Факты о человеческой крови, которых вы, возможно, не знали. Кровь Откуда появляется кровь в организме

Энциклопедичный YouTube

    1 / 3

    ✪ Из чего состоит кровь

    ✪ Внутренняя среда организма. Состав и функции крови. Видеоурок по биологии 8 класс

    ✪ BTS "Blood Sweat & Tears" mirrored Dance Practice

    Субтитры

    Я не люблю это делать, но время от времени мне нужно сдавать кровь. Все дело в том, что я боюсь это делать, совсем как маленький ребенок. Я очень не люблю уколы. Но, естественно, я заставляю себя. Сдаю кровь и стараюсь отвлечь себя, пока кровь наполняет иглу. Обычно я отворачиваюсь, и все проходит быстро и практически незаметно. И я выхожу из клиники абсолютно счастливый, так как все закончилось и мне больше не надо об этом думать. Сейчас я хочу проследить путь, который проделывает кровь после того, как ее забрали. На первом этапе кровь попадает в пробирку. Это происходит непосредственно в день забора крови. Обычно такая пробирка стоит наготове и ждет, когда в нее нальют кровь. Это крышка моей пробирки. Внутри пробирки нарисуем кровь. Полная пробирка. Это не простая пробирка, ее стенки покрыты химическим веществом, которое предотвращает свертывание крови. Нельзя допустить свертывания крови, так как это чрезвычайно затруднит дальнейшее ее исследование. Именно поэтому и используется специальная пробирка. Кровь в ней не свернется. Чтобы убедиться в том, что с ней все в порядке, пробирку слегка встряхивают, проверяя густоту образца.. Теперь кровь попадает в лабораторию. В лаборатории есть особый аппарат, в который попадает моя кровь и кровь других людей, посетивших клинику в этот день. Вся наша кровь помечена и поставлена в аппарат. И что же делает аппарат? Он быстро вращается. Крутится по-настоящему быстро. Все пробирки закреплены, они не улетят, и они, соответственно, крутятся в этом аппарате. Вращая пробирки, аппарат создает силу под названием "центробежная сила". А весь процесс называется "центрифугирование". Давайте запишу. Центрифугирование. А сам аппарат называется центрифугой. Пробирки с кровью вращаются в какую-либо сторону. И как результат кровь начинает разделяться. Тяжелые частицы отходят к донышку пробирки, а менее плотная часть крови поднимается к крышке. После того как, кровь в пробирке подверглась центрифугированию, она будет выглядеть следующим образом. Сейчас я попытаюсь это изобразить. Пусть, это будет пробирка до вращения. До вращения. А это пробирка после вращения. Это ее вид после. Итак, на что же похожа пробирка после центрифугирования? Ключевым отличием будет то, что вместо однородной жидкости, которая у нас была, мы получаем внешне совершенно другую жидкость. Различимы три разных слоя, которые я сейчас для вас нарисую. Итак, это первый слой, самый внушительный, составляющий большую часть нашей крови. Он находится здесь, наверху. У него самая маленькая плотность, именно поэтому он остается возле крышки. Фактически он составляет почти 55% всего объема крови. Мы называем его плазмой. Если вы когда-нибудь слышали слово плазма, теперь вы знаете, что оно означает. Возьмем каплю плазмы и попробуем узнать ее состав. 90% плазмы - просто вода. Интересно, не так ли. Просто вода. Основная часть крови - плазма, и большая часть - вода. Основная часть крови - плазма, большая часть плазмы - вода. Вот почему людям говорят: "Пейте больше воды, чтобы не было обезвоживания" так как большая часть крови - это вода. Это верно и для всего остального организма, но в данном случае я делаю акцент на крови. Итак что же остается? Мы уже знаем, что 90% плазмы - вода, но это еще не все 100%. 8% плазмы состоит из белка. Давайте я покажу вам несколько примеров такого белка. Это альбумин. Альбумин, если вы с ним незнакомы, - это важный белок в плазме крови, который делает невозможным вытекание крови из кровеносных сосудов. Еще один важный белок - антитело. Я уверен, что вы о нем слышали, антитела связаны с нашей иммунной системой. Они следят за тем, чтобы вы были красивыми и здоровыми, не страдали от инфекций. И еще один вид белка, о котором нужно помнить, - фибриноген. Фибриноген. Он принимает очень активное участие в свертывании крови. Конечно, помимо его существуют и другие факторы свертывания. Но о них - чуть позже. Мы перечислили белки: альбумин, антитело, фибриноген. Но