-кишечные язвы и тимико-лимфатическая дегенерация рассматривались в качестве объективных показателей стресса. Так простая догадка о наличии связи между почти забытой и сугубо предположительной клинической концепцией, родившейся в студенческие времена, с одной стороны, и воспроизводимыми и объективно, измеримыми изменениями в текущих экспериментах на животных, с другой, послужила основой для развития всей концепции стресса…»

Факторы, запускающие стресс-реакцию или «стрессоры» , могут быть разнообразными:

· нервное напряжение,

· телесные повреждения,

· инфекции,

· мышечная работа и т. д.

Стресс-реализующие системы - симпато-адреналовая система и гипоталамо-гипофизарно-надпочечниковая система.



Активация симпато-адреналовой системы

Воздействие стрессора на организм вызывает формирование очага возбуждения в коре больших полушарий головного мозга, импульсы из которого направляются в вегетативные (симпатические) центры гипоталамуса , а оттуда – в симпатические центры спинного мозга . Аксоны нейронов этих центров идут в составе симпатических волокон к клеткам мозгового вещества надпочечников , формируя на их поверхности холинэргические синапсы. Выход ацетилхолина в синаптическую щель и взаимодействие его с Н-холинорецепторами клеток мозгового вещества надпочечников стимулирует выброс ими адреналина. Курение вызывает повышение концентрации никотина в крови, никотин стимулирует Н-холинорецепторы клеток мозгового вещества надпочечников, что сопровождается выбросом адреналина.

Эффекты катехоламинов

· Усиление сердечной деятельности , опосредованнное возвуждением b-адренорецепторов сердца.

· Расширение сосудов сердца и мозга , опосредованнное возвуждением b-адренорецепторов.

· Выброс эритроцитов из депо – обусловлен сокращением капсулы селезенки, содержащей a-адренорецепторы.

· Лейкоцитоз – «встряхивание» маргинальных лейкоцитов.

· Сужение сосудов внутренних органов , опосредованнное возвуждением a-адренорецепторов.

· Расширение бронхов , опосредованнное возвуждением b-адренорецепторов бронхов.

· Угнетение перистальтики ЖКТ .

· Расширение зрачка .

· Уменьшение потоотделения .

· Катаболический эффект адреналина обусловлен активацией аденилатциклазы с образованием цАМФ, который активирует протеинкиназы. Активная форма одной из протеинкиназ способствует фосфорилированию (активации) триглицеридлипазы и расщеплению жиров . Образование активной формы другой протеинкиназы необходимо для активации киназы фосфорилазы b , которая катализирует превращение неактивной фосфорилазы b в активную фосфорилазу а . В присутствии последнего фермента происходит распад гликогена . Кроме этого при участии цАМФ активируется протеинкиназа, необходимая для фосфорилирования гликогенсинтетазы, то есть перевода ее в малоактивную или неактивную форму (торможение синтеза гликогена ). Таким образом, адреналин через активацию аденилатциклазы способствует распаду жиров, гликогена и торможению синтеза гликогена.

Активация гипоталамо-гипофизарно-надпочечниковой системы

Возбуждение участка коры головного мозга под действием стрессора вызывает стимуляцию гипофизотропной зоны медиальной зоны гипоталамуса (эндокринные центры) и высвобождение гипоталамических рилизинг-факторов , которые оказывают стимулирующее действие на аденогипофиз . Результатом этого является образование и выделение тропных гормонов гипофиза , одним из которых является адренокортикотропный гормон (АКТГ). Органом-мишенью этого гормона является корковое вещество надпочечников , в пучковой зоне которого вырабатываются глюкокортикоиды , а в сетчатой зоне – андрогены. Андрогены вызывают стимуляцию синтеза белка; увеличение полового члена и яичек; ответственны за половое поведение и агрессивность.

Другим тропным гормоном гипофиза является соматотропный гормон (СТГ)к эффектам которого относятся:

· стимуляция синтеза и секреции инсулиноподобного фактора роста в печени и др. органах и тканях,

· стимуляция липолиза в жировой ткани,

· стимуляция продукции глюкозы в печени.

