Артериола гистология. А. Сосуды МЦР. Артериолы, капилляры, венулы. на практическом занятии

Значение сердечно-сосудистой системы (ССС) в жизнедеятельности организма, а следовательно и знания всех аспектов этой области для практической медицины, настолько велико, что в изучение этой системы обособились как две самостоятельные направления кардиология и ангиология. Сердце и сосуды относятся к системам, которые функционируют не периодически, а постоянно, поэтому чаще чем другие системы подвержены патологическим процессам. В настоящее время заболевания ССС, наряду с онкологическими заболеваниями, занимает ведущее место по смертности.

Сердечно-сосудистая система обеспечивает движение крови по организму, регулирует поступление питательных веществ и кислорода в ткани и удаление продуктов обмена, депонирование крови.

Классификация :

I. Центральный орган - сердце.

II. Периферический отдел:

А. Кровеносные сосуды:

1. Артериальное звено:

а) артерии эластического типа;

б) артерии мышечного типа;

в) артерии смешанного типа.

2.Микроциркуляторное русло:

а) артериолы;

б) гемокапилляры;

в) венулы;

г) артериоло-венулярные анастомозы

3. Венозное звено:

а) вены мышечного типа (со слабым, средним, сильным развитием мышечных

элементов;

б) вены безмышечного типа.

Б. Лимфатические сосуды:

1. Лимфатические капилляры.

2. Интраорганные лимфатические сосуды.

3. Экстраорганные лимфатические сосуды.

В эмбриональном периоде первые кровеносные сосуды закладываются на 2-ой неделе в стенке желточного мешка из мезенхимы (см. этап мегалобластического кроветворения по теме «Кроветворение») - появляются кровяные островки, периферические клетки островка уплощаются и дифференцируются в эндотелиальную выстилку, а из окружающей мезенхимы образуются соединительнотканные и гладкомышечные элементы стенки сосудов. Вскоре из мезенхимы образуются кровеносные сосуды и в теле зародыша, которые соединяются с сосудами желточного мешка.

Артериальное звено - представлено сосудами, по которым кровь доставляется от сердца к органам. Термин «артерия» переводится как «воздухсодержащие», так как при вскрытии исследователи эти сосуды чаще находили пустыми (не содержащие кровь) и думали что по ним распространяется по организму жизненная «пневма» или воздух.. Артерии эластического, мышечного и смешанного типа имеют общий принцип строения: в стенке выделяют 3 оболочки - внутреннюю, среднюю и наружную адвентициальную.

Внутренняя оболочка состоит из слоев:

2. Подэндотелиальный слой - рылая волокнистая сдт с большим содержанием малодифференцированных клеток.

3. Внутренняя эластическая мембрана - сплетение эластических волокон.

Средняя оболочка содержит гладкомышечные клетки, фибробласты, эластические и коллагеновые волокна. На границе средней и наружной адвентициальной оболочки имеется наружная эластическая мембрана - сплетение эластических волокон.

Наружная адвентициальная оболочка артерий гистологически представлена

рыхлой волокнистой сдт с сосудами сосудов и нервами сосудов.

Особенности в строении разновидностей артерий обусловлены различиями в гемадинамических условиях их функционирования. Различия в строении преимущественно касаются средней оболочки (различного соотношения составных элементов оболочки):

1. Артерии эластического типа - к ним относятся дуга аорты, легочной ствол, грудная и брюшная аорта. Кровь в эти сосуды поступает толчками под большим давлением и продвигается на большой скорости; отмечается большой перепад давления при переходе систола - диастола. Главное отличие от артерий других типов - в строении средний оболочки: в средней оболочке из вышеперечисленных компонентов (миоциты, фибробласты, коллагеновые и эластические волокна) преобладают эластические волокна. Эластические волокна располагаются не только в виде отдельных волокон и сплетений, а образуют эластические окончатые мембраны (у взрослых число эластических мембран достигает до 50-70 словев). Благодаря повышенной эластичности стенка этих артерий не только выдерживает большое давление, но и сглаживает большие перепады (скачки) давления при переходах систола - диастола.

2. Артерии мышечного типа - к ним относятся все артерии среднего и мелкого калибра. Особенностью гемодинамических условий в этих сосудах является падение давления и снижение скорости кровотока. Артерии мышечного типа отличаются от артерий другого типа преобладанием в средней оболочке миоцитов над другими структурными компонентами; четко выражены внутренняя и наружная эластическая мембрана. Миоциты по отношению к просвету сосуда ориентированы спирально и встречаются даже в составе наружной оболочки этих артерий. Благодаря мощному мышечному компоненту средний оболочки эти артерии контролируют интенсивность кровотока отдельных органов, поддерживают падающее давление и дальше проталкивают кровь, поэтому артерии мышечного типа еще называют «периферическим сердцем».

3. Артерии смешанного типа - к ним относятся крупные артерии отходящие от аорты (сонная и подключичная артерия). По строению и функциям занимают промежуточное положение. Главная особенность в строении: в средней оболочке миоциты и эластические волокна представлены приблизительно одинаково (1: 1), имеется небольшое количество коллагеновых волокон и фибробластов.

Микроциркуляторное русло - звено расположенное между артериальным и венозным звеном; обеспечивает регуляцию кровенаполнения органа, обмен веществ между кровью и тканями, депонирование крови в органах.

Состав:

1. Артериолы (включая прекапиллярные).

2. Гемокапилляры.

3. Венулы (включая посткапиллярные).

4. Артериоло-венулярные анастомозы.

Артериолы - сосуды, соединяющие артерии с гемокапиллярами. Сохраняют принцип строения артерий: имеют 3 оболочки, но оболочки выражены слабо - подэндотелиальный слой внутренней оболочки очень тонкий; средняя оболочка представлена одним слоем миоцитов, а ближе к капиллярам - одиночными миоцитами. По мере увеличения диаметра в средней оболочке количество миоцитов увеличивается, образуется вначале один, затем два и более слоев миоцитов. Благодаря наличию в стенке миоцитов (в прекапиллярных артериолах в виде сфинктера) артериолы регулируют кровенаполнение гемокапилляров, тем самым - интенсивность обмена между кровью и тканями органа.

Гемокапилляры . Стенка гемокапилляров имеют наименьшую толщину и состоит из 3-х компонентов - эндотелиоциты, базальная мембрана, перициты в толще базальной мембраны. Мышечных элементов в составе стенки капилляров не имеется, однако диаметр внутреннего просвета может несколько изменяться в результате изменения давления крови, способности ядер перицитов и эндотелиоцитов к набуханию и сжатию. Различают следующие типы капилляров:

1. Гемокапилляры I типа (соматического типа) - капилляры с непрерывным эндотелием и непрерывной базальной мембраной, диаметр 4-7 мкм. Имеются в скелетной мускулатуре, в коже и слизистых оболочках..

2. Гемокапилляры II типа (фенестрированного или висцерального типа) - базальная мембрана сплошная, в эндотелие имеются фенестры - истонченные участки в цитоплазме эндотелиоцитов. Диаметр 8-12 мкм. Имеются в капиллярных клубочках почки, в кишечнике, в эндокринных железах.

3. Гемокапилляры III типа (синусоидного типа) - базальная мембрана не сплошная, местами отсутствует, а между эндотелиоцитами остаются щели; диаметр 20-30 и более мкм, не постоянный на протяжении - имеются расширенные и суженные участки. Кровоток в этих капиллярах замедлен. Имеются в печени, органах кроветворения, эндокринных железах.

Вокруг гемокапилляров раполагается тонкая прослойка рыхлой волокнистой сдт с большим содержанием малодифференицрованных клеток, от состояния которой зависит интенсивность обмена между кровью и рабочими тканями органа. Барьер между кровью в гемокапиллярах и окружающей рабочей тканью органа называется гистогематическим барьером, который состоит из эндотелиоцитов и базальной мембраны.

Капилляры могут менять строение, перестроиться в сосуды другого типа и калибра; от имеющихся гемокапилляров могут формироваться новые ответвления.

Прекапилляры отличаются от гемокапилляров тем, что в стенке кроме эндотелиоцитов, базальной мембраны, перицитов имеются единичные или группы миоцитов.

Венулы начинаются с посткапиллярных венул, которые отличаются от капилляров большим содержанием в стенке перицитов и наличием клапаноподобных складок из эндотелиоцитов. По мере увеличения диаметра венул в стенке увеличивается содержание миоцитов - вначале одиночные клетки, затем группы и наконец сплошные слои.

Артериоло-венулярные анастомозы (АВА) - это шунты (или соустья) между артериолами и венулами, т.е. осуществляют прямую связь и участвуют в регуляции регионального периферического кровотока. Их особенно много в коже и в почках. АВА - короткие сосуды, имеют также 3 оболочки; имеются миоциты, особенно много в средней оболочке, выполняющие роль сфинктера.

ВЕНЫ. Особенностью гемодинамических условий в венах является низкое давление (15-20 мм.рт.ст.) и низкая скорость течения крови, что обуславливает меньшее содержание в этих сосудах эластических волокон. В венах имеются клапаны - дупликатура внутренней оболочки. Количество мышечных элементов в стенке этих сосудов зависит от того, движется ли кровь под действием силы тяжести или против нее.

Вены безмышечного типа имеются в твердой мозговой оболочке, костях, сетчатке глаза, плаценте, в красном костном мозге. Стенка вен безмышечного типа снутри выстлана эндотелиоцитами на базальной мембране, далее следует прослойка волокнистой сдт; гладкомышечных клеток нет.

Вены мышечного типа со слабо выраженными мышечными элементами находятся в верхней половине туловища - в системе верхней полой вены. Эти вены обычно в спавшемся состоянии. В средней оболочке имеют небольшое количество миоцитов.

Вены с сильно развитыми мышечными элементами составляют систему вен нижней половины туловища. Особенностью этих вен является хорошо выраженные клапаны и наличие миоцитов во всех трех оболочках - в наружной и внутренней оболочке в продольном, в средней - циркулярном направлении.

ЛИМФАТИЧЕСКИЕ СОСУДЫ начинаются с лимфатических капилляров (ЛК). ЛК в отличие от гемокапилляров начинаются слепо и имеют больший диаметр. Внутренняя поверхность выстлана эндотелием, базальная мембрана отсутствует. Под эндотелием располагается рыхлая волокнистая сдт с большим содержанием ретикулярных волокон. Диаметр ЛК непостоянен - имеются сужения и расширения. Лимфатические капилляры сливаясь образуют внутриорганные лимфатические сосуды - по строению близки к венам, т.к. находятся в одинаковых гемодинамических условиях. Имеют 3 оболочки, внутренняя оболочка образует клапаны; в отличие от вен под эндотелием базальная мембрана отсутствует. Диаметр на протяжении не постоянен - имеются расширения на уровне клапанов.

Экстраорганные лимфатические сосуды также по строению схожи с венами, но базальная мемрана эндотелия плохо выражена, местами отсутствует. В стенке этих сосудов четко выделяется внутренняя эластическая мембрана. Средняя оболочка особого развития получает в нижних конечностях.

СЕРДЦЕ. Сердце закладывается в начале 3-й неделе эмбрионального развития в виде парного зачатка в шейной области из мезенхимы под висцеральным листком спланхнотомов. Из мезенхимы образуются парные тяжи, которые вскоре превращаются в трубочки, из которых в конечном счете образуется внутренняя оболочка сердца - эндокард. Участки висцерального листка спланхнотомов, огибащие эти трубочки называются миоэпикардиальными пластинками, дифференцирующиеся впоследствии в миокард и эпикард. По мере развития зародыша с появлением туловищной складки плоский зародыш сворачивается в трубку - тело, при этом 2 закладки сердца оказываются в полости грудной клетки, сближаются и наконец сливаются в одну трубку. Далее эта трубка-сердце начинает быстро расти в длину и не помещаясь в грудной клетке образует несколько изгибов. Соседние петли изгибающейся трубки срастаются и из простой трубки формируется 4-х камерное сердце.