у нас все еще остается 2%, их составляют такие вещества, как гормоны, инсулин, например. Также там присутствуют электролиты. Например, натрий. Также в эти 2% входят питательные вещества. Такие, например, как глюкоза. Все эти вещества составляют нашу плазму. Множество веществ, о которых мы говорим, когда обсуждаем кровь, содержатся в плазме, включая витамины и другие подобные вещества. Теперь рассмотрим следующий слой, который находится прямо под плазмой и выделен белым. Этот слой составляет очень небольшую часть крови. Меньше 1%. И образуют его белые клетки крови, а также тромбоциты. Тромбоциты. Это клеточные части нашей крови. Их очень мало, но они очень важны. Под этим слоем находится самый плотный слой - красные клетки крови. Это последний слой, и его доля будет составлять примерно 45%. Вот они. Красные клетки крови, 45%. Это красные клетки крови, внутри которых содержится гемоглобин. Здесь нужно отметить, что не только плазма содержит белки (о чем мы упоминали в начале видео), белые и красные клетки крови также содержат в себе очень большое количество белков, о чем не следует забывать. Как раз примером такого белка является гемоглобин. Теперь сыворотка - слово, которое вы наверняка слышали. Что же это такое? Сыворотка - это практически то же самое, что и плазма. Сейчас я обведу все, что входит в состав сыворотки. Все, что обведено голубой линией - это сыворотка. Я не включил в состав сыворотки фибриноген и факторы свертываемости крови. Итак, плазма и сыворотка очень похожи за исключением того, что в сыворотке нет фибриногена и факторов свертываемости крови. Давайте рассмотрим теперь красные клетки крови, что мы можем узнать? Возможно, вы слышали такое слово, как гематокрит. Так вот гематокрит составляет 45% объема крови на данном рисунке. Это означает, что гематокрит равен объему, который занимают красные клетки крови, деленному на общий объем. В данном примере общий объем составляет 100%, объем красных кровяных клеток равен 45%, поэтому я знаю, что объем гематокрита составил бы 45%. Это просто процент, который составляют красные клетки крови. И его очень важно знать, так как красные клетки крови переносят кислород. Для того чтобы подчеркнуть значение гематокрита, а также представить несколько новых слов, нарисую три маленьких пробирки крови. Скажем, у меня есть три пробирки: одна, две, три. В них находится кровь разных людей. Но эти люди одного пола и возраста, так как количество гематокрита зависит от возраста, пола и даже от того, на какой высоте над уровнем моря вы живете. Если вы живете на вершине горы, ваш уровень гематокрита будет разниться с уровнем гематокрита жителей равнин. На гематокрит влияет множество факторов. У нас есть три человека, которые очень похожи по таким факторам. Плазма крови первого человека, нарисую ее здесь, занимает такую часть от общего объема крови. Плазма второго занимает вот такую часть от общего объема крови. А плазма третьего занимает наибольшую часть общего объема крови, скажем, весь объем до низа. Итак, вы прокрутили все три пробирки, и вот что получили. Конечно, во всех трех есть белые клетки крови, нарисую их. И у всех есть тромбоциты, мы говорили, что это тонкий слой меньше 1%. И остаток составляют красные клетки крови. Это слой красных клеток крови. Их очень много у второго человека. А у третьего - меньше всего. Красные клетки крови занимают вовсе не большую часть от общего объема. Итак, если бы мне было нужно оценивать состояние этих трех людей, я бы сказал, что у первого человека все в порядке. У второго - много красных клеток крови. Они численно преобладают. Мы наблюдаем действительно большой процент красных кровяных клеток. Действительно большой. Значит, я могу сделать вывод, что у этого человека полицитемия. Полицитемия - это медицинский термин, означающий, что количество красных клеток крови очень велико. Другими словами, у него повышенный гематокрит. А у этого третьего человека очень низкое количество красных клеток крови по отношению к общему объему. Вывод - у него анемия. Если теперь вы услышите термин "анемия", или же "полицитемия",вы будете знать, что речь о том, какой объем от общего объема крови занимают красные кровяные клетки. Увидимся с вами в следующем видео. Subtitles by the Amara.org community

