Построение в линзах. Преломление света. Законы преломления света. Полное внутреннее отражение. Ход лучей в линзе. Формула тонкой линзы Ход лучей после преломления линзе

Тема. Решение задач по теме "Линзы. Построение изображений в тонкой линзе. Формула линзы".


Цель:

  • - рассмотреть примеры решения задач на применение формулы тонкой линзы, свойства основных лучей и правила построения изображений в тонкой линзе, в системе двух линз.

Ход занятия

Прежде чем приступить к выполнению задания, необходимо повторить определения главной и побочной оптических осей линзы, фокуса, фокальной плоскости, свойства основных лучей при построении изображений в тонких линзах, формулу тонкой линзы (собирающей и рассеивающей), определение оптической силы линзы, увеличения линзы.

Для проведения занятия учащимся предлагается несколько расчетных задач с объяснением их решения и задачи для самостоятельной работы.

Качественные задачи

  1. С помощью собирающей линзы на экране получено действительное изображение предмета с увеличением Г 1 . Не изменяя положение линзы, поменяли местами предмет и экран. Каким окажется увеличение Г 2 в этом случае?
  2. Как надо расположить две собирающие линзы с фокусными расстояниями F 1 и F 2 , чтобы параллельный пучок света, пройдя через них, остался параллельным?
  3. Объясните, почему для того, чтобы получить четкое изображение предмета, близорукий обычно щурит глаза?
  4. Как изменится фокусное расстояние линзы, если ее температура повысится?
  5. На рецепте врача написано: +1,5 Д. Расшифруйте, какие это очки и для каких глаз?

Примеры решения расчетных задач


Задача 1. Заданы главная оптическая ось линзы NN , положение источника S и его изображения S ´. Найдите построением положение оптического центра линзы С и ее фокусов для трех случаев (рис. 1).

Решение:

Для нахождения положения оптического центра С линзы и ее фокусов F используем основные свойства линзы и лучей, проходящих через оптический центр, фокусы линзы или параллельно главной оптической оси линзы.

Случай 1. Предмет S и его изображение расположены по одну сторону от главной оптической оси NN (рис. 2).


Проведем через S и S ´ прямую (побочную ось) до пересечения с главной оптической осью NN в точке С . Точка С определяет положение оптического центра линзы, расположенной перпендикулярно оси NN . Лучи, идущие через оптический центр С , не преломляются. Луч SA , параллельный NN , преломляется и идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение S ´ в линзе является мнимым. Предмет S расположен между оптическим центром и фокусом линзы. Линза является собирающей.

Случай 2. Проведем через S и S ´ побочную ось до пересечения с главной оптической осью NN в точке С - оптическом центре линзы (рис. 3).


Луч SA , параллельный NN , преломляясь, идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение мнимое, а линза, как видно из построения, рассеивающая.

Случай 3. Предмет S и его изображение лежат по разные стороны от главной оптической оси NN (рис. 4).


Соединив S и S ´, находим положение оптического центра линзы и положение линзы. Луч SA , параллельный NN , преломляется и через фокус F идет в точку S ´. Луч через оптический центр идет без преломления.

Задача 2. На рис. 5 изображен луч АВ , прошедший сквозь рассеивающую линзу. Постройте ход луча падающего, если положение фокусов линзы известно.


Решение:

Продолжим луч АВ до пересечения с фокальной плоскостью РР в точке F ´ и проведем побочную ось ОО через F ´ и С (рис. 6).


Луч, идущий вдоль побочной оси ОО , пройдет, не меняя своего направления, луч DA , параллельный ОО , преломляется по направлению АВ так, что его продолжение идет через точку F ´.

Задача 3. На собирающую линзу с фокусным расстоянием F 1 = 40 см падает параллельный пучок лучей. Где следует поместить рассеивающую линзу с фокусным расстоянием F 2 = 15 см, чтобы пучок лучей после прохождения двух линз остался параллельным?