СЕРДЦЕ - центральный орган ССС, имеет 3 оболочки: внутренняя - эндокард, средняя (мышечная) - миокард, наружная (серозная) - эпикард.

Эндокард состоит из 5 слоев:

1. Эндотелий на базальной мембране.

2. Подэндотелиальный слой из рыхлой волокнистой сдт с большим количеством малодифференцированных клеток.

3. Мышечно-эластический слой (миоциты эластические волокна).

4. Эластически-мышечный слой (миоцитыэластические волокна).

5. Наружный сдт-й слой (рыхлая волокнистая сдт).

В целом строение эндокарда напоминает строение стенки кровеносного сосуда.

Мышечная оболочка (миокард) состоит из кардиомиоцитов 3-х типов: сократительные, проводящие и секреторные (особенности строения и функций см. в теме «Мышечные ткани»).

Эндокард является типичной серозной оболочкой и состоит из слоев:

1. Мезотелий на базальной мембране.

2. Поверхностный коллагеновый слой.

3. Слой эластических волокон.

4. Глубокий коллагеновый слой.

5. Глубокий коллагеново-эластический слой (50 % всей толщины эпикарда).

Под мезотелием во всех слоях между волокнами имеются фибробласты.

Регенерация ССС . Сосуды, эндокард и эпикард регенерируют хорошо. Репаративная регенерация сердца - плохая, дефект замещается сдт рубцом; физиологическая регенерация - хорошо выражена, за счет внутриклеточной регенерации (обновление изношенных органоидов).

Возрастные изменения ССС . В сосудах в пожилом и старческом возрасте наблюдается утолщение внутренней оболочки, возможны отложения холестерина и солей кальция (атеросклеротические бляшки). В средней оболочке сосудов уменьшается содержание миоцитов и эластических волокон, увеличивается количество коллагеновых волокон и кислых мукополисахаридов.

В миокарде сердца после 30 лет увеличивается доля сдт-ой стромы, появляются жировые клетки; нарушается равновесие в вегетативной иннервации: начинается преобладание холинэргической иннервации над адренэргической.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-1.jpg" alt="> Лекция: ГИСТОЛОГИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ Проф. М. Ю. Капитонова ">

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-2.jpg" alt="> Цель и задачи: 1. Изучить структуру различных сосудов: артерий, вен,"> Цель и задачи: 1. Изучить структуру различных сосудов: артерий, вен, сосудов МЦР 2. Выявить структурно-функциональные корреляции в разных отделах сосудистой системы 3. Сравнить структуру и ультраструктуру миокарда и других видов мышечной ткани. 4. Дать сравнительную характеристику типичных и атипичных кардиомиоцитов. 5. Найти общие и отличительные признаки в строении стенки сердца и крупных сосудов.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-3.jpg" alt=">Схема сердечно- сосудистой системы ">

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-4.jpg" alt="> ОПРЕДЕЛЕНИЯ Сосудистая система = ССС ("> ОПРЕДЕЛЕНИЯ Сосудистая система = ССС (система гемоциркуляции) + лимфатическая система. ССС = сердце + артерии + капилляры + вены. Слои сосудистой стенки: tunica intima, tunica media, tunica adventitia. Микроциркуляторное русло = сосуды, видимые только под микроскопом (диаметром менее 0. 1 мм). Микроциркуляторное русло = артериолы + прекапиллярные артериолы + капилляры + посткапиллярные венулы + венулы.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-5.jpg" alt=">Капилляры - это мельчайшие СХЕМА МЦР функциональные единицы"> Капилляры - это мельчайшие СХЕМА МЦР функциональные единицы кровеносной системы, они вставлены между артериальным и венозным звеном гемоциркуляции. Они ветвятся, образуя мощную сеть, степень развития которой отражает функциональную активность органа и ткани. Мощные капиллярные сети присутствуют в легких, печени, почках, железах. Вместе с артериолами и венулами капилляры составляют микроциркуляторное русло (диаметр его сосудов менее 100 мкм).

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-6.jpg" alt="> Эндотелиальная выстилка капилляров Кровеносная система имеет непрерывную эндотелиальную выстилку, представленную одним"> Эндотелиальная выстилка капилляров Кровеносная система имеет непрерывную эндотелиальную выстилку, представленную одним слоем эндотелиальных клеток с зазубренными клеточными границами. Снаружи от эндотелия количество клеток и их слоев прогрессивно увеличивается с ростом калибра сосуда.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-7.jpg" alt="> О капиллярах: 1. Большинство клеток организма человека"> О капиллярах: 1. Большинство клеток организма человека находятся не более чем на 50 мкм удаленными от капилляров. 2. В организме человека площадь поверхности капилляров около 600 кв. м. 3. Площадь поперечного сечения всех капилляров в 800 раз больше, чем площадь сечения аорты (сравните скорость кровотока в аорте и в капиллярах). 4. Длина капилляра варьирует от 0. 2 5 до 1 мм (последняя цифра характерна для капилляров мышечной ткани). К коре надпочечников, мозговом веществе почки капилляры могут быть длиной до 5 мм. Общая длина всех капилляров тела человека 0 96, 000 км.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-8.jpg" alt=">Капилляр содержит внутреннюю оболочку – tunica intima, представленную эндотелиальными клетками, лежащими одним слоем"> Капилляр содержит внутреннюю оболочку – tunica intima, представленную эндотелиальными клетками, лежащими одним слоем на базальной мембране, в то время как tunica media и tunica adventitia значительно редуцированы. Эндотелиальная клетка выглядит как тонкая изогнутая пластинка с овальным или удлиненным ядром. Обычно клетки вытянуты вдоль оси капилляра и имеют сужающиеся концы. В месте содержания ядра клетка выбухает в просвет капилляра. Клетки соединены между собой соединительными комплексами и содержат множество пиноцитозных пузырьков. Стрелками показаны фенестры. Фенестрированный капилляр, TЭM, x 10, 000

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-9.jpg" alt=">Фенестрированный капилляр, TЭM, x 10, 000 Снаружи от эндотелия"> Фенестрированный капилляр, TЭM, x 10, 000 Снаружи от эндотелия располагается прерывистый слой клеток перицитов (стрелка), также обернутых листками базальной мембраны. Некоторые авторы считают, что слой перицитов – это редуцированная tunica media. Перициты – это плюрипотентные клетки, которые могут давать начало другим клеткам, таким как фибробласты. При тканевой травме перициты пролиферируют и дифференцируются с образованием новых кровеносных сосудов и соединительнотканных клеток. В стенке капилляра могут присутствовать небольшое количество коллагеновых и эластических волокон, основного вещества, адвентициальных клеток, фибробластов.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-10.jpg" alt=">Класси- фикация капилляров Основана на целостности "> Класси- фикация капилляров Основана на целостности эндотелия: они бывают непрерывными, фенестрирован- ными и синусодальным и.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-11.jpg" alt="> Капилляр непрерывного типа Непрерывные капилляры *соматический тип) – это"> Капилляр непрерывного типа Непрерывные капилляры *соматический тип) – это такие капилляры, у которых эндотелиальные клетки образуют внутреннюю выстилку без каких-либо межклеточных или внутрицитоплазменных дефектов или прерывистостей. Это выстилка не прерывается ни фенестрами, ни порами. Это наиболее распространенный тип капилляров, в которых вещества транспортируются через стенку посредством пиноцитоза. Такие капилляры присутствуют в мышцах, нервной и соединительной тканях. Они играют важную роль в образовании гемато- энцефалического барьера.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-12.jpg" alt=">Капилляр фене- стрированного типа Фенестрированные капилляры содержат поры диаметром 60"> Капилляр фене- стрированного типа Фенестрированные капилляры содержат поры диаметром 60 -70 нм в диаметре, которые обеспечивают более быстрый транскапиллярный транспорт, чем микропиноцитоз в непрерывных капиллярах. Фенестры могут быть перекрыты тонкими диафрагмами. Диффузия через фенестры – это самый важный механизм обмена ыеществами между плазмой крови и интерстициальной жидкостью. Такие капилляры присутствуют в почках, кишечнике, эндокринных железах.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-13.jpg" alt=">Синусоидальный тип капилляра Синусоидальные капилляры имеют увеличенный диаметр (до 40 мкм). "> Синусоидальный тип капилляра Синусоидальные капилляры имеют увеличенный диаметр (до 40 мкм). У них прерывистый не только эндотелий, но и окружающая его базальная мембрана. В стенке присутствуют макрофагальные клетки (например, клетки Купфера в капиллярах печени). Прерывистый эндотелий с огромными фенестрами без диафрагм, и прерывистая базальная мембрана обеспечивают усиленный обмен между кровью и тканями. Синусоиды особенно многочисленны в кроветворных органах и печени.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-14.jpg" alt="> ФУНКЦИИ КАПИЛЛЯРОВ 1. Проницаемость – капилляры служат в качестве селективного барьера"> ФУНКЦИИ КАПИЛЛЯРОВ 1. Проницаемость – капилляры служат в качестве селективного барьера проницаемости (с крупными и мелкими порами). Клинические корреляции: v Проницаемость микрососудов может увеличиваться при определенных условиях: (воспаление, высвобождение биологически активных веществ, таких как гистамин и брадикинин). v Это может приводить к развитию отека периваскулярного пространства и усиленной инфильтрации клетками крови, которые мигрируют из кровотока диапедезом через межклеточные соединения.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-15.jpg" alt=">Функции капилляров: 2. Метаболические функции a) активация (превращение angiotensin I в angiotensin"> Функции капилляров: 2. Метаболические функции a) активация (превращение angiotensin I в angiotensin II) b) инактивация – превращение норадреналина, серотонина, брадикинина в биологически инертные соединения c) липолиз – расщепление липопротеинов d) Продукция вазоактивных факторов – эндотелинов, VCAM etc. 3. Антитромбогенная функция - служат контейнером для крови, предотвращающим свертывание.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-16.jpg" alt=">Существует 4 типа МЦР: Типы МЦР 1. Обычная "> Существует 4 типа МЦР: Типы МЦР 1. Обычная Precapil- последовательность: Capillary lary артериола - прекапил- Arteriole sphincter лярная артериола (метартериола) – капил- 1 Post- capillary ляр – посткапиллярная Metarte- venule венула – вена. rioles 2. Артерио-венозные 2 Arterio- анастомозы – отсутствие venous Anasto- капилляров, когда обмен 3 mosis не столь существенен и Capillary важнее всего обеспечить Glome- rular быстрый прогон крови. Capil- laries 3. Артериальная чудесная сеть (в почке). 4. Венозная чудесная сеть (в 4 печени и аденогипофизе). Vein

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-17.jpg" alt="> СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА КАПИЛЛЯРОВ Признак Непрерыв- Фенестри- Лимфати- Синусои- Веноз- "> СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА КАПИЛЛЯРОВ Признак Непрерыв- Фенестри- Лимфати- Синусои- Веноз- Лимф. ный рованный ческий дальный синус капилляр синус Типичная мышцы Большин- Лимфати- Печень, Селе- Лимфа- Локализа- ство ческие селезенка, зенка тические ция внутрен- узлы красный узлы ностей костный мозг Эндоте- Непрерыв- Прерывис- Преры- лий ный тый вистый, с вистый, макрофа- с макро- гами рофа- фагами гами Фенестры нет Много Только в Крупнее нет в эндо- мелких млечных по разме- телии (0. 07 - ходах рам, варь- 0. 1 мкм) ируют (0. 1 -0. 2 mcm) Фагоцитар нет высокая огра- очень ная актив- ничена высокая ность