Третьим тропным гормоном гипофиза является тиреотропный гормон (ТТГ), который стимулирует синтез тиреоидных гормонов в щитовидной железе . Тиреоидные гормоны ответственны за стимуляцию синтеза белка во всех клетках тела, повышение активности ферментов, участвующих в расщеплении углеводов, разобщении окисления и фосфорилирования (увеличения теплопродукции)

Эндокринология Эндокринология – наука, изучающая развитие, строение и функции желез внутренней секреции, а также биосинтез, механизм действия и обмен гормонов в организме, секрецию этих гормонов в норме и при патологии функции эндокринных желез, а также возникающие при этом эндокринные заболевания.


Железы внутренней секрецииЖелезы внутренней секреции – органы или группы клеток, которые синтезируют и выделяют в кровь БАВ. ГормоныГормоны – биологически активные вещества, вырабатываемые эндокринными железами, или железами внутренней секреции, и выделяемые ими непосредственно в кровь.




Гипоталамус Гипоталамус – высший нейроэндокринный орган, в котором происходит интеграция нервной и эндокринной систем. Крупноклеточные ядра: Антидиуретический гормон (АДГ) или вазопрессин Окситоцин Мелкоклеточные ядра: Либерины (рилизинг-факторы) Статины (ингибирующие факторы)


Либерины (рилизинг-факторы)Либерины (рилизинг-факторы) – усиливают секрецию тропных гормонов передней доли гипофиза (тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин и кортиколиберин). Статины (ингибирующие факторы)Статины (ингибирующие факторы) – подавляют синтез тропных гормонов (соматостатин и пролактостатин).


Гипофиз Передняя доля (аденогипофиз): Адренокортикотропный гормон (АКТГ) Тиреотропный гормон (ТТГ) Гонадотропные гормоны (ГТГ): фолликулостимулирующий гормон (ФСГ) и лютеонизирующий гормон (ЛГ) Соматотропный гормон (СТГ) Лактотропный гормон (ЛТГ) или пролактин Средняя доля: Меланоцитостимулирующий гормон (МСГ) Липотропный гормон (ЛПГ) Задняя доля (нейрогипофиз): АДГ Окситоцин




Гонадотропные гормоны Фолликулостимулирующий гормон Стимулирует рост яичника и сперматогенез Лютеонизирующий гормон Обеспечивает развитие овуляции и формирования желтого тела Стимулирует выработку прогестерона в желтом теле Способствует секреции мужских и женских половых гормонов




Антидиуретический гормон Стимулирует реабсорбцию воды в дистальных канальцах почек Вызывает сужение артериол, что приводит к увеличению АД Окситоцин Вызывает сокращение гладкой мускулатуры матки Усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока




Минералокортикоиды Участвуют в регуляции минерального обмена Альдостерон усиливает в дистальных канальцах почек реабсорбцию Na, одновременно увеличивая при этом выведение с мочой ионов К Под влиянием альдостерона увеличивается секреция ионов Н в канальцевом аппарате почек


Глюкокортикоиды 1.Белковый обмен: Стимулируют процессы распада белка Тормозит поглощение аминокислот и синтез белка многими тканями 2.Жировой обмен: Усиливают мобилизацию жира из жировых депо Увеличивают концентрацию жирных кислот в плазме крови Способствуют отложению жира на лице и туловище 3.Углеводный обмен: Увеличивают глюконеогенез, образование гликогена Повышают уровень глюкозы в крови 4.Противовоспалительное действие: Угнетают все стадии воспалительной реакции (альтерация, экссудация и пролиферация) Стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов Угнетают процессы фагоцитоза в очаге воспаления


5.Противоаллергическое действие: Уменьшают количество эозинофилов в крови 6.Иммунодепрессивное действие: Угнетают клеточный и гуморальный иммунитет Подавляют выработку гистамина, антител, реакцию антиген-антитело Подавляют активность и уменьшают количесво лимфоцитов Уменьшают лимфоузлы, тимус, селезенку 7.ЦНС: Поддерживают нормальную функцию ЦНС (психическую сферу) 8.Сердечно-сосудистая система: Увеличивают сердечный выброс Повышают тонус периферических артериол 9.Половая функция: У мужчин тормозят секрецию тестостерона У женщин подавляют чувствительность яичников к ЛГ, подавляют секрецию эстрогенов и прогестерона 10. Стресс: Являются основными гормонами, обеспечивающими сопротивляемость стрессу