Решение: По условию пучок падающих лучей ЕА параллелен главной оптической оси NN , после преломления в линзах он должен таковым и остаться. Это возможно, если рассеивающая линза расположена так, чтобы задние фокусы линз F 1 и F 2 совпали. Тогда продолжение луча АВ (рис. 7), падающего на рассеивающую линзу, проходит через ее фокус F 2 , и по правилу построения в рассеивающей линзе преломленный луч BD будет параллелен главной оптической оси NN , следовательно, параллелен лучу ЕА . Из рис. 7 видно, что рассеивающую линзу следует поместить на расстоянии d=F 1 -F 2 =(40-15)(см)=25 см от собирающей линзы.


Ответ: на расстоянии 25 см от собирающей линзы.

Задача 4. Высота пламени свечи 5 см. Линза дает на экране изображение этого пламени высотой 15 см. Не трогая линзы, свечу отодвинули на l = 1,5 см дальше от линзы и, придвинув экран, вновь получили резкое изображение пламени высотой 10 см. Определите главное фокусное расстояние F линзы и оптическую силу линзы в диоптриях.

Решение: Применим формулу тонкой линзы , где d - расстояние от предмета до линзы, f - расстояние от линзы до изображения, для двух положений предмета:

. (2)


Из подобных треугольников АОВ и A 1 OB 1 (рис. 8) поперечное увеличение линзы будет равно = , откуда f 1 = Γ 1 d 1 .

Аналогично для второго положения предмета после передвижения его на l : , откуда f 2 = (d 1 + l )Γ 2 .
Подставляя f 1 и f 2 в (1) и (2), получим:

. (3)
Из системы уравнений (3), исключив d 1 , находим

.
Оптическая сила линзы

Ответ: , дптр.

Задача 5. Двояковыпуклая линза, сделанная из стекла с показателем преломления n = 1,6, имеет фокусное расстояние F 0 = 10 см в воздухе (n 0 = 1). Чему будет равно фокусное расстояние F 1 этой линзы, если ее поместить в прозрачную среду с показателем преломления n 1 = 1,5? Определите фокусное расстояние F 2 этой линзы в среде с показателем преломления n 2 = 1,7.

Решение:

Оптическая сила тонкой линзы определяется формулой

,
где n л - показатель преломления линзы, n ср - показатель преломления среды, F - фокусное расстояние линзы, R 1 и R 2 - радиусы кривизны ее поверхностей.

Если линза находится в воздухе, то

; (4)
n 1:

; (5)
в среде с показателем преломления n :

. (6)
Для определения F 1 и F 2 выразим из (4):

.
Подставим полученное значение в (5) и (6). Тогда получим

см,

см.
Знак "-" означает, что в среде с показателем преломления большим, чем у линзы (в оптически более плотной среде) собирающая линза становится рассеивающей.

Ответ: см, см.

Задача 6. Система состоит из двух линз с одинаковыми по модулю фокусными расстояниями. Одна из линз собирающая, другая рассеивающая. Линзы расположены на одной оси на некотором расстоянии друг от друга. Известно, что если поменять линзы местами, то действительное изображение Луны, даваемое этой системой, сместится на l = 20 см. Найдите фокусное расстояние каждой из линз.

Решение:

Рассмотрим случай, когда параллельные лучи 1 и 2 падают на рассеивающую линзу (рис. 9).


После преломления их продолжения пересекаются в точке S , являющейся фокусом рассеивающей линзы. Точка S является "предметом" для собирающей линзы. Ее изображение в собирающей линзе получим по правилам построения: лучи 1 и 2, падающие на собирающую линзу, после преломления проходят через точки пересечения соответствующих побочных оптических осей ОО и O´O´ с фокальной плоскостью РР собирающей линзы и пересекаются в точке S ´ на главной оптической оси NN , на расстоянии f 1 от собирающей линзы. Применим для собирающей линзы формулу

, (7)
где d 1 = F + a .