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-18.jpg" alt="> СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА КАПИЛЛЯРОВ признак Непрерыв- Фенестри- Лимфатич Синусо- Веноз- Лимф."> СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА КАПИЛЛЯРОВ признак Непрерыв- Фенестри- Лимфатич Синусо- Веноз- Лимф. ный рованный еский иды ные синусы капилляр синусы Диаметр Мелкий (6 - Более Варьиру- Наиболее Круп- просвета 10 мкм), 10 мкм), крупный(1 ющий (5 - круп- ный, правиль- 0 -50 мкм), 30 мкм), ный, непра- ный неправи- непра- виль- льный вильный Базаль- Хорошо Скудная, Отсут- ная развита, или отсут- или преры- ствует мембрана непрерыв- ствует отсутст- вистая ная вует Межкле- нет есть, 0. 1 - варьиру- присут- точные 0. 5 мкм ют ствуют простран- ства перициты присут- отсут- м. б. в отсут- ствуют печени ствуют Соедини- Присутст- Присут- Обычно Отсутств Отсутст- Нет тельные вуют ствуют отсут- уют, кро- вуют данных комплек- ствуют ме селе- сы зенки

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-19.jpg" alt="> Сравнительная характеристика кровеносных сосудов Капил- Постка- Собираю-"> Сравнительная характеристика кровеносных сосудов Капил- Постка- Собираю- Мышеч- Средние Крупные ляры пилляр- щие(пери- ные вены ные цитарные) венулы венулы) Диаметр 5 -12 мкм 12 -30 30 -50 мкм 50 мкм-3 3 мм-1 >1 cм просвета(8 мкм 40 мкм мм см 3 cм средний и 20 мкм 1 мм 0. 5 cм диапазон) Толщина 1 мкм 2 мкм Нет 0. 1 мм 0. 5 мм 1. 5 мм стенки данных Гладком - - +/- + (много ышечные в адвен- клетки тиции) Эластиче - - +/- + ++ ские волокна Пери- + ++(непол ++++(полн - - циты ный ый слой) слой) Vasa - - - ++++ vasorum

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-20.jpg" alt="> Сравнительная характеристика кровеносных сосудов Капил- Посткап Собираю- Мышеч- Средние"> Сравнительная характеристика кровеносных сосудов Капил- Посткап Собираю- Мышеч- Средние Крупные ляры илляр- щие ные вены ные венулы (перици- тарные) Иннерва- - - +++ ция Лимфати - - +/- +++ ческие сосуды Кров. дав- 22 Нет 12 5 3 (м. б. от- ление у данных рицатель- взрослых ным у Hg мм сердца) Скрость 0. 1 Нет 0. 5 5 15 кровотока данных м/секc функции обмен O 2, Как у Проницае Транс- Собира- Несут CO 2, капил- мы, важны порт ют венозную пит. вещест ляров для обмена венозной венозную кровь к вами крови кровь сердцу

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-21.jpg" alt="> СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ АРТЕРИЙ 1. Артерии несут кровь от сердца к органам"> СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ АРТЕРИЙ 1. Артерии несут кровь от сердца к органам и тканям. 2. За исключением легочных и пупочных артерий, все они несут кровь, богатую кислородом. 3. По мере удаления от сердца они уменьшаются в диаметре и увеличиваются в количестве. 4. Артерии классифицируются по размере и преобладанию тканевых элементов в стенке на: v Эластического типа: аорта, легочная артерия (это крупные артерии). v Мышечно-эластические (подключичная, общая сонная артерия и др. – это также крупные артерии) v Мышечного типа (локтевая, лучевая, почечная и др – это средние и мелкие артерии). Выделяют также артерии гибридного.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-22.jpg" alt="> Аорта, Окраска по Вейгерту, 162 x. Стенка аорты содержит 3"> Аорта, Окраска по Вейгерту, 162 x. Стенка аорты содержит 3 слоя: tunica intima (внутренний слой), tunica media (средний слой) и tunica adventitia (наружный слой), четкие границы между которыми отсутствуют.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-23.jpg" alt="> Аорта, окраска орсеином Intima "> Аорта, окраска орсеином Intima Elastica interna Media Adventitia Толщина стенка аорты в 10 раз меньше ее диаметра. Толщ интимы 150 мкм). Состоит из эндотелия, базальной мембраны и субэндотелиального слоя с коллагеновыми и эластическими волокнами и продольными пучками гладкомышечных клеток. Самая толстая оболочка – средняя (2 mm) , содержит окончатых эластических мембран. Адвентиция тонкая, содержит пучки коллагеновых волокон, немного эдастических волокон, кровеносных и лимфатических сосудов.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-24.jpg" alt="> Эластические мембраны АОРТА в tunica media называются фенестрированными, так"> Эластические мембраны АОРТА в tunica media называются фенестрированными, так как содержат отверстия (фенестры) облегчающие диффузию питательных веществ и продуктов распада. Соседние мембраны соединены эластическими волокнами (ЭВ). Обильная эластическая сеть в стенке аорты делает ее растяжимой и позволяет поддерживать постоянные кровоток не зависимо от сокращений сердца.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-25.jpg" alt="> Подмышечная артерия, окраска по Гомори - В смешанных (мышечно-эластических артериях)"> Подмышечная артерия, окраска по Гомори - В смешанных (мышечно-эластических артериях) (наружная сонная, подмышечная) эластические и гладкомышечные элементы смешиваются в средней оболочке. - К гибридным относятся висцеральные ветви брюшной аорты – у них гладкомышечные элементы преобладают во внутренних частях медии, а элестические – в наружных.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-26.jpg" alt="> АРТЕРИИ: v Крупные артерии называются проводящими, так как их "> АРТЕРИИ: v Крупные артерии называются проводящими, так как их основная функция – отводить кровь от сердца. v Крупные артерии выравнивают колебания кровяного давления, создаваемые ударами сердца. v Во время систолы эластические мембраны крупных артерий растягиваются и тем самым уменьшают давление, создаваемое выбросом крови. v Во время диастолы давление, создаваемое выбросом крови, резко падает, но эластические элементы крупных артерий сокращаются, выравнивая давление в кровеносном русле. v Артериальное давление уменьшается по мере удаления от сердца, так же как и скорость кровотока. Колебания давления между систолой и диастолой при этом нивелируются.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-27.jpg" alt="> Артерия мышечного типа Они могут быть крупными (как бедренная, почечная) и"> Артерия мышечного типа Они могут быть крупными (как бедренная, почечная) и мелкими, как безымянные внутриорганные артерии. Если функция артерий эластического типа заключается в проведении крови, то функция мышечных артерий – в распределении крови между органами. По мере необходимости они могут увеличиваться в размерах. Например, при закупорке основной артерии, мелкие коллатеральные артерии могут расшириться настолько, что полностью компенсируют недостаток

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-28.jpg" alt=">Tunica intima состоит из слоя эндотелия и уплощенного Артерия мышечного субэндотелиального"> Tunica intima состоит из слоя эндотелия и уплощенного Артерия мышечного субэндотелиального слоя из типа, x 132 коллагеновых и эластических волокон (последние могут отсутствовать в мелких артериях). К этим двум слоям добавляется внутренняя эластическая мембрана (стрелка), которая отделяет интиму от tunica media. Tunica media ™ очень толстая и в основном состоит из гладкомышечных клеток, образующих 5 -30 концентрически расположенных слоев-завитков. Среди гладкомышечных клеток могут быть тонкие ретикулярные, коллагеновые и эластические волокна, а также аморфное межклеточное вещество. Наружная эластическая мембрана (две стрелки) расположена между tunica media и адвентицией и состоит из нескольких слоев эластических волокон.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-29.jpg" alt="> Артерия мышечного типа под большим увеличением Адвентиция достаточно "> Артерия мышечного типа под большим увеличением Адвентиция достаточно толстая, составляет ½ толщины tunica media. Она содержит эластические и коллагеновые волокна, немного фибробластов и адипоцитов. Лимфатические сосуды, vasa vasorum и нервы также обнаруживаются в адвентиции, они также могут проникать в наружную часть tunica media. В tunica media присутствуют прерывис- тые эластические мембраны (E).

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-30.jpg" alt="> Сравнительная характеристика артерий эластического и мышечного типа Эластический тип "> Сравнительная характеристика артерий эластического и мышечного типа Эластический тип Мышечный тип Tunica intima: ширина~1/5 толщины Tunica intima тоньше в мышечных всей стенки, меньше эластических артериях, во многих местах элементов, чем в tunica media эндотелий лежит прямо на внутренней эластической мембране Tunica media: составляет основную толщу стенки В tunica media в основном эластические мембраны, гладкомышечные клетки; отдельные гладкомышечные относительно мало коллагеновых, клетки ретикулярных и эластических волокон Tunica adventitia относительно Adventitia толстая, примерно 1/3 тонкая, с коллагеновыми и или 2/3 толщины tunica media, эластическими волокнами содержит и эластические, и коллагеновые волокна

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-31.jpg" alt="> Вены 1. Возвращают кровь от капиллярного русла к сердцу. 2. За"> Вены 1. Возвращают кровь от капиллярного русла к сердцу. 2. За исключением легочных и пупочных вен несут кровь, богатую углекислым газом. 3. Считаются емкостными сосудами, так как содержат одновременно свыше 70% общего объема крови.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-32.jpg" alt="> Мышечная артерия и сопровождающая вена "> Мышечная артерия и сопровождающая вена Поскольку давление и скорость кровотока в венах меньше, чем в артериях, они крупнее, чем артерии, но имеют более тонкие стенки. В основном структура стенки артерий и вен схожа, имеются те же 3 слоя: tunica intima , media & adventitia, хотя в венах они не столь резко vein artery отграничены. Просвет вен, в отличие от артерий, нередко спавшийся и в нем содержатся эритроциты.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-33.jpg" alt="> Мышечная вена с сильным развитием мышечных элементов Клапаны"> Мышечная вена с сильным развитием мышечных элементов Клапаны появляются в венах, уже начиная с посткапиллярных венул, но особенно многочисленны они в венах с сильным развитием мышечных элементов – крупных венах нижних конечностей, несущих кровь против гравитации. Клапаны не встречаются в венах головного мозга, костного мозга, внутриорганных и полых венах. Безмышечные вены не содержат ГМК в стенке (вены трабекул селезенки, костей, мозговых оболочек: их стенки срастаются с окружающими тканями).