Свойства крови

  • Суспензионные свойства зависят от белкового состава плазмы крови, и от соотношения белковых фракций (в норме альбуминов больше, чем глобулинов).
  • Коллоидные свойства связаны с наличием белков в плазме. За счёт этого обеспечивается постоянство жидкого состава крови, так как молекулы белка обладают способностью удерживать воду.
  • Электролитные свойства зависят от содержания в плазме крови анионов и катионов . Электролитные свойства крови определяются осмотическим давлением крови.

Состав крови

Весь объём крови живого организма условно делится на периферический (находящийся и циркулирующий в русле сосудов) и кровь, находящуюся в кроветворных органах и периферических тканях. Кровь состоит из двух основных компонентов : плазмы и взвешенных в ней форменных элементов . Отстоявшаяся кровь состоит из трёх слоёв: верхний слой образован желтоватой плазмой крови, средний, сравнительно тонкий серый слой составляют лейкоциты , нижний красный слой образуют эритроциты . У взрослого здорового человека объём плазмы достигает 50-60 % цельной крови, а форменных элементов крови составляют около 40-50 %. Отношение форменных элементов крови к её общему объёму, выраженное в процентах или представленное в виде десятичной дроби с точностью до сотых, называется гематокритным числом (от др.-греч. αἷμα - кровь, κριτός - показатель) или гематокритом (Ht). Таким образом, гематокрит - часть объёма крови, приходящаяся на эритроциты (иногда определяется как отношение всех форменных элементов (эритроциты , лейкоциты, тромбоциты) к общему объёму крови ). Определение гематокрита проводится с помощью специальной стеклянной градуированной трубочки - гематокрита , которую заполняют кровью и центрифугируют . После этого отмечают, какую её часть занимают форменные элементы крови (лейкоциты , тромбоциты и эритроциты). В медицинской практике для определения показателя гематокрита (Ht или PCV) всё шире распространяется использование автоматических гематологических анализаторов .

Плазма

Форменные элементы

У взрослого человека форменные элементы крови составляют около 40-50 %, а плазма - 50-60 %. Форменные элементы крови представлены эритроцитами , тромбоцитами и лейкоцитами :

  • Эритроциты (красные кровяные тельца ) - самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке . В эритроцитах содержится железосодержащий белок - гемоглобин . Он обеспечивает главную функцию эритроцитов - транспорт газов, в первую очередь - кислорода . Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин , который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие углекислый газ .

Кровь требуется пострадавшим от ожогов и травм , в результате массивных кровотечений : при проведении сложных операций , в процессе тяжёлых и осложнённых родах , а больным гемофилией и анемией - для поддержания жизни. Кровь также жизненно необходима онкологическим больным при химиотерапии. Каждый третий житель Земли хоть раз в жизни нуждается в донорской крови.

Кровь, взятая от донора (донорская кровь), используется в научно-исследовательских и образовательных целях; в производстве компонентов крови, лекарственных средств и медицинских изделий. Клиническое использование донорской крови и (или) её компонентов связано с трансфузией (переливанием) реципиенту в лечебных целях и созданием запасов донорской крови и (или) её компонентов .

