Как строить сечение многогранника. Как начертить наклонное сечение

В ходе урока все желающие смогут получить представление о теме « Задачи на построение сечений в параллелепипеде». Вначале мы повторим четыре основные опорные свойства параллелепипеда. Затем, используя их, решим некоторые типовые задачи на построение сечений в параллелепипеде и на определение площади сечения параллелепипеда.

Тема: Параллельность прямых и плоскостей

Урок: Задачи на построение сечений в параллелепипеде

В ходе урока все желающие смогут получить представление о теме «Задачи на построение сечений в параллелепипеде» .

Рассмотрим параллелепипед АВСDА 1 B 1 C 1 D 1 (рис. 1). Вспомним его свойства.

Рис. 1. Свойства параллелепипеда

1) Противоположные грани (равные параллелограммы) лежат в параллельных плоскостях.

Например, параллелограммы АВСD и А 1 B 1 C 1 D 1 равны (то есть их можно совместить наложением) и лежат в параллельных плоскостях.

2) Длины параллельных ребер равны.

Например, AD = BC = A 1 D 1 = B 1 C 1 (рис. 2).

Рис. 2. Длины противоположных ребер параллелепипеда равны

3) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Например, диагонали параллелепипеда BD 1 и B 1 D пересекаются в одной точке и делятся этой точкой пополам (рис. 3).

4) В сечение параллелепипеда может быть треугольник, четырехугольник, пятиугольник, шестиугольник.

Задача на сечение параллелепипеда

Например, рассмотрим решение следующей задачи. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 и точки M, N, K на ребрах AA 1 , A 1 D 1 , A 1 B 1 соответственно (рис. 4). Постройте сечения параллелепипеда плоскостью MNK. Точки M и N одновременно лежат в плоскости AA 1 D 1 и в секущей плоскости. Значит, MN - линия пересечения двух указанных плоскостей. Аналогично получаем MK и KN. То есть, сечением будет треугольник MKN.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 13, 14, 15 стр. 50

2. Дан параллелепипед АВСDА 1 B 1 C 1 D 1 . М и N - середины ребер DC и A 1 B 1 .

а) Постройте точки пересечения прямых АМ и AN плоскостью грани ВВ 1 С 1 С.

б) Постройте линию пересечения плоскостей AMN и ВВ 1 С 1

3. Постройте сечения параллелепипеда АВСDА 1 B 1 C 1 D 1 плоскостью, проходящей через ВС 1 и середину М ребра DD 1 .

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника - любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника - это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой - точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L - нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N - середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN - искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP - искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ И МОЛОДЕЖИ РЕСПУБЛИКИ КРЫМ

МАЛАЯ АКАДЕМИЯ НАУК «ИСКАТЕЛЬ»

Отделение: математика

Секция: математика

МЕТОДЫ ПОСТРОЕНИЯ СЕЧЕНИЙ МНОГОГРАННИКОВ

Работу выполнил:

_______________

ученик класса

Научный руководитель:

Тезисы

Методы построения сечений многогранников

Отделение: математика

Секция: математика

Научный руководитель:

Целью исследования является изучение различных методов построения сечений многогранников. Для этого и зучен теоретический материал по данной теме , систематизированы методы решения задач на построение сечений, приведены примеры задач на применение каждого метода, рассмотрены примеры задач единого государственного экзамена на построение сечений и вычисление их элементов.

ВВЕДЕНИЕ……………………………………………………………………….3

РАЗДЕЛ 1. ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ НА ОСНОВЕ СИСТЕМЫ АКСИОМ СЕРЕОМЕТРИИ………………………………………4

РАЗДЕЛ 2. МЕТОД СЛЕДОВ В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ…………………………………………………………10

РАЗДЕЛ 3. МЕТОД ВНУТРЕННЕГО ПРОЕКТИРОВАНИЯ

В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ………………………14

РАЗДЕЛ 4. КОМБИНИРОВАННЫЙ МЕТОД ПОСТРОЕНИЯ СЕЧЕНИЙ

МНОГОГРАННИКОВ…………………………………………………………17

РАЗДЕЛ 5. КООРДИНАТНЫЙ МЕТОД ПОСТРОЕНИЯ СЕЧЕНИЙ МНОГОГРАННИКОВ………………………………………………………….19

ЗАКЛЮЧЕНИЕ…………………………………………………………………25

СПИСОК ЛИТЕРАТУРЫ………………………………………………………26

ВВЕДЕНИЕ

Выпускникам предстоит сдавать экзамен по математике , а знание и умение решать стереометрические задачи необходимо для того , чтобы написать данный экзамен на максимальное количество баллов . Актуальность данной работы состоит в необходимости самостоятельно готовиться к экзамену, а рассматриваемая тема является одной из важнейших.