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-34.jpg" alt="> Сравнительная характеристика мышечной артерии и вены Артерии не содержат клапанов!"> Сравнительная характеристика мышечной артерии и вены Артерии не содержат клапанов! 1. Просвет артерии уже, чем сопровождающей вены. 2. Стенка артерии более толстая и упругая, чем сопровождающей вены. 3. Артерии богаче эластические волокнами и ГМК, в то время как вены – коллагеновыми волокнами. 4. Самая толстая оболочка артерии – средняя, а вены – наружная. 5. Стенка вены более рыхлая, чем артерии. 6. Внутренняя эластическая мембрана лучше развита у артерии, чем у вены.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-35.jpg" alt=">Вена со В венах tunica media тоньше, чем в "> Вена со В венах tunica media тоньше, чем в средним артериях, и составлена из циркулярно развитием расположенных гладкомышечных клеток, перемежающихся с элементов, соединительной тканью. H & E.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-36.jpg" alt=">Вена, со слабым развитием мышечных элементов Некоторые вены лишены tunica media (так называемый "> Вена, со слабым развитием мышечных элементов Некоторые вены лишены tunica media (так называемый безмышечный тип): это вены селезенки, сетчатки глаза, костей, материнской части плаценты, а также большинство менингеальных и церебральных вен.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-37.jpg" alt="> Характеристика вен тип TUNICA INTIMA TUNICA MEDIA TUNICA ADVENTITIA"> Характеристика вен тип TUNICA INTIMA TUNICA MEDIA TUNICA ADVENTITIA Крупные Эндотелий, базаль- Соединитель- Гладкомышечные клет- вены ная пластинка, в ная ткань, ки ориентированы некоторых – клапа- гладкомышеч- продольными пучками, ны, субэндотелиаль- ные клетки кардиомиоциты около ная соединительная впадения в сердце, слои ткань коллагеновых волокон с фибробластами Средние и Эндотелий, база- Ретикулярные Слои коллагеновых мелкие льная пластинка, в и эластиче- волокон с вены некоторых – кла- ские волокна, фибробластами паны, субэндотели- немного альная соедини- гладкомышеч тельная ткань ных клеток венулы Эндотелий, база- Скудная сое- Немного коллагеновых льная пластинка динительная волокон и мало (перициты в ткань с не- фибробластов посткапиллярных многими глад- венулах) комышечн. кл.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-38.jpg" alt="> Крупная вена – нижняя полая вена Диаметр крупных вен может"> Крупная вена – нижняя полая вена Диаметр крупных вен может превышать 1 см. Адвентиция составляет большая часть толщины стенки. В месте слияния с сердцем полые вены приобретают кардиомиоциты в своей адвентиции. В крупных венах сосуды сосудов достигают максимального развития – они могут проникать даже в

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-39.jpg" alt=">Верхняя полая вена, H & E. Tunica intima представлена эндотелием и субэндотелиальной тканью."> Верхняя полая вена, H & E. Tunica intima представлена эндотелием и субэндотелиальной тканью. Tunica intima смешивается с tunica media , толщина которой резко редуцирована, в ней содержатся единичные гладкомышечные клетки и коллагеновые волокна. Сосуды в tunica adventitia составляют vasa vasorum , снабжающие сосудистую стенку питательными веществами и кислородом, которые не попадают сюда из просвета сосуда. Адвентиция: внутренний слой содержит толстые пучки КВ спиральной конфигурации – они укорачиваются и удлиняются вместе с экскурсией диафрагмы. Средний слой содержить продольно ориентированные ГМК или кардиомиоциты. Наружный слой содежит толстые пучки КВ, переплетенных с ЭВ.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-40.jpg" alt="> Сердце имеет три оболочки: HEART эндокард, миокард и эпикард. Слои"> Сердце имеет три оболочки: HEART эндокард, миокард и эпикард. Слои эндокарда: v Эндотелий с базальной мембраной, v Субэндотелиальный слой (SL), - тонкий слой рыхлой соединительной ткани с немногочисленными фибро- бластами и тонкими КВ, v Миоэластический слой (ML), относительно плотная соединительная ткань с толстыми коллагеновыми и эластическими волокнами и вертикальными гладкомышеч- ными клетками, v Субэндокардиальный слой – рыхлая соединительная ткань, продолжающаяся в эндомизий миокарда. В области желудочков здесь содержатся волокна Пуркинье.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-41.jpg" alt="> Волокна Пуркинье, ШИК-реакция muscle fibers Миокард –"> Волокна Пуркинье, ШИК-реакция muscle fibers Миокард – это самая толстая оболчка сердца, содержащая пучки сократительных мышечных волокон (типичные кардиомиоциты со спиральным ходом волокон) и видоизмененные несократительные мышечные волокна – волокна Пуркинье с субэндокардиальным расположением.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-42.jpg" alt="> Схема кардиомиоцита Вставочные диски Сердечная"> Схема кардиомиоцита Вставочные диски Сердечная мышца, как и скелетная, является исчерченной, но в отличие от скелетной мышцы, в миокарде имеются клетки – кардиомиоциты, разделенные вставочными дисками, которые представляют собой соединительные комплексы на границе между соседними кардиомиоцитами.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-43.jpg" alt="> Межклеточные соединения кардиомиоцитов Поперечная часть соединительного комплекса содержит десмосомы"> Межклеточные соединения кардиомиоцитов Поперечная часть соединительного комплекса содержит десмосомы и нексусы (щелевые соединения), а продольная часть – длинные нексусы.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-44.jpg" alt="> Поперечная исчерченность кардиомиоцита Структура саркомера и в сердечной, и в скелетной мышце"> Поперечная исчерченность кардиомиоцита Структура саркомера и в сердечной, и в скелетной мышце схожи – это заключенные между двумя Z- полосками две половинки изотропного диска и один анизотропный диск в центре саркомера, разделенный М-полоской пополам.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-45.jpg" alt="> Сравнительная характеристика саркопламатического ретикулума и Т-трубочек в скелетной и сердечной мышце "> Сравнительная характеристика саркопламатического ретикулума и Т-трубочек в скелетной и сердечной мышце Скелетная сердечна я I диск T-трубочки Т-трубочка Z по- лоска Саркоплазма- тический Саркоплазма- ретикулум тический A диск ретикулум Терминальные диада цистерны Z-по- лоска Однако в миокарде Т-трубочки располагаются на уровне Z-полоски, а не между А- и I- дисками, как в скелетной мышце. Саркоплазматический ретикулум не столь развит, как в скелетной мышце, и терминальная цистерна хуже развита, уплощена, прерывиста и образует диаду, а не триаду, как в скелетной мышце, так как Т-трубочка связана только с одной терминальной цистерной (латеральным расширением саркоплазматического ретикулума).

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-46.jpg" alt=">Слои эпикарда Сердце v мезотелий (Mes), с"> Слои эпикарда Сердце v мезотелий (Mes), с базальной пластинкой (BL); v Субэпикардиальный слой (Sp. L), РСТ, богатая ЭВ, сосудами, НВ, адипоцитами вдоль коронарных сосудов. Сердце одето фибросерозным мешком - перикардом (P), состоящим из: v Мезотелия (Mes), с БМ, обращенного к эпикарду, и фиброзного слоя (FL), содержащего плотную CT с КС, ЛС, НВ.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-47.jpg" alt="> Проводящая система сердца Aorta Superior"> Проводящая система сердца Aorta Superior vena cava Левая ножка пучка Гиса Передний пучок Синоатриальный узел Атрио-вентрикуляр- ный узел Пучок Гиса Правая ножка пучка Гиса Задний пучок Волокна Пуркинье Это система видоизмененных кардиомиоцитов с функцией выработки и проведения импульсов сердечного сокращения к разным участкам миокарда, а также обеспечения ритмичного чередования сокращения желудочков и предсердий. Включает синоатриальный узел, атрио- вентрикулярный узел, пучок Гиса (левую и правую ножки) и волокна Пуркинье.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-48.jpg" alt=">Волокна Пуркинье, большое увеличение, H&E Скорость проведения потенциала действия у атипичных кардиомиоцитов выше,"> Волокна Пуркинье, большое увеличение, H&E Скорость проведения потенциала действия у атипичных кардиомиоцитов выше, чем у типичных (3 -4 ms против to 0. 5 ms). Он вызывает вначале деполяризацию желудочков, а потом их сокращение.

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-49.jpg" alt="> Ультраструктура атипичных кардиомиоцитов Клетки "> Ультраструктура атипичных кардиомиоцитов Клетки Пуркинье Пейс-мейкерные Переходные

Src="https://present5.com/presentation/3/175135139_171487719.pdf-img/175135139_171487719.pdf-50.jpg" alt="> Сравнительная характеристика атипичных кардиомиоцитов Признак Пейс-мейкерные Переходные "> Сравнительная характеристика атипичных кардиомиоцитов Признак Пейс-мейкерные Переходные Клетки Пуркинье САУ, АВУ, место соединения между Субэндокардиальный Локализация Ссставляют САУ и АВУ типичными слой от пучка Гиса до кардиомиоцитами и верхушки сердца ВП Размер 10 x 25 mc Длиннее пейс- 50 x 100 mc мейкерных Ядро Круглое Удлиненное, часто 2 Цитоплазма Очень светлая Очень темная Менее плотная, чем у переходных клеток Митохондрии Немного крупных много мелких Много мелких Комплекс. Гольджи ++ Цистерны ГЭС + Миофибриллы + ++ Везикулы ++ + Гликоген +++ Базальная + пластинка вокруг всего волокна Межклеточные Zonulae adherentes Desmosomes, nexuses, соединения fasciae adherentes Генерируют импульс Функция сокращения, проводят его Проводят импульс к кардиомиоцитам и кардиомиоцитам переходным клеткам переходным клеткам

Инструкции по изучению микропрепаратов

А. Сосуды МЦР. Артериолы, капилляры, венулы.

Окраска – гематоксилин-эозин.

Для того чтобы определить взаимосвязь между звеньями микроциркуляторного русла, нужно окрасить и рассмотреть тотальный, пленочный препарат, где сосуды видим не на срезе, а в целом. Выбираем на препарате участок с мелкими сосудами, чтобы была видна их связь с капиллярами.

Артериолы как первое звено микроциркуляторного русла распознаем по характерному размещению гладких миоцитов. Сквозь стенку артериолы просвечивают светлые удлиненные овальные ядра эндотелиоцитов. Их длинная ось совпадает с ходом артериолы.

Венулы имеют более тонкую стенку, более темные ядра эндотелиоцитов и в просвете несколько рядов эритроцитов красного цвета.

Капилляры – тонкие сосуды, имеют наименьший диаметр и самую тонкую стенку, в состав которой входит один слой эндотелиоцитов. Эритроциты располагаются в просвете капилляра в один ряд. Можно также разглядеть места отхождения капилляров от артериол и места впадения капилляров в венулы. Между сосудами содержится рыхлая волокнистая соединительная ткань типичного строения.

1. На электронограмме капилляра четко определяются фенестры в эндотелии и поры в базальной мембране. Назовите тип капилляра.

A. Синусоидный.

B. Соматический.

C. Висцеральный.

D. Атипичный.

E. Шунтовой.

2. И.М. Сеченов назвал артериолы "кранами" сердечно-сосудистой системы. Какие структурные элементы обеспечивают эту функцию артериол?

A. Циркулярные миоциты.

B. Продольные миоциты.

C. Эластические волокна.

D. Продольные мышечные волокна.

E. Циркулярные мышечные волокна.

3. На электронной микрофотографии капилляра с широким просветом четко определяются фенестры в эндотелии и поры в базальной мембране. Определите тип капилляра.

A. Синусоидный.

B. Соматический.

C. Атипичный.

D. Шунтовой.

E. Висцеральный.

4. Наличие какого типа капилляров характерно для микроциркуляторного русла кроветворных органов человека?

A. Перфорированных.

B. Фенестрированных.

C. Соматических.

D. Синусоидных.

5. В гистологическом препарате обнаруживаются сосуды, которые начинаются слепо, имеют вид уплощённых эндотелиальных трубок, не содержат базальную мембрану и перициты, эндотелий этих сосудов фиксирован тропными филантами к коллагеновым волокнам соединительной ткани. Какие это сосуды?

A. Лимфокапилляры.

B. Гемокапилляры.

C. Артериолы.

D. Венулы.

E. Артериоло-венулярные анастомозы.

6. Для капилляра характерно наличие фенестрированного эпителия и пористой базальной мембраны. Тип этого капилляра:

A. Синусоидный.

B. Соматический.

C. Висцеральный.

D. Лакунарный.

E. Лимфатический.

7. Назовите сосуд микроциркуляторного русла, в котором во внутренней оболочке подэндотелиальный слой слабо выражен, внутренняя эластическая мембрана очень тонкая. Средняя оболочка образована 1-2 слоями спирально направленных гладких миоцитов.

A. Артериола.

B. Венула.

C. Капилляр соматического типа.

D. Капилляр фенестрированного типа.

E. Капилляр синусоидного типа.

8. В каких сосудах наблюдается наибольшая общая поверхность, которая создает оптимальные условия для двустороннего обмена веществ между тканями и кровью?

A. Капиллярах.

B. Артериях.

D. Артериолах.

E. Венулах.

9. На электронной микрофотографии капилляра с широким просветом четко определяются фенестры в эндотелии и поры в базальной мембране. Определите тип капилляра.