Заболевания крови

  • Анемия (греч. αναιμία малокровие ) - группа клинико-гематологических синдромов , общим моментом для которых является снижение концентрации гемоглобина в циркулирующей крови, чаще при одновременном уменьшении числа эритроцитов (или общего объёма эритроцитов). Термин «анемия» без детализации не определяет конкретного заболевания, то есть анемию следует считать одним из симптомов различных патологических состояний;
  • Гемолитическая анемия - усиленное разрушение эритроцитов;
  • Гемолитическая болезнь новорожденных (ГБН) - патологическое состояние новорождённого, сопровождающееся массивным распадом эритроцитов, в процессе гемолиза , вызванного иммунологическим конфликтом матери и плода в результате несовместимости крови матери и плода по группе крови или резус-фактору . Таким образом, форменные элементы крови плода становятся для матери чужеродными агентами (антигенами), в ответ на которые вырабатываются антитела , проникающие через гематоплацентарный барьер и атакующие эритроциты крови плода, в результате чего уже в первые часы после рождения у ребёнка начинается массированный внутрисосудистый гемолиз эритроцитов. Является одной из основных причин развития желтухи у новорождённых;
  • Геморрагическая болезнь новорождённых - коагулопатия , развивающаяся у ребёнка между 24 и 72 часами жизни и часто связана с нехваткой витамина K , вследствие дефицита которого возникает недостаток биосинтеза в печени факторов свертывания крови II, VII, IX, X, C, S. Лечение и профилактика заключается в добавлении в рацион новорождённым вскоре после рождения витамина K ;
  • Гемофилия - низкая свёртываемость крови;
  • Диссеминированное внутрисосудистое свёртывание крови - образование микротромбов ;
  • Геморрагический васкулит (аллерги́ческая пу́рпура ) - наиболее распространённое заболевание из группы системных васкулитов , в основе которого лежит асептическое воспаление стенок микрососудов, множественное микротромбообразование, поражающее сосуды кожи и внутренних органов (чаще всего почек и кишечника). Основная причиной, вызывающая клинические проявления данного заболевания - циркуляция в крови иммунных комплексов и активированных компонентов системы комплемента ;
  • Идиопатическая тромбоцитопеническая пурпура (Болезнь Верльгофа ) - хроническое волнообразно протекающее заболевание, представляющее собой первичный геморрагический диатез , обусловленный количественной и качественной недостаточностью тромбоцитарного звена гемостаза ;
  • Гемобластозы - группа неопластических заболеваний крови, условно разделена на лейкемические и нелейкемические:
    • Лейкоз (лейкемия) - клональное злокачественное (неопластическое) заболевание кроветворной системы;
  • Анаплазмоз - форма заболевания крови у домашних и диких животных, переносчиками которой являются клещи рода Анаплазма (лат. Anaplasma ) семейства лат. Ehrlichiaceae .

Патологические состояния

  • Гиповолемия - патологическое уменьшение объёма циркулирующей крови;
  • Гиперволемия - патологическое увеличение объёма циркулирующей крови;
Кроветворение называется гемопоэзом. Гемопоэз у человека осуществляется кроветворными органами, прежде всего миелоидной тканью красного костного мозга. Некоторая часть лимфоцитов развивается в лимфатических узлах, селезёнке, вилочковой железе (тимусе) , которые совместно с красным костным мозгом образуют систему кроветворных органов.

Предшественниками всех клеток — форменных элементов крови являются плюрипотентные гемопоэтические стволовые клетки костного мозга, которые могут дифференциироваться двумя путями: в предшественников миелоидных клеток (миелопоэз) и в предшественников лимфоидных клеток (лимфопоэз) .

Миелопоэз
При миелопоэзе (myelopoesis; миело- + греч. poiesis выработка, образование) в костном мозге образуются все форменные элементоы крови, кроме лимфоцитов. Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Ткань, в которой происходит миелопоэз, называется миелоидной.

Предшественники лейкоидных клеток, проходя несколько стадий дифференциации, образуют лейкоциты различных типов (лимфопоэз) , в случае миелопоэза дифференциация ведёт к образованию эритроцитов, гранулоцитов, моноцитов и тромбоцитов. Особенностью миелопоэза человека является изменение кариотипа клеток в процессе дифференциации, так, предшественниками тромбоцитов являются полиплоидные мегакариоциты, а эритробласты при трансформации в эритроциты лишаются ядер.