Пусть теперь лучи падают на собирающую линзу (рис. 10). Параллельные лучи 1 и 2 после преломления соберутся в точке S (фокусе собирающей линзы). Падая на рассеивающую линзу, лучи преломляются в рассеивающей линзе так, что продолжения этих лучей проходят через точки пересечения К 1 и К 2 соответствующих побочных осей О 1 О 1 и О 2 О 2 с фокальной плоскостью РР рассеивающей линзы. Изображение S ´ находится в точке пересечения продолжений вышедших лучей 1 и 2 с главной оптической осью NN на расстоянии f 2 от рассеивающей линзы.
Для рассеивающей линзы

, (8)
где d 2 = a - F .
Из (7) и (8) выразим f 1 и -f 2:NN и луча SA после преломления идущего в направлении A S ´ по правилам построения (через точку К 1 пересечения побочной оптической оси ОО , параллельной падающему лучу SA , с фокальной плоскостью Р 1 Р 1 собирающей линзы). Если поставить рассеивающую линзу Л 2 , то луч A S ´ изменяет направление в точке К , преломляясь (по правилу построения в рассеивающей линзе) в направлении K S ´´. Продолжение K S ´´ проходит через точку К 2 пересечения побочной оптической оси 0 ´0 ´ с фокальной плоскостью Р 2 Р 2 рассеивающей линзы Л 2 .

По формуле для рассеивающей линзы

,
где d - расстояние от линзы Л 2 до предмета S ´, f - расстояние от линзы Л 2 до изображения S ´´.

Отсюда см.
Знак "-" указывает, что линза рассеивающая.

Оптическая сила линзы дптр.

Ответ: см, дптр.

Задачи для самостоятельной работы


  1. Касьянов В.А. Физика. 11 кл.: Учебн. для общеобразоват. учреждений. - 2-е изд., дополн. - М.: Дрофа, 2004. - С. 281-306.
  2. Элементарный учебник физики /Под ред акад. Г.С. Ландсберга. - Т. 3. - М.: Физматлит, 2000 и предшествующие издания.
  3. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. Оптика. - М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. - С. 308-334.
  4. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. - М.: Физматлит, 2005. - С. 215-237.
  5. Буховцев Б.Б., Кривченков В.Д., Мякишев Г.Я., Сараева И.М. Задачи по элементарной физике. - М.: Физматлит, 2000 и предшествующие издания.

Видеоурок 2: Построение изображений с помощью линз

Лекция: Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и отрезка прямой в собирающих и рассеивающих линзах и их системах

Итак, вспомним предыдущие вопросы о собирающей и рассеивающей линзах. Первая названа так, потому что все лучи, что попадают на неё, собираются за ней в одной точке; вторая же, наоборот, рассеивает эти лучи.


Собирающая линза


Если параллельные лучи будут падать на собирающуюся линзу, то они встретятся в фокусе, если же они будут выходить из мнимого фокуса и попадать на линзу, то после нее они пройдут параллельно друг другу.


Если же параллельные лучи пойдут под некоторым углом к основной оси, то они так же соберутся в одной точке, однако она будет назваться побочным фокусом, который находится в фокальной плоскости.

Правила хода лучей:


1. Лучи, попавшие в оптический центр, не изменяют траектории движения.


2. Параллельный к главной оси луч собирается в фокусе.

3. Чтобы понять, куда пойдет луч, падающий под некоторым углом на линзу, следует построить побочную ось, что будет ему параллельна.

Вести её следует до точки пересечения с фокально плоскостью. Это позволит определить побочный фокус.

Рассеивающая линза


Итак, в рассеивающейся линзе пучок собирается во мнимом фокусе и расходится за пределами линзы.

Если же лучи будут падать под некоторым углом к линзе, то они в любом случае будут расходиться, однако перед линзой соберутся в мнимом побочном фокусе.


Правила хода лучей:


1. Данное правило справедливо для всех линз - лучи, проходящие через оптический центр, не меняют траектории.


2. Если луч, параллельный главной оптической оси, попадает на линзу, то он рассеивается, но пересекает мнимый фокус.

3. Для определения побочного мнимого фокуса для луча, который падает на линзу под углом, следует провести побочную ось, параллельную ходу лучей.