Литература: Эндокринология: учебник для медицинских вузов / Я. В. Благосклонная [и др.]. - 3-е изд., испр. и доп.- СПб. : СпецЛит, с. : ил. Физиология человека: Учебник / Под ред. В. М. Покровского, Г. Ф. Коротько. - М.: ОАО "Издательство "Медицина", с.: ил.: л. ил. (Учеб. лит. для студентов мед. вузов)

Гипоталамо-гипофизарно-надпочечниковая система является сетью эндокринного контроля организма, стимуляция которой наблюдается под воздействием стрессовых факторов. Влияние стресса может быть охарактеризовано по-разному, сюда можно отнести жизнеугрожающие состояния при заболеваниях, оперативных манипуляциях, кровотечениях, а также постоянное влияние внешних условий (например, депрессивное расстройство либо нарушение работы желудочно-кишечного тракта). Каждая из этих разновидностей стресса стала поводом для исследования биологического ответа, формируемого с помощью гипоталамо-гипофизарно-надпочечниковой системы. Показано, что физическое воздействие, не зависимо от того, систематическое оно или нет, способствует стимуляции этой системы.

Влияние физической нагрузки
на гипоталамо-гипофизарно-надпочечниковую систему

Основной целью тренировки является физиологического состояния человека к физическому стрессу в виде нагрузок. Тренировочный процесс увеличивает степень адаптации гормональной системы, что, как правило, приводит к изменению деятельности ГГН-системы. Подобный отклик организма обусловлен количеством выполненной работы, степенью интенсивности, набором упражнений, а также длительностью отдыха (восстановительного периода).

Действие тренировочных эффектов
на функции гипоталамо-гипофизарно-надпочечниковой системы
в покое

Приведение в норму концентрации кортизола после длительных аэробных нагрузок может происходить на протяжении суток. Восстановительный период после длительных высокоинтенсивных тренировок у спортсменов связан с увеличенным уровнем кортикотропина в организме, однако существенных отличий в показателях кортизола при сравнении с группой контроля не отмечается. Продемонстрировано, что тренировки с высокой интенсивностью, основной задачей которых являлась подготовка спортсменов к марафонскому забегу, благоприятно воздействовали на усиление секреции кортикотропина в гипофизе при стабильном уровне содержания кортизола. С данным положением согласованы также полученные сведения других исследований. К примеру, никаких изменений в показателях кортизола в общем кровотоке не выявлялось после окончания тренировочного цикла у бегунов-марафонцев. Высокая интенсивность занятий бегом при любой протяжённости дистанций, а также 3-хмесячные высокоинтенсивные тренировки пловцов-профессионалов не приводили к изменениям базовых показателей кортизола. Скорее всего, подобное наблюдение могло говорить о низкой сенсибилизации надпочечниковых желёз к продукции адренокортикотропного гормона, однако, продемонстрировано, что в процессе тренировочных занятий с акцентом на подобного сокращения не обнаружено. Вместе с тем, отмечается уменьшение чувствительности гипоталамо-гипофизарно-надпочечниковой системы к глюкокортикостероидам, по большей части, в тканях гипофиза. У адаптированных к нагрузкам молодых людей в течение суток после тренировки наблюдается снижение сенсибилизации моноцитов к стрессовому гормону – кортизолу.

Полученные сведения не соответствуют информации, которая описывает увеличение показателей кортизола в покое без последующих изменений физиологического уровня кортикотропного гормона после высокоинтенсивной тренировки на беговой дорожке. У пловцов-профессионалов небольшое удлинение дистанции заплывов может вызвать рост физиологической концентрации кортизола в крови, однако, не факт, что данный прирост как-от отразится на итоговых показателях времени заплыва. Существуют также сведения о том, что у велосипедистов профессионального уровня содержание кортизола в организме в период отдыха больше, в сравнении с лицами, ведущими малоактивный образ жизни.