Лимфопоэз
Лимфопоэз происходит в лимфатических узлах, селезёнке, тимусе и костном мозге.

Кровь создается в костном мозге.

Кровь в организме человека - это транспортирующая система, она переносит питательные вещества и кислород от одних органов к другим, обеспечивает вывод "отходов" и шлаков, участвует в защите от инфекций. Поэтому все изменения в состоянии человека - небольшое воспаление, недостаточное питание, усталость, различные заболевания - сразу отражаются на составе крови. По анализу крови можно судить о работе печени, иммунной системы, селезенки и многих других органов. Прежде чем начать курс лечения, врач всегда направляет больного на анализ крови, чтобы выяснить причину болезни.

Костный мозг — важнейший орган кроветворной системы, осуществляющий гемопоэз, или кроветворение — процесс создания новых клеток крови взамен погибающих и отмирающих. Он также является одним из органов иммунопоэза. Для иммунной системы человека костный мозг вместе с периферическими лимфоидными органами является функциональным аналогом так называемой фабрициевой сумки, имеющейся у птиц.

Костный мозг — единственная ткань взрослого организма, в норме содержащая большое количество незрелых, недифференцированных и низкодифференцированных клеток, так называемых стволовых клеток, близких по строению к эмбриональным клеткам. Все другие незрелые клетки, например незрелые клетки кожи, всё же имеют большую степень дифференцировки и зрелости, чем клетки костного мозга, и имеют уже заданную специализацию.

Красный, или кроветворный, костный мозг у человека находится, в основном, внутри тазовых костей и, в меньшей степени, внутри эпифизов длинных трубчатых костей и, в ещё меньшей степени, внутри тел позвонков. В норме он защищён барьером иммунологической толерантности с целью недопущения уничтожения незрелых и созревающих клеток собственными лимфоцитами организма. При нарушении иммунологической толерантности лимфоцитов к клеткам костного мозга развиваются аутоиммунные цитопении, в частности аутоиммунные тромбоцитопении, аутоиммунные лейкопении, и даже апластическая анемия.[источник не указан 171 день]

Красный костный мозг состоит из фиброзной ткани стромы и собственно кроветворной ткани. В кроветворной ткани костного мозга выделяют несколько ростков гемопоэза (так же называемых линиями, англ. cell lines), количество которых увеличивается по мере созревания. Зрелых ростков в красном костном мозге пять: эритроцитарный, гранулоцитарный, лимфоцитарный, моноцитарный и макрофагальный. Каждый из этих росков даёт, соответственно, следующие клетки и постклеточные элементы: эритроциты; эозинофилы, нейтрофилы и базофилы; лимфоциты; моноциты; тромбоциты.

Развитие ростков гемопоэза представляет собой сложный процесс дифференцировки клеток. Родоначальники всех ростков названы полипотентными клетками за их способность дифференцироваться в клетки всех ростков гемопоэза под действием цитокинов. Так же эти клетки называют колониеобразующими элементами (КОЭ) за их локальное расположение в костном мозге. Количество полипотентных стволовых клеток, то есть клеток, которые являются самыми первыми предшественниками в ряду кроветворных клеток, в костном мозге ограничено, и они не могут размножаться, сохраняя полипотентность, и тем самым восстанавливать численность. Ибо при первом же делении полипотентная клетка выбирает путь развития, и её дочерние клетки становятся либо мультипотентными клетками, у которых выбор более ограничен (только в эритроцитарный или лейкоцитарный ростки), либо мегакариобластами и затем мегакариоцитами — клетками, от которых отшнуровываются тромбоциты.

Процесс закладки и дифференцировки клеток крови и их предшественников начинается на ранних этапах внутриутробного развития. Первые кроветворные клетки образуются на 3 неделе эмбриогенеза в желточном мешке. Уже через несколько месяцев развития функции главного гемопоэтического органа берет на себя печень. Постепенно гемопоэз начинается в других органах – тимусе, селезенке и костном мозге. В постнатальный период образование Т- и В-лимфоцитов (лимфопоэз) происходит в костном мозге, тимусе, селезенке, лимфатических узлах, пейеровых бляшках кишечника; дифференцировка эритроцитов, тромбоцитов и гранулоцитов (миелопоэз) – в костном мозге.