Построение изображений

Без всех предыдущих правил построить изображение, полученное в результате преломления линзой лучей, невозможно. Все они позволяют обобщить правила в теорему:


Если перед линзой находится некоторая точка, излучающая свет, то изображение от данной точки можно получить в случае пересечения лучей в фокусе.


В случае, когда лучи пересекаются в некоторой точке после того, как преломились, то говорят, что полученное изображение является действительным. Если же мы получили изображение из-за пересечения лучей вблизи мнимого фокуса, то оно называется мнимым. Как уже говорилось ранее - мнимое изображение получается в результате обманных процессов в нашем мозге, когда нам кажется, что предмет находится где-то в зеркале.


Построение изображения в собирающей линзе


Рассмотрим несколько возможных вариантов расположения светящейся точки перед линзой.


1. Расстояние от предмета до линзы больше, чем фокусное расстояние: d>F .


Для получения изображения направим один луч SO через центр линзы, а второй SX произвольный. Параллельно к произвольному расположим побочную оптическую ось OP до пересечения с фокальной плоскостью. Проведем луч через точку пересечения фокальной плоскости и побочной оси. Будем вести луч до тех пор, пока он не пересечется с лучом SO . В данной точке и покажем изображение.

Если светящаяся точка находится в некотором месте на оси, то поступаем таким же образом - ведем произвольный луч до линзы, параллельно ему побочную ось, после линзы пропускаем луч через точку пересечения фокальной плоскости и побочной оси. Место, где данный луч пересечет главную оптическую ось, и будет местом расположения изображения.


Существует так же более простой способ построения изображения. Однако, он используется только в том случае, когда светящаяся точка находится вне главной оси.


От предмета проводим два луча - один через оптический центр, а другой параллельно главной оси до пересечения с линзой. Когда второй луч пересек линзу, направляем его через фокус. Место, где пересекутся два луча - это и есть место для расположения изображения.


Полученные изображения от предметов после собирающей линзы


1. Предмет находится между первым и вторым фокусом, то есть 2F > d >F .

Если один край предмета находится на главной оси, то следует находить расположение за линзой только конечной его точки. Как проецировать точку, мы уже знаем.


Стоит отметить тот факт, что если тело находится между первым и вторым фокусами, то благодаря собирающей линзе его изображение получается перевернутым, увеличенным и действительным .


Чтобы определить, насколько изображение получится больше, чем предмет, следует воспользоваться формулой:

2. Изображение за вторым фокусом d > 2F .


Если местонахождение предмета сместилось левее относительно линзы, то в ту же сторону сместится и полученное изображение.

Изображение получается уменьшенное, перевернутое и действительное .


Представьте себе ситуацию - вы смотрите на некоторый предмет через бинокль, чем сильнее вы отдаляетесь от него, тем меньше он становится - в этом и суть изображения от предмета, который находится за вторым фокусом.


3. Расстояние до предмета меньше расстояния до фокуса: F > d .


В данном случае, если мы воспользуемся известными правилами и проведем один луч через центр линзы, а второй параллельно, а потом через фокус, то увидим, что они будут расходиться. Соединятся они только в том случае, если их продолжить перед линзой.

Данное изображение получится мнимое, увеличенное и прямое .


4. Расстояние до предмета равно расстоянию до фокуса: d = F .


Если использовать те же правила, что и ранее, то можно заметить, что лучи после линзы идут параллельно - это значит, что изображения не будет.

Рассеивающая линза


Для данной линзы используем все те же правила, что и раньше. В результате построения аналогичных изображений, получим:

Где бы не находился предмет относительно рассеивающей линзы: изображение мнимое, прямое, увеличенное.




Изображения:

1. Действительные – те изображения, которые мы получаем в результате пересечения лучей, прошедших через линзу. Они получаются в собирающей линзе;

2. Мнимые – изображения, образуемые расходящимися пучками, лучи которых на самом деле не пересекаются между собой, а пересекаются их продолжения, проведенные в обратном направлении.

Собирающая линза может создавать как действительное, так и мнимое изображение.

Рассеивающая линза создает только мнимое изображение.

Собирающая линза

Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

В результате построения получается уменьшенное, перевернутое, действительное изображение (см. Рис. 1).