Возраст, половая принадлежность, характер питания, психологический настрой, степень тренировочной адаптации, разновидность и продолжительность физического воздействия способны изменять характер влияния тренировочного стресса на функции гипоталамо-гипофизарно-надпочечниковой системы. Не обнаружено существенных различий в характере биологического ответа в организмах спортсменов обоих полов на мгновенный рост интенсивности нагрузок. У детей, занимающихся гимнастикой, при 5 тренировках в неделю с умеренной интенсивностью не выявлено существенных изменений концентрации кортизола. Вместе с тем, у детей, также занимающихся гимнастикой, уже через 8-15 недель интенсивных тренировок наблюдался количественный рост кортизола, однако энергозатраты организма сократились на треть. Следовательно, высокое содержание кортизола, скорее всего, коррелирует с недостатком энергии, не имеющим какого-либо отношения к тренировочному воздействию. При сбалансированном питании у юных гимнастов эффекты от тренировок ни коем образом не влияли на базовое содержание кортизола.

Изменения показателей кортизола в организме определяются длительностью и видом тренировочной нагрузки, поскольку интервальный тренинг бегунов (включающий в себя значительную часть анаэробных нагрузок) в отличие от аэробных тренировок приводит к росту показателей кортизола в организме. Выросший объём тренировочной нагрузки в сочетании с пониженной интенсивностью способствует сокращению уровня кортизола в покое, в том числе и после завершения тренировочной сессии, что, кстати, может быть признаками перетренировки. Однако двукратный рост тренировочного объёма никак не влияет на число молекул кортизола в системе кровообращения. Помимо этого, при таких обстоятельствах не было найдено отличий в типе эндокринного ответа на повышенный объём перекрёстного тренинга, в сравнении с эффектами, полученными от специфических тренировок. Эндокринные изменения в течение месяца аэробного тренинга обладают схожими моментами, не зависимо от условий, в которых проходили занятия (например, в разных условиях в зависимости от атмосферного давления). Аналогичным образом учёным не удалось определить связь времени года и изменений, связанных с физическими нагрузками. У лиц старшей возрастной группы отмечается большая вариативность эффектов аэробного тренинга на гипоталамо-гипофизарно-надпочечниковую систему, однако в общем, систематические изменения гормонального фона схожи с изменениями, происходящими у молодых людей.

Силовой тренинг может неодинаково воздействовать на базальный уровень кортизола в плазме: существующие сведения говорят о стабильных показателях кортизола либо о сокращении его концентрации в организме. Рост степени интенсивности тренировочного воздействия либо длительности способствует увеличению показателей кортизола в покое. При 2-ух кратном повышении объёма тренировок уровень данного гормона сокращался. Несмотря на то, что высокоинтенсивный тренинг на протяжении 24 месяцев значительно не оказывал влияния на количество кортизола в состоянии покоя у молодых людей, после 7 дней максимально интенсивных нагрузок у них происходило увеличение уровня кортизола сразу после пробуждения. У молодых людей высокоинтенсивная силовая работа, приводящая к состоянию перетренированности, способствовала незначительному сдвигу баланса тестостерона-кортизол в сторону тестостерона и, соответственно, уменьшению показателей содержания кортизола в плазме. Подобные показатели уровня гормонов отличаются от охарактеризованных ранее признаков перетренированности, а это может говорить о том, что анализ концентраций тестостерона и кортизола в системе кровообращения не подходит в качестве способа определения перетренированности, индуцированной выполнением физических упражнений с высокой степенью интенсивности.

Тренировочная нагрузка
и отклик организма на неё

Изменение концентрации кортизола под воздействием физических нагрузок с умеренной степенью интенсивности не зависит от уровня адаптации спортсмена. Наряду с этим, ответ эндокринной системы на абсолютный показатель интенсивности может варьироваться, другими словами, организм адаптируется к внешним воздействиям. При этом у физически подготовленных спортсменов отмечается наиболее выраженная стимуляция оси гипоталамус-гипофиз-надпочечники в ответ на тренировки с чрезмерной степенью интенсивности. Разновидность тренировочного воздействия некоторым образом определяет специфику ответной реакции системы гипоталамус-гипофиз-надпочечники на физический стресс. В том случае, если тренировочный план включает в себя значительную часть анаэробной нагрузки, то это, как правило, может привести к усилению выработки кортизола на дальнейшее воздействие нагрузок.