Тимус

Тимус - важный орган кроветворения у детей и подростков.

Это центральный лимфоидный орган, который располагается в верхних отделах средостения. Своего максимального развития тимус достигает в период полового созревания, затем подвергается обратному развитию. Однако никогда не замещается жировой тканью полностью.

В этом органе происходит созревание Т-лимфоцитов и их клональная селекция. Он состоит из двух крупных долей, которые разделяются на более мелкие дольки. В каждой из них выделяют два слоя (корковый и мозговой), которые тесно связаны между собой. В корковой зоне находятся менее зрелые тимоциты, сюда попадают предшественники Т-клеток из костно-мозговых очагов кроветворения.

Костный мозг

В организме человека костный мозг представлен двумя видами – желтым и красным. Последний в постнатальном периоде становится центральным органом гемопоэза. У новорожденного он занимает костно-мозговые полости почти на 100 %. У взрослого человека кроветворная ткань сохраняется преимущественно в центральных отделах скелета (костях черепа и таза, грудной клетки, эпифизах некоторых трубчатых костей).

Собственно кроветворная ткань имеет желеобразную консистенцию и располагается внутри костных трабекул (перегородок) экстраваскулярно, то есть возле сосудов. Сосудистая система играет важную роль в организации костного мозга. Его питание происходит за счет основной питающей артерии и ее ветвей. Кортикальные капилляры проникают в полость костного мозга, образуя разветвленную систему костномозговых синусов, из которых кровь собирается в центральный венозный синус, а затем – в выносящие сосуды.

Желтый костный мозг занимает остальную часть костно-мозговых полостей. Он не активен в отношении кроветворения и состоит из жировой ткани. Однако в условиях сильного гемопоэтического стресса он может превращаться в красный костный мозг.

Селезенка

Селезенка принимает активное участие в кроветворении в период эмбриогенеза и после рождения. В течение всей жизни она выполняет функции периферического лимфоидного органа. В нем выделяют участки красной и белой пульпы:

  • Первая из них образована сетью синусоидов, заполненных макрофагами и эритроцитами.
  • В белой пульпе находятся артерии с окружающей их лимфоидной тканью, заселенной Т-лимфоцитами. В-лимфоциты также располагаются в этой зоне, но более удаленно от артерий.

Селезенка одновременно является депо и местом разрушения красных кровяных телец, выполнивших свои функции или имеющих аномальную структуру. Кроме того, она является органом иммунной системы и участвует в элиминации из организма патогенных микробов и антигенов.

Лимфатические узлы

Лимфоузлы являются периферическим органом кроветворения и важной составляющей частью иммунной системы. Они представляют собой образования овальной или округлой формы, состоящие из сети ретикулярных волокон, между которыми находятся лимфоциты, макрофаги и дендритные клетки. С морфологической точки зрения лимфатический узел можно разделить на три зоны – корковую, субкапсулярную и мозговую:

  • В первой из них располагаются В-лимфоциты и макрофаги, образующие первичные фолликулы. После антигенной стимуляции в этой области формируются вторичные фолликулы.
  • Субкапсулярная зона заполнена Т-лимфоцитами.
  • В медуллярной зоне находятся более зрелые клетки, большинство из которых способны вырабатывать антитела.

Несмотря на то, что лимфоузлы располагаются группами по ходу лимфатических сосудов и рассредоточены по всему организму на значительном расстоянии друг от друга, они тесно взаимосвязаны между собой и выполняют единые функции.

Их формирование заканчивается к 12-15 годам, после 20 лет начинается процесс возрастной инволюции.

Пейеровы бляшки представляют собой скопления лимфоидной ткани по ходу тонкой кишки, их строение аналогично лимфоидным фолликулам лимфатических узлов.

Заключение


Лимфатические узлы - периферический орган кроветворения. В них располагаются Т- и В-лимфоциты.