А нализ демонстрационных , диагностических и тренировочных вариантов ЕГЭ с 2009-2014 гг. показал , что 70% геометрических задач составляют задачи на построение сечений и вычисление их элементов – углов, площадей.

В учебном плане задачам на построение сечений многогранников отводится 2 академических часа , что недостаточно для изучения данной темы . В школе плоские сечения многогранников строят лишь на основании аксиом и теорем стереометрии. Вместе с тем существуют и другие методы построения плоских сечений многогранников. Наиболее эффективными являются метод следов, метод внутреннего проектирования и комбинированный метод. Очень интересен и перспективен в плане применения к решению различных задач координатный метод. Если многогранник поместить в систему координат, а секущую плоскость задать уравнением, то построение сечения сведется к отысканию координат точек пересечения плоскости с ребрами многогранника.

Объект исследования: методы построения сечений многогранников.

Цель исследования: изучить различные методы построения сечений многогранников.

Задачи исследования:

1) Изучить теоретический материал по данной теме .

2) Систематизировать методы решения задач на построение сечений.

3) Привести примеры задач на применение каждого метода.

4) Рассмотреть примеры задач единого государственного экзамена на построение сечений и вычисление их элементов.

РАЗДЕЛ 1

ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ

НА ОСНОВЕ СИСТЕМЫ АКСИОМ СЕРЕОМЕТРИИ

Определение. Сечением многогранника плоскостью называется геометрическая фигура, представляющая собой множество всех точек пространства, принадлежащих одновременно данным многограннику и плоскости; плоскость при этом называется секущей плоскостью.

Поверхность многогранника состоит из ребер - отрезков и граней - плоских многоугольников. Так как прямая и плоскость пересекаются в точке, а две плоскости - по прямой, то сечением многогранника плоскостью является плоский многоугольник; вершинами этого многоугольника служат точки пересечения секущей плоскости с ребрами многогранника, а сторонами - отрезки, по которым секущая плоскость пересекает его грани. Это означает, что для построения искомого сечения данного многогранника плоскостью α достаточно построить точки ее пересечения с ребрами многогранника. Затем последовательно соединить отрезками эти точки.

Секущая плоскость α может быть задана: тремя точками, не лежащими на одной прямой; прямой и не принадлежащей ей точкой; другими условиями, определяющими ее положение относительно данного многогранника. Например, на рис.1 построено сечение четырехугольной пирамиды РАВСD плоскостью α, заданной точками М, К и Н, принадлежащими ребрам соответственно РС, РD и РВ;

Рис.1

Задача. В параллелепипеде АВС DA 1 B 1 C 1 D 1 постройте сечение плоскостью , проходящей через вершины C и D 1 и точку K отрезка B 1 C 1 (рис.2, а).

Решение. 1. Т . к . С DD 1 C 1 , D 1 DD 1 C 1 , то по аксиоме (через две точки , принадлежащие плоскости , проходит прямая , притом только одна ) построим след CD 1 в плоскости DD 1 C 1 (рис.2, б).

2. Аналогично в плоскости А 1 В 1 С 1 построим след DK, в плоскости BB 1 C 1 построим след CK.

3. D 1 KC – искомое сечение (рис .2, в)

а) б) в)

Рис.2

Задача. Постройте сечение пирамиды РАВС плоскостью α = (МКH), где М, К и Н - внутренние точки соответственно ребер РС, РВ и АВ (рис. 3, а).

Решение. 1-й шаг. Точки М и K лежат в каждой из двух плоскостей α и РВС. Поэтому по аксиоме пересечения двух плоскостей плоскость α пересекает плоскость РВС по прямой МК. Следовательно, отрезок МК - одна из сторон искомого сечения (рис.3, б).