Тренировочные нагрузки
и негативные изменения
функций оси гипоталамус-гипофиз-надпочечники

Состояние перетренированности,
вызванное воздействием
максимальной физической нагрузки

В том случае, если организм не адаптировался к возросшему тренировочному стрессу, либо длительность восстановительного периода достаточно мала, может отмечаться стрессовое переутомление, в дальнейшем переходящее в перетренированность. Переутомление можно рассматривать в качестве краткосрочного состояния перетренированности и, как правило, оно является нормальным физиологическим процессом в тренировочном плане. Также, подобное состояние может являться нормой после участия спортсмена в соревнованиях, в которых необходимо преодолевать высокоинтенсивные аэробные нагрузки. По сравнению с физическим переутомлением, перетренированность характеризуется высокой степенью утомляемости, психологической «неустойчивостью», склонностью к заболеваниям (как следствие снижения функций иммунной системы), а также негативными изменениями в работе половой системы. Состояние перетренированности, по большей части, является результатом неправильно подобранных нагрузок и малого времени восстановительного периода.

При анализе функциональности ГГН-системы исследователи предположили, что начальные этапы переутомления (начальное состояние перетренированности) могут сопровождаться снижением чувствительности надпочечников к адренокортикотропному гормону (АКТГ), при этом за счёт компенсаторных функций организма происходит увеличение выработки АКТГ в гипофизе с одновременным снижением выработки кортизола. Достоверный синдром перетренированности обуславливается увеличением показателей физиологической концентрации кортизола и его количества в суточной моче, плюс к этому наблюдается сокращение диапазона изменений в концентрации кортизола и кортикотропина под воздействием физической нагрузки. У некоторых испытуемых с хорошим уровнем адаптации к нагрузкам, которые регулярно занимались бегом, при увеличении интенсивности на 40% в течение 3-ёх недель отмечалось переутомление, вдобавок было выявлено, что повышенный уровень кортизола в крови постепенно сокращался. Как правило, при умеренной интенсивности нагрузок, снижение уровня кортизола происходило спустя 30 минут после тренировки. Достаточно выраженные формы перетренированности обусловлены снижением работоспособности оси гипоталамус-гипофиз-надпочечники и симпатоадреналовой системы. Подобная симптоматика отмечается лишь после неадекватных с точки зрения интенсивности нагрузок аэробной направленности с большим количеством упражнений и повышенным уровнем энергопотребления организма.

Есть ли существенные отличия между эффектами перетренированности, которая была вызвана высокообъёмной тренировкой с высокой степенью интенсивности, и перетренированностью, объясняющейся высокоинтенсивной аэробной работой, на данный момент не установлено. После окончания силового тренинга со 100-%-ной степенью интенсивности базовая концентрация кортикотропина и кортизола, по всей видимости, сохраняется на прежнем уровне, при этом наблюдается снижение силы физиологического отклика под влиянием нагрузок. Итоговые данные, полученные в процессе многих исследований, говорят о том, что изменения уровня гормонов по отношению к базовому уровню под воздействием тренировочных нагрузок, являются хорошим параметром для измерения уровня стресса, возникающего по причине тренировок. Аналогичный анализ итоговых результатов помогает при обнаружении пониженной активности надпочечников. Наряду с этим, принимая во внимание существенные индивидуальные отличия обнаруженных эндокринных изменений, которые происходят после тренировочных занятий либо во время перетренированности, для определения эффективности нагрузок следует проводить индивидуальный анализ эндокринных характеристик.