Все кроветворные органы объединены в единую систему периферическим кровотоком. Они обеспечивают в организме важные функции, постоянно обновляя состав крови. Причем эта система способна образовывать огромное количество клеток определенного вида в нужное время и в нужном месте.

Кровь – это жидкая соединительная ткань красного цвета, которая все время находится в движении и выполняет много сложных и важных для организма функций. Она постоянно циркулирует в системе кровообращения и переносит необходимые для обменных процессов газы и растворенные в ней вещества.

Строение крови

Что такое кровь? Это ткань, которая состоит из плазмы и находящихся в ней в виде взвеси особых кровяных клеток. Плазма – это прозрачная жидкость желтоватого цвета, составляющая более половины всего объема крови. . В ней находится три основных вида форменных элементов:

  • эритроциты – красные клетки, которые придают крови красный цвет за счет находящегося в них гемоглобина;
  • лейкоциты – белые клетки;
  • тромбоциты – кровяные пластинки.

Артериальная кровь, которая поступает из легких в сердце и затем разносится ко всем органам, обогащена кислородом и имеет ярко-алый цвет. После того как кровь отдаст кислород тканям, она по венам возвращается к сердцу. Лишенная кислорода, она становится более темной.

В кровеносной системе взрослого человека циркулирует примерно от 4 до 5 литров крови. Примерно 55% объема занимает плазма, остальное приходится на форменные элементы, при этом большую часть составляют эритроциты – более 90%.

Кровь – это вязкая субстанция. Вязкость зависит от количества находящихся в ней белков и эритроцитов. Это качество влияет на кровяное давление и скорость движения. Плотностью крови и характером движения форменных элементов обусловлена ее текучесть. Клетки крови двигаются по-разному. Они могут перемещаться группами или поодиночке. Эритроциты могут двигаться как по отдельности, так и целыми «стопками», как сложенные монеты, как правило, создают поток в центре сосуда. Белые клетки перемещаются поодиночке и обычно держатся около стенок.

Плазма – жидкая составляющая светло-желтого цвета, который обусловлен незначительным количеством желчного пигмента и других окрашенных частиц. Примерно на 90 % она состоит из воды и приблизительно на 10% из органических веществ и минералов, растворенных в ней. Ее состав не отличается постоянством и меняется в зависимости от принятой пищи, количества воды и солей. Состав растворенных в плазме веществ следующий:

  • органические – около 0,1% глюкозы, примерно 7% белков и около 2% жиров, аминокислот, молочной и мочевой кислоты и других;
  • минералы составляют 1% (анионы хлора, фосфора, серы, йода и катионы натрия, кальция, железа, магния, калия.

Белки плазмы принимают участие в обмене воды, распределяют ее между тканевой жидкостью и кровью, придают крови вязкость. Некоторые из белков являются антителами и обезвреживают чужеродных агентов. Важная роль отводится растворимому белку фибриногену. Он принимает участие в процессе свертывания крови , превращаясь под действием свертывающих факторов в нерастворимый фибрин.

Кроме этого, в плазме есть гормоны, которые вырабатываются железами внутренней секреции, и другие необходимые для деятельности систем организма биоактивные элементы.

Плазма, лишенная фибриногена, называется сывороткой крови. Более подробно о плазме крови можно почитать здесь.

Эритроциты

Самые многочисленные клетки крови, составляющие порядка 44-48 % от ее объема. Они имеют вид дисков, двояковогнутых в центре, диаметром около 7,5 мкм. Форма клеток обеспечивает эффективность физиологических процессов. За счет вогнутости увеличивается площадь поверхности сторон эритроцита, что важно для обмена газами. Зрелые клетки не содержат ядер. Главная функция эритроцитов – доставка кислорода из легких в ткани организма.

Название их переводится с греческого как «красный». Своим цветом эритроциты обязаны очень сложному по строению белку гемоглобину, который способен связываться с кислородом. В составе гемоглобина – белковая часть, которая называется глобином, и небелковая (гем), содержащая железо. Именно благодаря железу гемоглобин может присоединять молекулы кислорода.