2-й шаг. Аналогично, отрезок КН - другая сторона искомого сечения (рис.3, в).

3-й шаг. Точки М и Н не лежат одновременно ни в одной из граней пирамиды РАВС, поэтому отрезок МН не является стороной сечения этой пирамиды. Прямые КН и РА лежат в плоскости грани АВР и пересекаются. Построим точку T= КН ∩АР (рис. 3, г).

Поскольку прямая КН лежит в плоскости α, то и точка T лежит в плоскости α. Теперь мы видим, что плоскости α и АРС имеют общие точки М и T. Следовательно, по аксиоме пересечения двух плоскостей плоскость α и плоскость АРС пересекаются по прямой МТ, которая, в свою очередь, пересекает ребро АС в точке R (рис. 3, д).

4-й шаг. Теперь так же, как в шаге 1, устанавливаем, что плоскость α пересекает грани АСР и АВС по отрезкам MR и HR соответственно. Следовательно, искомое сечение - четырехугольник MKHR (рис.3,е).

Рис.3

Рассмотрим более сложную задачу.

Задача . Постройте сечение пятиугольной пирамиды PABCDE плоскостью

α = (KQR), где K, Q - внутренние точки ребер соответственно РА и РС, а точка R лежит внутри грани DPE (рис. 4, а).

Решение . Прямые QK и АС лежат в одной плоскости АСР (по аксиоме прямой и плоскости) и пересекаются в некоторой точке T 1 , (рис. 4,б), при этом T 1 є α, так как QК є α .

Прямая РR пересекает DE в некоторой точке F (рис.4, в), которая является точкой пересечения плоскости АРR и стороны DE основания пирамиды. Тогда прямые КR и АF лежат в одной плоскости АРR и пересекаются в некоторой точке Т 2 (рис. 4, г), при этом Т 2 є α , как точка прямой KR є α (по аксиоме прямой и плоскости).

Получили: прямая Т 1 Т 2 лежит в секущей плоскости α и в плоскости основания пирамиды (по аксиоме прямой и плоскости), при этом прямая пересекает стороны DE и АЕ основания ABCDE пирамиды соответственно в точках М и N (рис. 4, д), которые являются точками пересечения плоскости α с ребрами DE и АЕ пирамиды и служат вершинами искомого сечения.

Далее, прямая MR лежит в плоскости грани DPE и в секущей плоскости α (по аксиоме прямой и плоскости), пересекая при этом ребро PD в некоторой точке Н - еще одной вершине искомого сечения (рис.4, е).

Далее, построим точку Т 3 - Т 1 Т 2 ∩ АВ (рис. 4, ж), которая, как точка прямой Т 1 Т 2 є α, лежит в плоскости а (по аксиоме прямой и плоскости). Теперь плоскости грани РАВ принадлежат две точки Т 3 и К секущей плоскости α, значит, прямая Т 3 К - прямая пересечения этих плоскостей. Прямая Т 3 К пересекает ребро РВ в точке L (рис. 4, з), которая служит очередной вершиной искомого сечения.

Таким образом, «цепочка» последовательности построения искомого сечения такова:

1. Т 1 = QK ∩ АС ; 2. F = PR ∩ DE;

3. Т 2 = KR ∩ AF; 4. М = Т 1 Т 2 ∩ DE;

5. N = Т 1 Т 2 АЕ ; 6. Н = MR ∩ PD;

7. T 3 = Т 1 Т 2 АВ ; 8. L = T 3 K ∩ PB.

Шестиугольник MNKLQH - искомое сечение.

Рис.4

Сечение многогранника, имеющего параллельные грани (призма, куб параллелепипед), можно строить, используя свойства параллельных плоскостей.

Задача . Точки M, P и R расположены на ребрах параллелепипеда. Пользуясь свойствами параллельных прямых и плоскостей, построить сечение данного параллелепипеда плоскостью MPR.

Решение. Пусть точки M, P и R расположены на ребрах соответственно DD 1 , ВВ 1 и СС 1 параллелепипеда АВСВА 1 В 1 С 1 В 1 (рис. 5, а).