A. Синусоидний.

B. Соматический.

C. Атипичный.

D. Шунтовой.

E. Висцеральный.

Дополнение P

(обязательное)

Гистофункциональные особенности сосудов МЦР

в вопросах и ответах

1. Какие функциональные звенья МЦР выделяют?

А. Звено, в котором происходит регуляция притока крови к органам. Оно представлено артериолами, метартериолами, прекапиллярами. Все названные сосуды содержат сфинктеры, главными компонентами которых являются циркулярно расположенные ГМК.

Б. Другим звеном являются сосуды, которые отвечают за обмен веществ и газов в тканях. Такими сосудами являются капилляры. Третьим звеном являются сосуды, которые обеспечивают дренажно-депонирующую функцию МЦР. К ним относятся венулы.

2. Какие особенности строения артериол?

Каждая оболочка состоит из одного слоя клеток. Миоциты в средней оболочке образуют наклонную спираль, расположены под углом больше 45 градусов. Между миоцитами и эндотелием образуются миоэндотелиальные контакты. Артериолы не имеют эластической мембраны.

3. Какие гистофункциональные особенности прекапилляров?

Миоциты вдоль прекапилляра находятся на значительном расстоянии. Вместах отхождения прекапилляров от артериол и местах ветвления прекапилляров на капилляры находятся сфинктеры, в которых ГМК располагаются циркулярно. Сфинктеры обеспечивают селективное распределение крови между обменными звеньями МЦР. Следует заметить также, что просвет открытых прекапилляров меньше, чем капилляров, что можно сравнить с эффектом бутылочного горла.

4. Какие гистофункциональные особенности артериоло-венулярных анастомозов? (дополнение 7 черт. 3)

Различают две группы анастомозов:

1) истинные (шунты);

2) атипичные (полушунты).

По истинным шунтам течет артериальная кровь. По строению истинные шунты бывают:

1) простые, где нет дополнительных сократительных аппаратов, то есть регуляция кровотока осуществляется ГМК средней оболочки артериолы;

2) со специальными сократительными аппаратами в виде валиков или подушечек в подэндотелиальном слое, которые выступают в просвет сосуда.

По атипичным (полушунтам) течет смешанная кровь. По строению они являются соединением артериолы и венулы посредством короткого капилляра, диаметр которого до 30 мкм.

Артериоло-венулярные анастомозы принимают участие в регуляции кровенаполнения органов, местного и общего давления крови, в мобилизации депонируемой в венулах крови.

Значительная роль АВАв компенсаторных реакциях организма при нарушениях кровообращения и развитии патологических процессов.

5. Какие структурные основы гематотканевого взаимодействия?

Главный компонент гематотканевого взаимодействия эндотелий, который является избирательным барьером, а также приспособлен к обмену веществ. Кроме того, контроль трансцеллюлярного и интрацеллюлярного транспорта обеспечивается многомембранным принципом организации клеток и динамическими свойствами клеточных мембран.

Приложение 2. Таблица 1 Типы капилляров

Типы капилляров

Строение

Локализация

1. Соматический

d = 4,5 – 7 мкм

Эндотелий сплошной (обычный), базальная мембрана непрерывная

Мышцы, легкие, кожа, ЦНС, экзокринные железы, тимус.

2. Фенестрированный

(висцеральный)

d = 7 – 20 мкм

Фенестрованный эндотелий и сплошная базальная мембрана

Почечные клубочки, эндокринные органы, слизистая оболочка ЖКТ, сосудистое сплетение мозга

3. Синусоидный

d = 20 -40 мкм

Вэндотелии есть щели между клетками и базальная мембрана перфорированная

Печень, кроветворные органы и кора надпочечника

Приложение 3. Таблица 2 – Типы венул

Типы венул

Строение

Посткапиллярные

d =12 – 30 мкм.

Больше перицитов, чем в капиллярах.

Ворганах иммунной системы имеют высокий эндотелий

1. Возвращение клеток крови из тканей.

2. Дренажная.

3. Удаление ядов и метаболитов.

4. Депонирование крови.

5. Иммунологическая (рециркуляция лимфоцитов).

6. Участие в реализации нервных и эндокринных влияний на обмен и кровоток

Собирательные

d = 30 – 50 мкм.

Мышечные

d › 50 мкм, до 100 мкм.

Приложение 4

Рисунок 1 Типы капилляров (схема по Ю.И. Афанасьеву):

I–гемокапилляр с непрерывной эндотелиальной выстилкой и базальной мембраной; II–гемока-пилляр с фенестрированным эндотелием и непрерывной базальной мембраной; III–гемокапилляр со щелевидными отверстиями в эндотелии и прерывистой базальной мембраной; 1–эндотелиоцит; 2–базальная мембрана; 3–фенестры; 4–щели (поры); 5–перицит; 6–адвентициальная клетка; 7–контакт эндотелиоцита и перицита; 8–нервное окончание

Приложение 5

Передкапиллярные сфинктеры


Рисунок 2 Компоненты МЦР (по В.Zweifach):

схема сосудов разного типа, которые образуют терминальное сосудистое русло и регулируют микроциркуляцию в нем.

Приложение 6

Рисунок 3 Артериоло-венулярные анастомозы (ABA) (схема по Ю.И.Афанасьеву):

I–ABA без специального запирающего устройства: I–артериола; 2–венула; 3–ана-стомоз; 4–гладкие миоциты анастомоза; II–ABA со специальным запирающим устройством: А–анастомоз типа запирающей артерии; Б–простой анастомоз эпителиоидного типа; В–сложный анастомоз эпителиоидного типа (клубочковый): Г–эндотелий; 2–продольно размещенные пучки гладких миоцитов; 3–внутренняя эластическая мембрана; 4–артериола; 5–венула; 6–анастомоз; 7–эпителиальные клетки анастомоза; 8–капилля-ры в соединительнотканной оболочке; III–атипичный анастомоз: 1–артериола; 2–ко-роткий гемокапилляр; 3–венула

Приложение 8

Рисунок 4

Приложение 9

Рисунок 5

Модуль 3. Специальная гистология.

"Специальная гистология сенсорных и регуляторных систем"

Тема занятия

"Сердце"

Актуальность темы . Детальное изучение морфофункциональных особенностей сердца в норме предопределяет возможности профилактики, ранней диагностики структурно-функциональных нарушений сердца. Знание гистологических особенностей сердечной мышцы помогает понять и объяснить патогенез сердечных заболеваний.

Общая цель занятия. Уметь:

1. Диагностировать на микропрепаратах структурные элементы сердечной мышцы.

Конкретные цели. Знать:

1. Особенности структурно-функциональной организации сердца.

2. Морфофункциональную организацию проводящей системы сердца.

3. Микроскопическое, ультрамикроскопическое строение и гистофизиологию сердечной мышцы.

4. Ход процессов эмбрионального развития, возрастные изменения и регенерацию сердца.

Исходный уровень знаний-умений. Знать:

1. Макроскопическое строение сердца, его оболочки, клапаны.

2. Морфофункциональную организацию сердечной мышцы (кафедра анатомии человека).

После усвоения необходимых базовых знаний переходите к изучению материала, который можете найти в следующих источниках информации.

А. Основная литература

1. Гистология /под ред. Ю.И.Афанасьева, Н.А.Юриной. – Москва: Медицина, 2002. – С. 410–424.

2. Гистология /под ред. В.Г.Елисеева, Ю.И.Афанасьева, Н.А.Юриной – Москва: Медицина, 1983. – С. 336–345.

3. Атлас по гистологии и эмбриологии /под ред. И.В.Алмазова, Л.С.Сутулова. – М.: Медицина, 1978.

4. Гістологія, цитологія та ембріологія (атлас для самостійної роботи студентів) /за ред. Ю.Б.Чайковського, Л.М.Сокуренко – Луцьк, 2006.

5. Методические разработки к практическим занятиям: в 2-х частях. – Черновцы, 1985.

Б. Дополнительная литература

1. Гистология (введение в патологию) /под ред. Э.Г.Улумбекова, проф. Ю.А.Челышева. – М., 1997. – С. 504–515.

2. Гистология, цитология и эмбриология (атлас) /под ред. О.В.Волковой, Ю.К.Елецкого – Москва: Медицина, 1996. – С. 170–176.

3. Частная гистология человека /под ред. В.Л.Быкова. – СОТИС: Санкт-Петербург, 1997. – С. 16–19.

В. Лекции по данной теме.

Теоретические вопросы

1. Источники развития сердца.

2. Общая характеристика строения стенки сердца.

3. Микро-и субмикроскопическое строение эндокарда и клапанов сердца.

4. Миокард, микро-и ультраструктуры типичных кардиомиоцитов. Ведущая система сердца.

5. Морфофункциональная характеристика атипичных миоцитов.

6. Строение эпикарда.

7. Иннервация, кровоснабжение и возрастные изменения сердца.

8. Современные представления о регенерации и трансплантации сердца.

Краткие методические указания к работе

на практическом занятии

В начале занятия будет проверено выполнение домашних заданий. Затем самостоятельно Вы должны изучить такой микропрепарат, как стенка сердца быка. Эту работу выполняете согласно алгоритму изучения микропрепаратов. Во время самостоятельной работы Вы можете консультироваться по поводу тех или иных вопросов по микропрепаратам с преподавателем.

Технологическая карта занятия

Продолжительность

Средства обучения

Оборудование

Место проведения

Проверка и коррекция исходного уровня знаний и домашних заданий

Таблицы, рисунки-схемы

Компьютеры

Компью-терный класс, учебная комната

Самостоятельная работа по изучению микропрепаратов, электронограмм

Инструкции по изучению микро-препаратов таблиц, микрофото-граммы, электроно-граммы

Микроскопы, микропрепа-раты, альбомы для зарисовок микропрепа-ратов

Учебная комната

Анализ итогов самостоятельной работы

Микрофото-грамы, электроно-граммы, набор тестов

Компьютеры

Компью-терный класс

Подведение итогов занятия

Учебная комната

Для закрепления материала выполните задания:

К структурам, обозначенным цифрами, подберите соответствующие им по морфологии и функции описания. Назовите клетку и обозначенные структуры:

а) эти структуры расположены вдоль мышечного волокна и имеют анизотропные и изотропные полосы (или диски Аи И);

б) мембранные органеллы общего назначения, которые образуют и накапливают энергию в виде АТФ;

в) система компонентов разной формы, которая обеспечивает транспорт ионов кальция;

г) система узких канальцев, которая разветвляется в мышечном волокне и обеспечивает передачу нервного импульса;

д) мембранные органеллы общего назначения, обеспечивающие клеточное пищеварение;

е) темные полоски, идущие поперек волокна, содержат три типа межклеточных контактов: ж) десмосомный; з) нексус; и) адгезивный.

Вопросы к тестовому контролю

1. Какая главная функция сердца?

2. Когда происходит закладка сердца?

3. Какой источник развития эндокарда?

4. Какой источник развития миокарда?

5. Какой источник развития эпикарда?

6. Когда начинается формирование проводящей системы сердца?

7. Как называется внутренняя оболочка сердца?

8. Какой из перечисленных слоев не входит в состав эндокарда?

9. Вкаком слое эндокарда есть сосуды?

10. За счет чего осуществляется питание эндокарда?

11. Каких клеток много в подэндотелиальном слое эндокарда?

12. Какая ткань составляет основу строения клапанов сердца?

13. Чем покрыты клапаны сердца?

14. Из чего состоит миокард?

15. Сердечная мышца состоит из…

16. Миокард по строению относится к…

17. Чем образованы мышечные волокна миокарда?

18. Что не характерно для кардиомиоцитов?

19. Что характерно для сердечной мышцы?

20. Какая оболочка сердца состоит из кардиомиоцитов?

21. Какой источник развития кардиомиоцитов?

22. На какие виды подразделяются кардиомиоциты?