Рис. 1. Если предмет располагается за двойным фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным (Рис. 2).

Рис. 2. Если предмет располагается в точке двойного фокуса

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается увеличенное, перевернутое, действительное изображение (см. Рис. 3).

Рис. 3. Если предмет располагается в пространстве между фокусом и двойным фокусом

Так устроен проекционный аппарат. Кадр киноленты располагается вблизи фокуса, тем самым получается большое увеличение.

Вывод: по мере приближения предмета к линзе изменяется размер изображения.

Когда предмет располагается далеко от линзы – изображение уменьшенное. При приближении предмета изображение увеличивается. Максимальным изображение будет тогда, когда предмет находится вблизи фокуса линзы.

Предмет не создаст никакого изображения (изображение на бесконечности). Так как лучи, попадая на линзу, преломляются и идут параллельно друг другу (см. Рис. 4).

Рис. 4. Если предмет находится в фокальной плоскости

5. Если предмет располагается между линзой и фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломится и пройдет через точку фокуса. Проходя через линзу, лучи расходятся. Поэтому изображение будет сформировано с той же стороны, что и сам предмет, на пересечении не самих линий, а их продолжений.

В результате построения получается увеличенное, прямое, мнимое изображение (см. Рис. 5).

Рис. 5. Если предмет располагается между линзой и фокусом

Таким образом устроен микроскоп.

Вывод(см. Рис. 6):

Рис. 6. Вывод

На основе таблицы можно построить графики зависимости изображения от расположения предмета (см. Рис. 7).

Рис. 7. График зависимости изображения от расположения предмета

График увеличения (см. Рис. 8).

Рис. 8. График увеличения

Построение изображения светящейся точки, которая располагается на главной оптической оси.

Чтобы построить изображение точки, нужно взять луч и направить его произвольно на линзу. Построить побочную оптическую ось параллельно лучу, проходящую через оптический центр. В том месте, где произойдет пересечение фокальной плоскости и побочной оптической оси, и будет второй фокус. В эту точку пойдет преломленный луч после линзы. На пересечении луча с главной оптической осью получается изображение светящейся точки (см. Рис. 9).

Рис. 9. График изображения светящейся тчки

Рассеивающая линза

Предмет располагается перед рассеивающей линзой.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, – это и будет изображение верхней точки предмета.

Таким же образом строится изображение нижней точки предмета.

В результате получается прямое, уменьшенное, мнимое изображение (см. Рис. 10).

Рис. 10. График рассеивающей линзы

При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

Фокусы линзы. В гл. IX был сформулирован закон преломления света, устанавливающий, как меняется направление светового луча при переходе света из одной среды в другую. Был рассмотрен простейший случай преломления света на плоской границе раздела двух сред.

В практических применениях очень большое значение имеет преломление света на сферической границе раздела. Основная деталь оптических приборов - линза - представляет собой обычно стеклянное тело, ограниченное с двух сторон сферическими поверхностями; в частном случае одна из поверхностей линзы может быть плоскостью, которую можно рассматривать как сферическую поверхность бесконечно большого радиуса.

Линзы могут быть изготовлены не только из стекла, но, вообще говоря, из любого прозрачного вещества. В некоторых приборах, например, применяются линзы из кварца, каменной соли и др. Заметим, что и поверхности линз могут быть также более сложной формы, например цилиндрические, параболические и т. д. Однако такие линзы применяются сравнительно редко. В дальнейшем мы ограничимся рассмотрением линз со сферическими поверхностями.

Рис. 193. Тонкая линза: - оптический центр, и - центры ограничивающих линзу сферических поверхностей

Итак, рассмотрим линзу, ограниченную двумя сферическими преломляющими поверхностями и (рис. 193). Центр первой преломляющей поверхности лежит в точке центр второй поверхности - в точке . На рис. 193 для ясности изображена линза, имеющая заметную толщину . В действительности мы будем обычно предполагать, что рассматриваемые линзы очень тонки, т. е. расстояние очень мало по сравнению с или . В таком случае точки и можно считать практически сливающимися в одной точке . Эта точка называется оптическим центром линзы.