Обозначим: (MPR) = α - секущая плоскость. Проводим отрезки MR и PR (рис. 5, б), по которым плоскость α пересекает соответственно грани СС 1 D 1 D и ВВ 1 С 1 С данного параллелепипеда. Отрезки MR и PR - стороны искомого сечения. Далее используем теоремы о пересечении двух параллельных плоскостей третьей.

Так как грань АА 1 В 1 В параллельна грани СС 1 D 1 D, то прямая пересечения плоскости α с плоскостью грани АА 1 В 1 В должна быть параллельна прямой MR. Поэтому проводим отрезок PQ || MR, Q є АВ (рис. 5, в); отрезок РQ - следующая сторона искомого сечения. Аналогично, так как грань АА 1 D 1 D параллельна грани СС 1 В 1 В, то прямая пересечения плоскости α с плоскостью грани АА 1 D 1 D должна быть параллельна прямой PR. Поэтому проводим отрезок МН || PR, H є AD (рис. 5, в); отрезок МН - еще одна сторона искомого сечения. На ребрах АВ и AD грани АВСD построили точки Q є АВ и H є AD, которые являются вершинами искомого сечения. Проводим отрезок QH и получаем пятиугольник MRPQH - искомое сечение параллелепипеда.


а) б) в)

Рис. 5

РАЗДЕЛ 2

МЕТОД СЛЕДОВ В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ

Определение. Прямая, по которой секущая плоскость α пересекает плоскость основания многогранника, называется следом плоскости α в плоскости этого основания.

Из определения следа получаем: в каждой его точке пересекаются прямые, одна из которых лежит в секущей плоскости, другая - в плоскости основания. Именно это свойство следа используют при построении плоских сечений многогранников методом следов. При этом в секущей плоскости удобно использовать такие прямые, которые пересекают ребра многогранника.

Сначала секущую плоскость зададим ее следом в плоскости основания призмы (пирамиды) и точкой, принадлежащей поверхности призмы (пирамиды).

Задача. Построить сечение призмы АВСВЕА 1 В 1 С 1 D 1 Е 1 плоскостью α, которая задана следом l в плоскости АВС основания призмы и точкой М, принадлежащей ребру DD 1 (рис.7,а).

Решение. Анализ. Предположим, что пятиугольник MNPQR - искомое сечение (рис. 6). Для построения этого плоского пятиугольника достаточно построить его вершины N, P, Q, R (точка М дана) - точки пересечения секущей плоскости α с ребрами соответственно СС 1 , ВB 1 , АА 1 , ЕЕ 1 данной призмы.

Рис. 6

Для построения точки N = α ∩ СС 1 достаточно построить прямую пересечения секущей плоскости α с плоскостью грани СDD 1 C 1 . Для этого, в свою очередь, достаточно построить в плоскости этой грани еще одну точку, принадлежащую секущей плоскости α. Как построить такую точку?

Так как прямая l лежит в плоскости основания призмы, то она может пересекать плоскость грани СDD 1 C 1 лишь в точке, которая принадлежит прямой CD = (CDD 1 ) ∩ (АВС), т.е. точка X = l ∩ СD = l ∩ (CDD 1 ) принадлежит секущей плоскости α. Таким образом, для построения точки N = α ∩ СС 1 достаточно построить точку X = l ∩ СD. Аналогично, для построения точек Р = α ∩ ВВ 1 , Q = α ∩ АА 1 и R = α ∩ ЕЕ 1 достаточно построить соответственно точки: У = l ∩ ВС, Z = l ∩ АВ и Т = l ∩ АЕ. Отсюда

Построение.

    X = l ∩ СD (рис. 7, б);

    N = МХ ∩ СС 1 (рис. 7, б);

    У = l ∩ ВС (рис. 7, в);

    Р = NY ∩ ВВ 1 (рис. 7, в);

    Z = l ∩ АВ (рис. 7, в);

    Q= РZ ∩ АА 1 (рис. 7, г);

    T= l ∩ АЕ (рис. 6);

    R= QT ∩ ЕЕ 1 (рис. 6).

Пятиугольник MNPQR - искомое сечение (рис. 6).