23. Что не характерно для строения кардиомиоцитов?

24. Чем отличаются Т-трубочки сердечной мышцы от Т-трубочек скелетных мышц?

25. Почему в сократительных кардиомиоцитах отсутствует типичная картина триад?

26. Какую функцию выполняют Т-трубочки сердечной мышцы?

27. Что не характерно для предсердных кардиомиоцитов?

28. Где синтезируется натрийуретический фактор?

29. Какое значение предсердного натрийуретического фактора?

30. Какое значение вставочных дисков?

31. Какие межклеточные соединения находятся в участках вставочных дисков?

32. Какую функцию выполняют десмосомные контакты?

33. Какую функцию выполняют щелевые контакты?

34. Какие клетки образуют второй тип миоцитов миокарда?

35. Что не входит в состав проводящей системы сердца?

36. Какие клетки не входят в состав проводящих сердечных миоцитов?

37. Какую функцию выполняют пейсмекерные клетки?

38. Где расположены пейсмекерные клетки?

39.Что не характерно для строения пейсмекерных клеток?

40. Какую функцию выполняют переходные клетки?

41. Какую функцию выполняют волокна Пуркинье?

42. Что не характерно для строения переходных клеток проводящей системы сердца?

43. Что не характерно для строения волокон Пуркинье?

44. Какое строение эпикарда?

45. Чем покрыт эпикард?

46. Какой слой отсутствует в эпикарде?

47. Как происходит регенерация сердечной мышцы в детском возрасте?

48. Как происходит регенерация сердечной мышцы у взрослых людей?

49. Из какой ткани состоит перикард?

50. Эпикард–это…

Инструкция по изучению микропрепаратов

А. Стенка сердца быка

Окраска – гематоксилин-эозином.

При малом увеличении необходимо сориентироваться в оболочках сердца. Эндокард выделяется в виде розовой полоски, покрытой эндотелием с большими фиолетовыми ядрами. Под ним находится подэндотелиальный слой–рыхлая соединительная ткань, глубже–мышечно-эластический и наружный соединительнотканный слои.

Основную массу сердца составляет миокард. В миокарде наблюдаем полоски кардиомиоцитов, ядра в которых расположены по центру. Между полосками (цепочками) кардиомиоцитов различают анастомозы. Внутри полосок (это функциональные мышечные "волокна") кардиомиоциты соединены с помощью вставочных дисков. Кардиомиоциты имеют поперечную исчерченность, обусловленную наличием изотропных (светлых) и анизотропных (темных) дисков в составе самих миофибрилл. Между цепочками кардиомиоцитов наблюдаются светлые промежутки, заполненные рыхлой волокнистой соединительной тканью.

Непосредственно под эндокардом размещаются скопления проводящих (атипичных) кардиомиоцитов. На поперечном сечении они имеют вид крупных оксифильных клеток. В их саркоплазме меньше миофибрилл, чем в сократительных кардиомиоцитах.

Задачи к лицензионному экзамену "Крок-1"

1. На микропрепарате–стенка сердца. В одной из оболочек находятся сократительные и секреторные миоциты, эндомизий с кровеносными сосудами. Какой оболочке сердца соответствуют данные структуры?

А. Миокарду предсердий.

В. Перикарду.

С. Адвентициальной оболочке.

D. Эндокарду желудочков.

2. В лаборатории перепутали маркировки гистологических препаратов миокарда и скелетных мышц. Какая структурная особенность позволила определить препарат миокарда?

А. Периферийное положение ядер.

В. Наличие вставочного диска.

С. Отсутствие миофибрилл.

D. Наличие поперечной исчерченности.

3. В результате инфаркта миокарда произошло повреждение участка сердечной мышцы, которое сопровождается массовой гибелью кардиомиоцитов. Какие клеточные элементы обеспечат замещение образовавшегося дефекта в структуре миокарда?

А. Фибробласты.

B. Кардиомиоциты.

С. Миосателлитоциты.

D. Эпителиоциты.

Е. Неисчерченные миоциты.

4. На гистологическом препарате "стенки сердца" основную часть миокарда образуют кардиомиоциты, которые с помощью вставочных дисков формируют мышечные волокна. Соединение какого типа обеспечивает электрическую связь соседних клеток?

А. Щелевой контакт (Нексус).

B. Десмосома.

С. Полудесмосома.

D. Плотный контакт.

Е. Простой контакт.

5. На гистологическом препарате представлен орган сердечно-сосудистой системы. Одна из его оболочек образована волокнами, которые анастомозируют между собой, состоят из клеток, и в месте контакта образуют вставочные диски. Оболочка какого органа представлена на препарате?

А. Сердца.

B. Артерии мышечного типа.

D. Вены мышечного типа.

Е. Артерии смешанного типа.

6. В стенке кровеносных сосудов и стенке сердца различают несколько оболочек. Какая из оболочек сердца по гистогенезу и тканевому составу подобна стенке сосудов?

А. Эндокард.

B. Миокард.

С. Перикард.

D. Эпикард.

Е Эпикард и миокард.

7. На гистологическом препарате "стенки сердца" под эндокардом можно видеть удлиненные клетки с ядром на периферии с небольшим количеством органелл и миофибрилл, которые расположены хаотично. Что это за клетки?

А. Исчерченные миоциты.

B. Сократительные кардиомиоциты.

С. Секреторные кардиомиоциты.

D. Гладкие миоциты.

Е. Проводящие кардиомиоциты.

8. В результате инфаркта миокарда наступила блокада сердца: предсердия и желудочки его сокращаются несинхронно. Повреждение каких структур является причиной этого явления?

А. Проводящих кардиомиоцитов пучка Гисса.

B. Пейсмекерных клеток синусно-предсердного узла.

С. Сократительных миоцитов желудочков.

D. Нервных волокон n.vagus.

Е. Симпатических нервных волокон.

9. У больного на эндокардит обнаружена патология клапанного аппарата внутренней оболочки сердца. Какие ткани образуют клапаны сердца?

А. Плотная соединительная ткань, эндотелий.

B. Рыхлая соединительная ткань, эндотелий.

С. Сердечная мышечная ткань, эндотелий.

D. Гиалиновая хрящевая ткань, эндотелий.

Е. Эластическая хрящевая ткань, эндотелий.

10. У больного на перикардит в перикардиальной полости накапливается серозная жидкость. С нарушением деятельности каких клеток перикарда связан этот процесс?

А. Клеток мезотелия.

B. Клеток эндотелия.

С. Гладких миоцитов.

D. Фибробластов.

Е. Макрофагов

Приложение V

(обязательное)

Проводящая система сердца. Systema conducens cardiacum

Всердце выделяют атипичную ("проводящую") мышечную систему. Микроанатомия проводящей системы сердца отражена на схеме 1. Эта система представлена: синусно-предсердным узлом (синоатриальным); предсердно-желудочковым узлом (AV); предсердно-желудочковым пучком Гисса.

Различают три типа мышечных клеток, которые в разных соотношениях находятся в разных отделах этой системы.

Синусно-предсердный узел размещен почти в стенке верхней полой вены в области венозного синуса, в этом узле происходит формирование импульса, который определяет автоматизм сердца, его центральную часть занимают клетки первого типа–водители ритма, или пейсмекерные клетки (Р-клетки). Эти клетки отличаются от типичных кардиомиоцитов небольшими размерами, многоугольной формой, небольшим количеством миофибрилл, саркоплазматическая сеть развита слабо, Т-система отсутствует, много пиноцитозных пузырьков и кавеол. Их цитоплазма имеет способность к спонтанной ритмической поляризации и деполяризации. Предсердно-желудочковый узел составляют преимущественно переходные клетки (клетки второго типа).

Они выполняют функцию проведения возбуждения и его преобразования (торможение ритма) от Р-клеток к клеткам пучка и сократительным, но при патологии синусно-предсердного узла его функция переходит к атриовентрикулярному. Поперечный их срез меньше, чем поперечный срез типичных кардиомиоцитов. Миофибриллы более развиты, ориентированы параллельно друг другу, но не всегда. Отдельные клетки могут содержать Т-трубочки. Переходные клетки контактируют между собой как с помощью простых контактов, так и вставочных дисков.

Предсердно-желудочковый пучок Гисса состоит из ствола, правой и левой ножек (волокна Пуркинье), левая ножка распадается на переднюю и заднюю ветви. Пучок Гисса и волокна Пуркинье представлены клетками третьего типа, которые передают возбуждение от переходных клеток к сократительным кардиомиоцитам желудочков. По строению клетки пучка отличаются большими размерами в диаметре, почти полным отсутствием Т-систем, миофибриллы тонкие, которые беспорядочно размещаются главным образом по периферии клетки. Ядра расположены эксцентрично.

Клетки Пуркинье–крупнейшие не только в ведущей системе, но и во всем миокарде. Вних много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.

Учебное издание

Васько Людмила Витальевна, Киптенко Людмила Ивановна,

Будко Анна Юрьевна, Жукова Светлана Вячеславовна

Специальная гистология сенсорных и

регуляторных систем

В двух частях

Ответственный за выпуск Васько Л.В.

Редактор Т.Г.Чернышова

Компьютерная верстка А.А. Качановой

Подписано к печати 7.07.2010.

Формат 60x84/16. Усл. печ. л. . Уч. - изд. л. . Тираж экз.

Зам. № . Себестоимость издания

Издатель и изготовитель Сумский государственный университет

ул. Римского-Корсакова, 2, г. Сумы, 40007.

Свидетельство субъекта издательского дела ДК 3062 от 17.12.2007.

Др.), а также регуляторных веществ - кейлонов, ...

  • Гистология конспект лекций часть i общая гистология лекция 1 введение общая гистология общая гистология - введение понятие ткани классификация

    Конспект

    Общая гистология . Лекция 1. Введение. Общая гистология . Общая гистология ... перигеммальные). 1. Вкусовые сенсорные эпителиоциты - вытянутые... систему сосудов. Это достигается мощным развитием специальной ... др.), а также регуляторных веществ - кейлонов, ...

  • » мне неизвестен вероятно как тесты по гистология

    Тесты

    ... «Заголовок 4». При вёрстке «ГИСТОЛОГИЯ -2» стили«Заголовок 3» и «Заголовок 4» ... Большинство медицинских специальностей изучает закономерности жизнедеятельности... тела, – влияние регуляторных систем организма, – вовлечение... поражения сенсорной сферы. ...

  • Антациды и адсорбенты Противоязвенные средства Средства влияющие на вегетативную нервную систему Адренергические средства H2-антигистаминные средства Ингибиторы протонного насоса

    Методичка

    Получает с помощью сенсорных систем (анализаторов). Дать... белковых компонентов. Гистология лекция ТЕМА: ... ретикулумом с помощью специального механизма - кальциевого... и текущим функциональным состоянием регуляторных систем . Этим объясняется исключительная...

  • Сердечно-сосудистая система участвует в обмене веществ, обеспечивает и определяет движение крови, служит транспортной средой между тканями организма.

    В составе сердечно-сосудистой системы различают: сердце - центральный орган, приводящий кровь в постоянное движение; кровеносные и лимфатические сосуды; кровь и лимфу. С этой системой связаны кроветворные органы, выполняющие одновременно и защитные функции.

    Органы сердечно-сосудистой системы, кроветворения и иммунитета развиваются из мезенхимы, а оболочки сердца - из висцерального листка мезодермы.

    СЕРДЦЕ

    Центральным органом сердечно-сосудистой системы является сердце; благодаря его ритмическим сокращениям происходит циркуляция крови по большому (системному) и малому (легочному) кругам кровообращения, т. е. по всему организму.

    У млекопитающих сердце расположено в грудной полости между легкими, впереди диафрагмы в области от 3-го до 6-го ребра в плоскости центра тяжести второй четверти тела. Большая часть сердца находится слева от срединной линии, а справа расположены правое предсердие и полые вены.