Всякая прямая, проходящая через оптический центр, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей линзы, называется главной оптической осью, остальные - побочными осями.

Луч, идущий по какой-либо из оптических осей, проходя через линзу, практически не меняет своего направления. Действительно, для лучей, идущих вдоль оптической оси, участки обеих поверхностей линзы можно считать параллельными, а толщину линзы мы считаем весьма малой. При прохождении же через плоскопараллельную пластинку, как мы знаем, световой луч претерпевает параллельное смещение, но смещением луча в очень тонкой пластинке можно пренебречь (см. упражнение 26 после гл. IX).

Если на линзу падает световой луч не вдоль одной из ее оптических осей, а по какому-либо другому направлению, то он, испытав преломление сначала на первой ограничивающей линзу поверхности, потом на второй, отклонится от первоначального направления.

Прикроем линзу черной бумагой 1 с вырезом, оставляющим открытым небольшой участок около главной оптической оси (рис. 194). Размеры выреза мы предполагаем малыми по сравнению с и . Пустим на линзу 2 вдоль главной оптической оси ее слева направо параллельный пучок света. Лучи, идущие сквозь открытую часть линзы, преломится и пройдут через некоторую точку , лежащую на главной оптической оси, справа от линзы на расстоянии от оптического центра . Если в точке расположить белый экран 3, то место пересечения лучей изобразится в виде яркого пятнышка. Эта точка на главной оптической оси, где пересекаются после преломления в линзе лучи, параллельные главной оптической оси, называется главным фокусом, а расстояние - фокусным расстоянием линзы.

Рис. 194. Главный фокус линзы

Нетрудно показать, пользуясь законами преломления, что все лучи, параллельные главной оптической осп и проходящие через небольшую центральную часть линзы, после преломления действительно пересекутся в одной точке, названной выше главным фокусом.

Рассмотрим луч , падающий на линзу параллельно ее главной оптической оси. Пусть этот луч встречает первую преломляющую поверхность линзы в точке на высоте над осью, причем гораздо меньше, чем и (рис. 195). Преломленный луч пойдет по направлению и, преломившись снова на второй ограничивающей линзу поверхности, выйдет из линзы по направлению , составляющему с осью угол . Точку пересечения этого луча с осью обозначим через , а расстояние от этой точки до оптического центра линзы - через .

Проведем через точки и плоскости, касательные к преломляющим поверхностям линзы. Эти касательные плоскости (перпендикулярные к плоскости чертежа) пересекутся под некоторым углом , причем угол весьма мал, так как рассматриваемая нами линза - тонкая. Вместо преломления луча в линзе мы, очевидно, можем рассматривать преломление того же луча в тонкой призме , образованной проведенными нами в точках и касательными плоскостями.

Рис. 195. Преломление в линзе луча , параллельного главной оптической оси. (Толщина линзы и высота к изображены преувеличенными по сравнению с расстояниями , и в соответствии с этим в углы и на рисунке чрезмерно велики.)

Мы видели в § 86, что при преломлении в тонкой призме с преломляющим углом луч отклоняется от первоначального направления на угол, равный

где есть показатель преломления вещества, из которого сделана призма. Очевидно, угол равен углу (рис. 195), т. е.

. (88.2)

Пусть и - центры сферических преломляющих поверхностей линзы, а и - соответственно радиусы этих поверхностей. Радиус перпендикулярен к касательной плоскости, а радиус - к касательной плоскости . По известной теореме геометрии угол между этими перпендикулярами, который мы обозначим , равен углу между плоскостями:

С другой стороны, угол , как внешний угол в треугольнике , равен сумме углов и образуемых радиусами и с осью:

Таким образом, с помощью формул (88.2) - (88.4) находим

(88.5)

Мы предположили, что мала по сравнению с радиусами сферических поверхностей и и с расстоянием точки от оптического центра линзы. Поэтому углы г и также малы, и мы можем заменить синусы этих углов самими углами. Далее, благодаря тому, что линза тонкая, мы можем пренебречь ее толщиной, считая ; , а также пренебречь разницей в высоте точек и , считая, что они расположены на одной и той же высоте к над осью. Таким образом, мы можем приближенно считать, что

Подставляя эти равенства в формулу (88.5), найдем

, (88.7) от оптического центра линзы.