Нарушение менструального цикла,
обусловленные физической нагрузкой

Нарушения работы половой системы, которые связаны с тренировочным воздействием на организм, у женщин сопряжены со снижением работоспособности ГГН-системы. Это сопровождается некоторыми изменениям концентрации кортизола в крови, за счёт выполнения упражнений с интенсивностью 90-100% от максимальных значений. Плюс ко всему, выявлено, что у женщин, активно занимающихся спортом, с наличием аменореи (отсутствием кровянистых выделений в начале менструального цикла) отмечается наиболее высокий показатель базовой концентрации кортизола в организме на протяжении суток, в особенности, после пробуждения. Помимо этого, имеются сведения, которые подтверждают усиленную выработку кортикорелина и уменьшение чувствительности надпочечниковых желёз к кортикотропину у женщин, занимающихся спортом и имеющих проблемы в работе половой системы.

Выводы

Проведение разовой тренировки с максимальной степенью интенсивности приводит к значительному увеличению концентраций кортизола и кортикотропного гормона, никак не связанное с уровнем адаптации спортсменов. Регуляторная функция данного процесса осуществляется с помощью гипоталамуса с участием кортикорелина и вазопрессина. Показатель роста концентрации кортизола напрямую зависит от степени интенсивности тренировки (процентный показатель от максимального уровня потребления кислорода — VO2max). У людей старшей возрастной группы могут отмечаться изменения в степени выраженности эндокринного ответа, при этом каких-либо отличий по половому признаку в выработке кортизола не выявлено. При низкой интенсивности тренировок (с низким анаэробным порогом) только длительные занятия способны привести к значительным изменения концентрации кортизола. Более неоднозначным, по всей видимости, является влияние силового тренинга на ось гипоталамус-гипофиз-надпочечники; в данном случае имеют место быть половые и возрастные особенности человека. Изменения тренировочных эффектов на организм отмечались также и при других видах физических нагрузок, к примеру, при плавании. Употребление белково-углеводных смесей в ходе длительных тренировок с отягощениями способствует менее выраженному росту концентрации кортизола, что свою очередь говорит о вероятном значении гипогликемического состояния ГГН-системы. Существенный рост показателей кортизола в организме под влиянием физических нагрузок отмечается также в условиях низкого атмосферного давления. Наряду с этим после адаптации к внешним факторам (к низкому давлению) происходит увеличение концентрации кортизола в спокойном состоянии.

Несмотря на итоги последних клинических испытаний, в которых изучалось влияние физических нагрузок на ГГН-систему, в данном направлении, как и прежде, имеется много неподтверждённых сведений, не совпадающих с результатами других исследований в смежных сферах науки. Физиологический отклик ГГН-системы на стрессовое воздействие определяется не только происхождением стрессового фактора, но и условиями его возникновения, сюда же можно отнести зависимость формирования стрессовой реакции от специфических особенностей человека (наследственности, пола, уровня адаптации, сбалансированности рациона и пр.). Помимо этого, на итоговый результат также влияют систематичность и способ взятия образцов для диагностики.

В общем, высокоинтенсивный объёмный тренинг небольшой длительности способствует увеличению концентрации кортизола в крови, в особенности, это хорошо показано при включении в процесс занятий анаэробных нагрузок. Со временем в организме отмечаются изменения уровня адаптации к физическим нагрузкам, выражающиеся снижением физиологического ответа в надпочечниках при одинаковой степени интенсивности тренировок (то есть надпочечники становятся слабо восприимчивы к действию кортикотропина). При возникновении переутомления наблюдается уменьшение диапазона изменений концентрации кортизола, при этом, в состоянии перетренированности отмечается системное снижение функций оси гипоталамус-гипофиз-надпочечники. Некоторые факторы, имеющие возможность варьировать силу физиологического отклика либо приводящие к перетренированности\переутомлению, ещё необходимо определить в последующих экспериментах.

Сложно вообразить, какие из нарушений работы ГГН-системы являются последствием тренировочных нагрузок, а какие связаны с патологическими процессами, опосредованными воздействием физического стресса. Помимо этого, в дальнейшем ещё необходимо будет определить вероятность применения показателей работы ГГН-системы в качестве оценки эффективности и интенсивности тренировок.

В человеческом организме гипоталамо-гипофизарно-надпочечниковая система представляет собой нейроэндокринную цепочку, которая контролирует большое число важных жизненных процессов. Слаженное взаимодействие структур обеспечивает поддержку гомеостаза в организме. ГГН защищает человека от перегрузок, предопределяет развитие и рост тела, регулирует половое созревание.