    Масса сердца зависит от вида, породы и пола животного, а также от возраста и физической нагрузки. Например, у быка масса сердца составляет 0,42 %, а у коровы - 0,5 % массы тела.

    Сердце представляет собой полый орган, разделенный внутри на четыре полости, или камеры: два предсердия и два желудочка овально-конусовидной или овально-округлой формы. В верхней части каждого предсердия имеются выступающие вперед части - ушки. Предсердия снаружи отделены от желудочков венечной бороздой, в которой проходят основные ветви кровеносных сосудов. Желудочки отделены один от другого межжелудочковыми бороздами. Предсердия, восходящая часть аорты и легочный ствол обращены вверх и образуют основание сердца; самый нижний и более всего выступающий влево заостренный отдел левого желудочка - верхушку сердца.

    В боковых пластинах шейной области в конце второй недели развития зародыша образуется парное скопление клеток мезенхимы (рис. 78). Из этих клеток формируются два мезенхимных тяжа, постепенно преобразующихся в две удлиненные трубки, выстланные изнутри эндотелием. Так формируется эндокард, окруженный висцеральным листком мезодермы. Несколько позже, в связи с образованием туловищной складки, сближаются два трубчатых зачатка будущего сердца и сливаются в один общий непарный трубчатый орган.

    Из висцерального листка мезодермы в участке, прилегающем к эндокарду, обособляются миоэпикардиальные пластинки, которые впоследствии развиваются в зачатки миокарда и эпикарда.

    Итак, на этом этапе развития непарное сердце вначале представляет собой трубчатый орган, в котором имеются краниальный суженный и каудальный расширенный отделы. Кровь поступает через каудальный, а выходит через краниальный отдел органа, и уже на этой ранней стадии развития первый соответствует будущим предсердиям, а второй - желудочкам.

    Дальнейшее формирование сердца связано с неравномерным разрастанием отдельных участков трубчатого органа, в результате

    Рис. 78.

    а, б, в - соответственно ранняя, средняя, поздняя стадии; /-эктодерма; 2-энтодерма; 3- мезодерма; -/ - хорда; 5-нервная пластинка; б -парная закладка сердца; 7-нервная трубка; 8- непарная закладка сердца; 9 -пищевод; 10- парная аорта; 11 - эндокард;

    12- миокард

    чего образуется S-образный изгиб. Причем каудальный венозный отдел с более тонкими оболочками несколько сдвигает вперед дорсальную сторону - формируется предсердие. Краниальный артериальный отдел, имеющий более выраженные оболочки, остается на вентральной стороне - формируется желудочек. Так возникает двухкамерное сердце. Несколько позже обособляются перегородки в предсердии и в желудочке и двухкамерное сердце становится четырехкамерным. В продольной перегородке сохраняются отверстия: овальное - между предсердиями и небольшое -между желудочками. Овальное отверстие обычно зарастает после рождения, а отверстие между желудочками - еще до рождения.

    Артериальный ствол, представляющий собой отдел исходной сердечной трубки, разделяется перегородкой, образовавшейся в исходном желудочке, в результате возникают аорта и легочная артерия.

    В сердце различают три оболочки: внутреннюю - эндокард, среднюю - миокард и наружную - эпикард. Сердце расположено в околосердечной сумке - перикарде (рис. 79).

    Эндокард (е n doc a rdium) - оболочка, выстилающая изнутри полость сердца, мышечные сосочки, сухожильные нити и клапаны. Эндокард имеет различную толщину, например он значительно толще в предсердии и в желудочке левой половины. У устья крупных стволов - аорты и легочной артерии эндокард более выражен, тогда как на сухожильных нитях эта оболочка очень тонкая.

    При микроскопическом исследовании в эндокарде выявляют слои, имеющие сходное строение с кровеносными сосудами. Так, со стороны поверхности, обращенной в полость сердца, эндокард выстлан эндотелием, состоящим из эндотелиоцитов, расположенных на базальной мембране. Рядом располагается подэндотелиальный слой, образованный рыхлой волокнистой соединительной тканью и содержащий очень много малодифференцированных камбиальных клеток. Также имеются мышечные клетки - миоциты и переплетающиеся эластические волокна. Наружный слой эндокарда, как и в кровеносных сосудах, состоит из рыхлой волокнистой соединительной ткани, содержащей мелкие кровеносные сосуды.

    Производными эндокарда являются предсердно-желудочковые (атриовентрикулярные) клапаны: в левой половине двустворчатый, в правой - трехстворчатый.

    Основу, или каркас, створки клапана формирует тонкая, но очень прочная структура - собственная, или основная, пластинка, образованная рыхлой волокнистой соединительной тканью. Прочность этого слоя обусловлена преобладанием волокнистого материала над клеточными элементами. В участках прикрепления двустворчатого и трехстворчатого клапанов соединительная ткань створок переходит в фиброзные кольца. С обеих сторон собственная пластинка покрыта эндотелием.

    Предсердная и желудочковая стороны створок клапанов имеют различное строение. Так, предсердная сторона створок гладкая с поверхности, имеет в собственной пластинке густое сплетение эластических волокон и пучки гладких мышечных клеток. Желудочковая сторона неровная, с выростами (сосочками), к которым прикреплены коллагеновые волокна так называемые сухожильные

    Рис. 79.

    а - окраска гематоксилином и эозином; б- окраска железным гематоксилином;

    А - эндокард; Б - миокард; В- эпикард: / - атипичные волокна; 2- кардиомиоциты

    нити (chordae tendinae); незначительное количество эластических волокон расположено лишь непосредственно под эндотелием.

    Миокард (miocardium) - средняя мышечная оболочка, представленная типичными клетками - кардиомиоцитами и атипичными волокнами, формирующими проводящую систему сердца.

    Сердечные миоциты (myociti cardiaci) выполняют сократительную функцию и образуют мощный аппарат поперечнополосатой мышечной ткани, так называемую рабочую мускулатуру.

    Поперечнополосатая мышечная ткань образована из тесно ана- стомозирующих (взаимосвязанных) клеток - кардиомиоцитов, в совокупности образующих единую систему сердечной мышцы.

    Кардиомиоциты имеют почти прямоугольную форму, длина клетки колеблется от 50 до 120 мкм, ширина - 15...20 мкм. В центральной части цитоплазмы расположено крупное ядро овальной формы, иногда встречаются двухъядерные клетки.

    В периферической части цитоплазмы насчитывают около сотни сократимых белковых нитей - миофибрилл, диаметром от 1 до 3 мкм. Каждая миофибрилла образована несколькими сотнями протофибрилл, которые обусловливают поперечнополосатую ис- черченность миоцитов.

    Между миофибриллами находится много митохондрий овальной формы и расположенных в виде цепочек. Для митохондрий сердечной мышцы характерно наличие большого количества крист, располагающихся так близко, что матрикса практически не видно. С наличием огромного количества митохондрий, содержащих ферменты и участвующих в окислительно-восстановительных процессах, связана способность сердца к непрерывной работе.

    Для сердечной поперечнополосатой мышечной ткани характерно наличие вставочных дисков (diski intercalati) - это участки контакта смежных кардиомиоцитов. В пределах вставочных дисков обнаруживают высокоактивные ферменты: АТФазу, дегидрогеназу, щелочную фосфатазу, что свидетельствует об интенсивном обмене веществ. Различают прямые и ступенчатые вставочные диски. Если клетки ограничены прямыми вставочными дисками, то общая длина протофибрилл будет одинаковая; если ступенчатыми вставочными дисками, то общая длина пучков протофибрилл будет разная. Объясняется это тем, что отдельные пучки протофибрилл прерываются в области вставочных дисков. Вставочные диски активно участвуют в передаче возбуждений от клетки к клетке. С помощью дисков миоциты соединяются в мышечные комплексы, или волокна (miofibra cardiaca).

    Между мышечными волокнами имеются анастамозы, которые обеспечивают сокращения миокарда как единого целого в предсердиях и желудочках.

    В миокарде различают многочисленные прослойки рыхлой волокнистой соединительной ткани, в которой много эластических и очень мало коллагеновых волокон. Здесь проходят нервные волокна, лимфатические и кровеносные сосуды, каждый миоцит контактирует с двумя и более капиллярами. Мышечная ткань прикрепляется к опорному скелету, расположенному между предсердиями и желудочками и в устьях крупных сосудов. Опорный скелет сердца образован плотными пучками коллагеновых волокон или фиброзными кольцами.

    Проводящая система сердца представлена атипичными мышечными волокнами (myofibra conducens), формирующими узлы: синусно-предсердный Кейт-Флека, расположенный в устье краниальной полой вены; предсердно-желудочковый Ашоф-Тавара - вблизи прикрепления створки трехстворчатого клапана; ствол и разветвления предсердно-желудочковой системы - пучок Гиса (рис. 80).

    Атипичные мышечные волокна способствуют последовательным сокращениям предсердий и желудочков на протяжении сердечного цикла - автоматизму сердца. Поэтому отличительной особенностью проводящей системы является наличие густого сплетения нервных волокон на атипичных мышечных волокнах.

    Мышечные волокна проводящей системы имеют различные размеры и направление. Например, в синусно-предсердном узле волокна тонкие (от 13 до 17 мкм) и в середине узла густо переплетены, а по мере отдаления к периферии волокна приобретают более правильное расположение. Для этого узла характерно наличие широких прослоек соединительной ткани, в которых преобладают эластические волокна. Предсердно-желудочковый узел имеет сходное строение.

    Мышечные клетки проводящей системы (myociti conducens cardiacus) разветвлений ножек ствола проводящей системы (волокна Пуркинье) располагаются небольшими пучками, окруженными прослойками рыхлой волокнистой соединительной ткани. В области желудочков сердца атипичные волокна имеют большее поперечное сечение, чем в других участках проводящей системы.


    Рис. 80.

    / - венечный синус; 2-правое предсердие; 3 - трехстворчатый клапан; -/-каудальная полая вена; 5 - перегородка между желудочками; б - разветвления пучка Гиса; 7- правый желудочек; 8- левый желудочек; 9- пучок Гиса; /0 - двустворчатый клапан; 11- узел Ашоф-Тавара; 12- левое предсердие; 13 -синусно-предсердный узел; /-/-краниальная полая вена

    По сравнению с клетками рабочей мускулатуры атипичные волокна проводящей системы имеют ряд отличительных признаков. Волокна крупного размера и неправильной овальной формы. Ядра крупные и светлые, не всегда занимают строго центральное положение. В цитоплазме много саркоплазмы, но мало миофибрилл, вследствие чего при окраске гематоксилином и эозином атипичные волокна светлые. В саркоплазме клеток много гликогена, но мало митохондрий и рибосом. Обычно миофибриллы располагаются по периферии клеток и густо переплетаются между собой, но не имеют такой строгой ориентации, как у типичных сердечных миоцитов.

    Эпикард (epicardi um) - наружная оболочка сердца. Представляет собой висцеральный листок серозной оболочки, в основе которой лежит рыхлая волокнистая соединительная ткань. В области предсердий слой соединительной ткани очень тонкий и в основном из эластических волокон, которые плотно срастаются с миокардом. В эпикарде желудочков кроме эластических волокон обнаруживают пучки коллагеновых, составляющих поверхностный более плотный слой.

    Эпикард выстилает внутреннюю поверхность средостения, образуя наружную оболочку околосердечной полости, называемой париетальным листком перикарда. Между эпикардом и перикардом формируется сердечная полость, заполненная небольшим количеством серозной жидкости.

    Перикард -трехслойная околосердечная сумка, в которой находится сердце. Перикард состоит из околосердечной плевры, фиброзного листка средостения и париетального листка эпикарда. Перикард крепится к грудной кости связками, а к позвоночному столбу сосудами, входящими и выходящими из сердца. Основу перикарда также составляет рыхлая волокнистая соединительная ткань, но более выраженная по сравнению с таковой в эпикарде. Из перикарда сельскохозяйственных животных можно получать заменители дубленой кожи.