Таким образом, доказано, что линза имеет главный фокус, и формула (88.9) показывает, как фокусное расстояние зависит от показателя преломления вещества, из которого сделана линза, и от радиусов кривизны ее преломляющих поверхностей.

Мы предполагали, что параллельный пучок лучей падает на линзу слева направо. Существо дела не изменится, конечно, если на линзу направить такой же пучок лучей, идущих в обратном направлении, т. е. справа налево. Этот пучок лучей, параллельных главной оси, соберется снова в одной точке - втором фокусе линзы (рис. 196) на расстоянии от ее оптического центра. На основании формулы (88.9) заключаем, что , т. е. оба фокуса лежат симметрично по обе стороны линзы.

Фокус называется обычно передним фокусом, фокус - задним фокусом; соответственно этому расстояние называется передним фокусным расстоянием, расстояние - задним фокусным расстоянием.

Рис. 196. Фокусы линзы

Если в фокусе линзы поместить точечный источник света, то каждый из лучей, выйдя из этой точки и преломившись в линзе, пойдет далее параллельно главной оптической оси линзы, в согласии с законом обратимости световых лучей (см. § 82). Таким образом, из линзы выйдет в этом случае пучок лучей, параллельных главной оси.

При практическом применении полученных нами соотношений необходимо всегда помнить о сделанных при выводе их упрощающих предположениях. Мы считали, что параллельные лучи падают на линзу на очень малом расстоянии от оси. Это условие не выполняется вполне строго. Поэтому после преломления в линзе точки пересечения лучей не будут строго совпадать между собой, а займут некоторый конечный объем. Если мы поставим в этом месте экран, то получим на нем не геометрическую точку, а всегда более или менее расплывчатое светлое пятнышко.

Другое обстоятельство, которое нужно помнить, состоит в том, что мы не можем осуществить строго точечный источник света. Поэтому, поместив в фокусе линзы источник хотя бы очень малых, но всегда конечных размеров, мы не получим с помощью линзы строго параллельный пучок лучей.

В § 70 были указано, что строго параллельный пучок лучей не имеет физического смысла. Сделанные замечание показывает, что рассмотренные свойства линзы находятся в согласии с этим общим физическим положением.

В каждом отдельном случае применения линзы к определенному источнику света для получения параллельного пучка лучей или, наоборот, при применении линзы для фокусировки параллельного пучка надо специально проверять степень отступления от тех упрощающих условий, при которых выведены формулы. Но существенные черты явления преломления световых лучей в линзе эти формулы передают правильно, а об отступлениях от них речь будет идти позже.

а) Нарисуйте ход двух параллельных лучей (см. рис. а) и докажите, что после преломления в линзе эти лучи пересекутся в точке, лежащей в фокальной плоскости линзы. 6) На собирающую линзу падают лучи, исходящие из точки, расположенной в фокальной плоскости линзы (см. рис. б). Нарисуйте ход этих лучей и докажите, что после преломления в линзе эти лучи станут параллельными.

Источники:
1.Решение ключевых задач по физике для основной школы. 7-9 классы. Генденштейн Л.Э., Кирик Л.А., Гельфгат И.М
2. Задачи по физике для поступающих в ВУЗы Бендриков, Буховцев и др.

Указание. а) См. рис. а. Можно доказать, что в этой же точке, лежащей в фокальной плоскости линзы, пересекутся после преломления в линзе все лучи параллельного пучка, падающие на линзу. б) См. рис. б. Можно доказать, что все лучи, исхо­дящие из точки, находящейся в фокальной плоскости линзы, после преломления в линзе будут идти параллельным пучком (направление этого пучка легко найти, рассматривая луч, про­ходящий через оптический центр).


Если картинка в решении отображается размыто - нажмите на нее, и она откроется в хорошем качестве.