Эритроциты образуются в костном мозге. Срок их полного созревания составляет примерно пять дней. Продолжительность жизни красных клеток – около 120 дней. Разрушение эритроцитов происходит в селезенке и печени. Гемоглобин распадается на глобин и гем. Что происходит с глобином, неизвестно, а из гема высвобождаются ионы железа, возвращаются в костный мозг и идут на производство новых эритроцитов. Гем без железа преобразуется в желчный пигмент билирубин, который с желчью поступает в пищеварительный тракт.

Снижение уровня эритроцитов в крови приводит к такому состоянию, как анемия, или малокровие.

Лейкоциты

Бесцветные клетки периферической крови, защищающие организм от внешних инфекций и патологически измененных собственных клеток. Белые тельца делятся на зернистые (гранулоциты) и незернистые (агранулоциты). К первым относятся нейтрофилы, базофилы, эозинофилы, которые отличают по реакции на разные красители. Ко вторым – моноциты и лимфоциты. Зернистые лейкоциты имеют гранулы в цитоплазме и ядро, состоящее из сегментов. Агранулоциты лишены зернистости, их ядро имеет обычно правильную округлую форму.

Гранулоциты образуются в костном мозге. После созревания, когда образуется зернистость и сегментоядерность, поступают в кровь, где передвигаются вдоль стенок, совершая амебоидные движения. Защищают организм преимущественно от бактерий, способны покидать сосуды и скапливаться в очагах инфекций.

Моноциты – крупные клетки, которые образуются в костном мозге, лимфоузлах, селезенке. Их главная функция – фагоцитоз. Лимфоциты – небольшие клетки, которые делятся на три вида (В-, Т, 0-лимфоциты), каждый из которых выполняет свою функцию. Эти клетки вырабатывают антитела, интерфероны, факторы активации макрофагов, убивают раковые клетки.

Тромбоциты

Небольшие безъядерные бесцветные пластинки, которые представляют собой фрагменты клеток мегакариоцитов, находящихся в костном мозге. Они могут иметь овальную, сферическую, палочкообразную форму. Продолжительность жизни – около десяти дней. Главная функция – участие в процессе свертывания крови. Тромбоциты выделяют вещества, принимающие участие в цепи реакций, которые запускаются при повреждении кровяного сосуда. В результате белок фибриноген превращается в нерастворимые нити фибрина, в которых запутываются элементы крови и образуется тромб.

Функции крови

В том, что кровь необходима организму, вряд ли кто сомневается, а вот зачем она нужна, ответить, возможно, смогут не все. Эта жидкая ткань выполняет несколько функций, среди которых:

  1. Защитная . Главную роль в защите организма от инфекций и повреждений играют лейкоциты, а именно нейтрофилы и моноциты. Они устремляются и скапливаются в месте повреждения. Главная их назначение фагоцитоз, то есть поглощение микроорганизмов. Нейтрофилы относятся к микрофагам, а моноциты – к макрофагам. Другие виды лейкоцитов – лимфоциты – вырабатывают против вредных агентов антитела. Кроме этого, лейкоциты участвуют в удалении из организма поврежденных и мертвых тканей.
  2. Транспортная. Кровоснабжение оказывает влияние практически на все процессы, происходящие в организме, в том числе наиболее важные – дыхание и пищеварение. С помощью крови осуществляется перенос кислорода от легких к тканям и углекислого газа от тканей к легким, органических веществ от кишечника к клеткам, конечных продуктов, которые затем выводятся почками, транспортировка гормонов и других биоактивных веществ.
  3. Регуляция температуры . Кровь нужна человеку для поддержания постоянной температуры тела, норма которой находится в очень узком диапазоне – около 37°C.

Заключение

Кровь – это одна из тканей организма, имеющая определенный состав и выполняющая целый ряд важнейших функций. Для нормальной жизнедеятельности необходимо, чтобы все компоненты находились в крови в оптимальном соотношении. Изменения в составе крови, обнаруженные во время анализа, дают возможность выявить патологию на раннем этапе.