Гипоталамо-гипофизарно-надпочечниковая система представляет собой объединение структур гипофиза и гипоталамуса.

Что являет собой ГГН ось?

Система представляет функциональную совокупность структур желез внутренней секреции - гипоталамуса, задней и передней долей гипофиза и коры надпочечников. Работа адено- и нейрогипофиза регулируется нейросекреторными клетками, что вырабатывают рилизинг-гормоны. Вещества способны увеличить или снизить продукцию по механизмам обратной и прямой связей. ГГН система - ключевое звено в гормональной регуляции реакций организма на стресс и функционирование желез внутренней секреции.

Взаимодействие частей оси

В основе механизма регулирования гормональной системы положены регуляторные взаимосвязи - прямые и обратные. Прямые связи берут начало в участках гипоталамуса, передаются через гипофиз и реализуются в надпочечниках. В ответ на определенные изменения в крови организма, гипоталамус реагирует выбросов релизинг-факторов. Обратная связь может быть наружной, начинаясь в периферической железе, и внутренней, исходя от гипофиза.

В этой системе части функционально связаны между собой и регулируют работу друг друга. Примеры слаженной работы:

  • Прямая связь. Гипоталамус вырабатывает и выделяет в гипофиз кортикотропин. Вещество вызывает поступление адренокортикотропного гормона (АКТГ), который попадает в кровь. Под его влиянием кора надпочечных желез выделяет стрессовые гормоны, например, кортизол.
  • Обратная связь. Глюкокортикоиды регулируют выработку АКТГ, который управляет синтезом кортизола. В этом случае гипоталамус является посредником в оси гипофиз и надпочечники. Так как он реагирует на высокий уровень кортизола в крови и снижает продукцию АКТГ.

Какие процессы регулирует сеть?

Система ГГН путем выработки соответствующих биологических веществ контролирует:

  • выделение рилизинг-гормонов;
  • уровень артериального давления;
  • скорость ЧСС;
  • перистальтику ЖКТ;
  • реакции на стресс;
  • выживание;
  • поддержка уровня глюкозы;
  • половое созревание;
  • активацию энергетических депо организма;
  • защиту от перенагрузки.

Приспособление при физической нагрузке осуществляется в результате активирования глюкокортикоидами ферментов, которые стимулируют образование пирувата для использования его как энергетического субстрата. Также это сопровождается ресинтезом гликогена печени. Если нагрузка для организма является неадекватной, то наблюдается ослабление этих процессов для того, чтобы избежать истощения энергетических депо.

Строение и функции компонентов системы


Нервные пути связывают гипоталамус практически с каждым отделом ЦНС.

Это участок в промежуточном мозге, который образует основание и нижние части стенок третьего желудочка. Состоит из серого бугра, воронки и сосцевидного бугра. Также имеются ядра, что представлены группами нейронов. Железа имеет тесные нервные связи со всеми отделами мозга и ЦНС и считается главным регулятором стабильности внутренней среды организма. Гипоталамус реагирует на малейшие колебания АД, уровней электролитов, гормонов и другие показатели гомеостаза. К функциям гипоталамуса принадлежит регуляция температуры тела, энергетического баланса, контроль вегетативной нервной системы и синтез нейротрансмиттеров.

Гипофизарная железа

Мозговой придаток локализован в костном кармане - турецком седле. Состоит из двух долей - аденогипофиз (передняя) и нейрогипофиз (задняя). Он является ключевым органом эндокринной системы, который продуцирует гормоны, что контролируют метаболизм, половую функцию и процессы роста. Например, аденогипофиз вырабатывает тропные гормоны: тиреотропный (ТТГ), адренокортикотропный (АКТГ), гонадотропные (фоликулостимулирующий и лютеинизирующий), соматотропный (СТГ), пролактин. Главными веществами, что продуцируются нейрогипофизом, являются вазопрессин и окситоцин. В результате разрушения структур придатка, гормоны гипофиза будут в недостатке. Симптомы нарушений зависят от того, какие вещества не вырабатываются.