    Поверхность эпикарда и наружная поверхность перикарда, обращенные к перикардиальной полости, покрыты слоем мезо- телия.

    Сосуды сердца, главным образом венечные, начинаются от аорты, сильно разветвляются во всех оболочках на сосуды разного диаметра, вплоть до капилляров. Из капилляров кровь переходит в коронарные вены, впадающие в правое предсердие. В венечных артериях имеется много эластических волокон, создающих мощные опорные сети. Лимфатические сосуды в сердце образуют густые сети.

    Нервы сердца образуются из ветвей пограничного симпатического ствола, из волокон блуждающего нерва и спинномозговых волокон. Во всех трех оболочках имеются нервные сплетения, сопровождаемые интрамуральными ганглиями. В сердце встречаются свободные, а также инкапсулированные нервные окончания. Рецепторы обнаруживаются в соединительной ткани на мышечных волокнах и в оболочках сосудов. Чувствительные нервные окончания воспринимают изменения просвета кровеносных сосудов, а также сигналы при сокращении и растяжении мышечных волокон.

    В состав сердечно-сосудистой системы входят сердце, кровеносные и лимфатические сосуды, кровь и лимфа. С этой системой связаны кроветворные органы, выполняющие одновременно защитные функции.

    Сердце - центральный орган, приводящий кровь в движение, состоит из трех оболочек (эндокард, миокард, эпикард), располагается в околосердечной сумке, называемой перикардом.

    Эндокард выстилает изнутри полость сердца и клапанов, представлен эндотелиальным слоем и подлежащей рыхлой волокнистой неоформленной соединительной тканью, содержащей гладкомышечные клетки.

    Миокард представлен поперечнополосатыми клетками - кардиомиоцитами, образующими так называемую рабочую мускулатуру, и атипическими мышечными волокнами, формирующими проводящую систему, которая способствует ритмическим сокращениям предсердий и желудочков на протяжении сердечного цикла (автоматизм).

    Эпикард и перикард - это серозные оболочки, в основе строения имеют рыхлую волокнистую неоформленную соединительную ткань, снаружи покрытую мезотелием. Кровеносные сосуды представлены артериями, несущими кровь от сердца, венами, по которым кровь течет к сердцу, и микроциркуляторным руслом (капилляры, артери- олы, венулы, артериовенозные анастомозы).

    Общей закономерностью в строении артерий и вен является наличие трех оболочек - внутренней, средней, наружной.

    Внутренняя оболочка состоит из эндотелия и подэндотелиального слоя из рыхлой волокнистой неоформленной соединительной ткани.

    Средняя оболочка состоит из гладкомышечных клеток, на поверхности которых располагаются эластические волокна - своеобразные «сухожилия», имеющие радиальное и дугообразное расположение, что при растяжении придает сосуду эластичность, а при сдавливании - упругость. Гладкомышечные клетки и эластические волокна располагаются в виде спирали, что подобно пружине обеспечивает возврат сосудистой оболочки после растяжения пульсовой волной крови.

    Наружная оболочка {адвентициальная) образована рыхлой волокнистой неоформленной соединительной тканью. В этой оболочке имеются сосуды сосудов и нервы (vasa vasorum, nervi vasorum).

    Отличительные признаки артерий и вен обусловлены скоростью движения и давлением крови. В артериях мышечные элементы более выражены; в сосудах мышечного типа имеются внутренняя и наружная эластическая мембрана, располагающиеся с двух сторон от мышечной оболочки; в артериях эластического типа в средней оболочке имеются окончатые эластические мембраны. Вены имеют складки внутренней оболочки - клапаны, физиологическая роль которых связана с механизмом, способствующим движению венозной крови к сердцу и препятствующим обратному току крови. Основу клапана составляет рыхлая волокнистая неоформленная соединительная ткань, с обеих сторон покрытая эндотелиальными клетками.

    Лимфатические сосуды имеют сходную структуру с венами, что объясняется сходством лимфо- и гемодинамических условий: наличие низкого давления и направление тока жидкости от органов к сердцу. Основной особенностью строения лимфатических сосудов, как и вен, является наличие клапанов, в участке расположения которых сосуды расширяются.

    Лимфатические сосуды самого малого диаметра (лимфатические капилляры) имеют просвет в несколько раз шире, чем кровеносные. Множество капилляров, представляющих собой своеобразную дренажную систему, сливаются в лимфатические сосуды, отводящие лимфу от органов в самые крупные лимфатические сосуды или стволы, - грудной проток и правый лимфатический проток, которые впадают в полые вены.

    Препарат «Сердце быка» (гематоксилин и эозин). При малом увеличении микроскопа (х10) выявляются эндокард и участок миокарда. Внутренний слой эндокарда, обращенный в сердечную полость, состоит из эндотелиальных клеток, расположенных на базальной мембране, в подэндотелиальном слое выявляются волокна рыхлой волокнистой соединительной ткани, малодифференцированные камбиальные клетки и отдельно расположенные гладкомышечные клетки (рис. 73).

    Между эндокардом и мышечными клетками типичной рабочей мускулатуры выявляются волокна Пуркинье. Атипические волокна проводящей системы характеризуются рядом отличительных признаков: имеют крупные размеры, неправильную овальную форму, ядра - крупные и светлые, расположенные по периферии. В волокнах много саркоплазмы и гликогена, мало митохондрий и рибосом, обычно небольшое число миофибриллы располагается по периферии клеток, вследствие чего при окраске гематоксилином и эозином волокна очень светлые.

    Препарат «Капилляры, артериолы, венулы мягкой оболочки головного мозга кошки» (гематоксилин и эозин). Для более полного представления о сосудах микроциркуляторного русла нужно рассмотреть тотальный препарат, где были бы видны все слои сосудов - как с поверхности, так и в оптическом сечении. Рассматривая препарат при слабом увеличении микроскопа (х10), можно выявить тоненькие трубочки различного диаметра, образующие сеть. При сильном увеличении микроскопа (х40) во всех сосудах во внутреннем слое выявляются ядра эндотелиальных клеток (рис. 74). Артериолы имеют меньший диаметр, чем венулы, и характеризуются наличием среднего слоя, состоящего из гладкомышечных клеток, ядра которых

    Рис. 73

    / - эндокард; II - миокард: 7 - волокна Пуркинье; 2- кардимоиоциты

    Рис. 74 . Сосуды микроциркуляторного русла:


    • 7 - капилляр; 2 - артериола; 3 - венула;
    • 4 - эндотелиальный слой;
    • 5 - адвентициальные клетки;
    • 6 - гладкомышечные клетки;
    • 7 - адвентициальные клетки расположенных в виде спирали, что придает сосуду характерный исчерченный вид. Венула имеет широкий просвет с большим количеством эритроцитов. Наружный слой у всех сосудов образован отдельно расположенными адвентициальными клетками.

    Препарат «Бедренная артерия кошки» (гематоксилин и эозин). При слабом увеличении микроскопа (х10) в артерии мышечного типа различаются внутренняя, средняя и наружная оболочки. При сильном увеличении микроскопа (х40) во внутренней оболочке найти, нарисовать и обозначить: эндотелиальный слой, подэндотелиальный слой и внутреннюю эластическую мембрану (рис. 75, а).

    Средняя оболочка состоит из гладкомышечных клеток, на поверхности которых располагаются эластические волокна; образующийся


    Рис. 75 а - артерия: 7 - ядра эндотелиальных клеток; 2 - внутренняя эластическая мембрана; 3 - гладкомышечные клетки; 4 - наружная эластическая мембрана; 5 - адвентициальная оболочка; 6 - сосуды сосудов; 6 - вена: 7 - ядра эндотелиальных клеток; 2 - гладкомышечные клетки; 3 - адвентициальная оболочка; 4 - сосуды единым эластическим каркас создает постоянный открытый просвет сосуду и непрерывность тока крови. На границе между средней и наружной оболочками располагается наружная эластическая мембрана, состоящая из продольно расположенных переплетающихся эластических волокон, которые иногда приобретают вид сплошной мембраны. Наружная оболочка состоит из рыхлой волокнистой неоформленной соединительной ткани, волокна которой имеют преимущественно косое и продольное направление. Между волокнами находятся адвентициальные и жировые клетки.

    Препарат «Бедренная вена кошки» (гематоксилин и эозин). При слабом увеличении микроскопа (х10) в вене мышечного типа с сильным развитием мышечных элементов различаются внутренняя, средняя и наружная оболочки (рис. 75, б). При сильном увеличении микроскопа (х40) во внутренней оболочке выявляется эндотелий и подэндотелиальный слой, в котором имеются пучки гладких мышечных клеток, расположенных продольными слоями. Средняя оболочка содержит пучки гладких мышечных клеток, расположенных циркулярными слоями, выше основания клапана средняя оболочка истончается. Ниже места прикрепления клапана мышечные пучки перекрещиваются, создавая утолщение. В наружной оболочке, образованной рыхлой волокнистой неоформленной соединительной тканью, продольно расположены пучки гладких мышечных клеток. Просвет вен спавшийся, и здесь выявляются клетки крови, преимущественно оранжевого цвета эритроциты.

    Препарат «Аорта свиньи» (гематоксилин и пикроиндигокармин). При слабом увеличении микроскопа (х10) в сосуде эластического типа различаются внутренняя, средняя и наружная оболочки, относительная толщина которых значительно преобладает по сравнению с таковыми сосудов мышечного типа (рис. 76). Изучая препарат, при сильном увеличении микроскопа (х40), сопоставьте строение оболочек аорты и артерии мышечного типа, уяснив и связав морфологические различия с функциональными особенностями сосудов различного диаметра.

    Внутренняя оболочка выстлана эндотелием, состоящим из многообразных по форме и размерам клеток. Очень выражен подэндотелиальный слой Лангганса, состоящий из рыхлой волокнистой неоформленной соединительной ткани с множеством адвентициальных клеток звездчатой формы, выполняющих камбиальную функцию. Внутренняя оболочка образует полулунные клапаны. В межклеточном веществе внутренней оболочки выявляется большое количество кислых мукополисахаридов и фосфолипидов, представленных холестерином и жирными кислотами.

    Средняя оболочка состоит из 40-50 эластических окончатых мембран (membranae fenestratae), связанных между собой эластическими

    Рис. 76 . Аорта:

    / - эндотелиальный и подэндотелиальный слои;

    • 2 - эластические мембраны;
    • 3 - адвентициальная оболочка;
    • 4 - сосуды сосудов: - артерия; 46 - вена; 5 - жировые клетки

    волокнами. Между мембранами расположены небольшое количество фибробластов и гладкомышечные клетки, имеющие косое по отношению к мембранам направление. Строение средней оболочки обеспечивает эластичность аорты и смягчение толчков крови, выталкиваемой в сосуд во время систолы левого желудочка сердца, а также способствует поддержанию тонуса сосудистой оболочки во время диастолы.

    Наружная оболочка построена из рыхлой волокнистой неоформленной соединительной ткани со значительным содержанием эластических и коллагеновых волокон, имеющих главным образом продольное направление. В средней и наружной оболочке проходят сосуды сосудов и нервные стволики.

    Контрольные вопросы

    • 1. Какова структура эндокарда?
    • 2. Каково строения типичных кардиомиоцитов и атипичных проводящих волокон миокарда?
    • 3. Каковы особенности строения сосудов микроциркуляторного русла?
    • 4. Как отличить на препаратах артериолы от венул?
    • 5. Какие общие характеристики и какие отличия имеют артерии и вены мышечного типа?
    • 6. Какие признаки характерны для сосудов эластического типа?
    • 7. Чем объясняется сходство строения и наличия клапанов в венозных и лимфатических сосудах?