Доказательство . Так как прямая l - след секущей плоскости α, то точки X = l ∩ СD, Y = l ∩ ВС, Z = l ∩ АВ и T= l ∩ АЕ принадлежат этой плоскости.

Поэтому имеем:

М є α , X є α => МХ є α, тогда МХ ∩ СС 1 = N є α , значит, N = α ∩ СС 1 ;

N є α, Y є α => NY є α, тогда NY ∩ ВВ 1 = Р є α, значит, Р = α ∩ ВВ 1 ;

Р є α, Z є α => РZ є α, тогда PZ ∩ AА 1 = Q є α, значит, Q = α ∩ АA 1 ;

Q є α, T є α => QТ є α, тогда QТ ∩ EЕ 1 =R є α, значит, R = α ∩ ЕЕ 1 .

Следовательно, MNPQR - искомое сечение.



а) б)

в) г)

Рис. 7

Исследование. След l секущей плоскости α не пересекает основание призмы, а точка М секущей плоскости принадлежит боковому ребру DD 1 призмы. Поэтому секущая плоскость α не параллельна боковым ребрам. Следовательно, точки N, Р, Q и R пересечения этой плоскости с боковыми ребрами призмы (или продолжениями этих ребер) всегда существуют. А поскольку, кроме того, точка М не принадлежит следу l , то определяемая ими плоскость α единственна. Это означает, что задача имеет единственное решение.

Задача. Построить сечение пятиугольной пирамиды PABCDE плоскостью, которая задана следом l и внутренней точкой К ребра РЕ.

Решение. Схематически построение искомого сечения можно изобразить так (рис.8): T 1 → Q → Т 2 → R → Т 3 → М → Т 4 → N.

Пятиугольник MNKQR - искомое сечение.

«Цепочка» последовательности построения вершин сечения такова:

1. Т 1 = l ∩ АЕ; 2. Q = Т 1 К ∩ РА;

3. Т 2 = l ∩ АВ; 4. R = Т 2 Q ∩ РВ;

5. Т 3 = l ∩ ВС; 6. М = T 3 R ∩ РС;

7. Т 4 = l ∩ СD; 8. N = Т 4 М ∩ РD.

Рис. 8

Секущая плоскость часто задается тремя точками, принадлежащими многограннику. В таком случае для построения искомого сечения методом следов сначала строят след секущей плоскости в плоскости основания данного многогранника.

РАЗДЕЛ 3

МЕТОД ВНУТРЕННЕГО ПРОЕКТИРОВАНИЯ

В ПОСТРОЕНИИ СЕЧЕНИЙ МНОГОГРАННИКОВ

Метод внутреннего проектирования называют еще методом соответствий, или методом диагональных сечений.

При применении этого метода каждая заданная точка проектируется на плоскость основания. Существует два возможных вида проектирования: центральное и параллельное. Центральное проектирование, как правило, используется при построении сечений пирамид, вершина пирамиды при этом является центром проекции. Параллельное проектирование используется при построении сечений призм.

Задача . Построить сечение пирамиды PABCDE плоскостью α = (МFR), если точки М, F и R являются внутренними точками ребер соответственно РА, РС и РЕ (рис. 9, а).

Решение . Плоскость основания пирамиды обозначим β. Для построения искомого сечения построим точки пересечения секущей плоскости α с ребрами пирамиды.

Построим точку пересечения секущей плоскости с ребром РD данной пирамиды.

Плоскости APD и CPE пересекают плоскость β по прямым соответственно АD и СЕ, которые пересекаются в некоторой точке К (рис. 9, в). Прямая РК=(АРD) ∩(СРЕ) пересекает прямую FR є α в некоторой точке К 1 : К 1 = РК ∩ FR (рис. 9, г), при этом К 1 є α. Тогда: М є α, К 1 є α => прямая МK є а. Поэтому точка Q = МК 1 ∩ РD (рис. 9, д) есть точка пересечения ребра РD и секущей плоскости: Q =α ∩ PD. Точка Q- вершина искомого сечения. Аналогично строим точку пересечения плоскости α и ребра РВ. Плоскости ВРЕ и АРD пересекают плоскость β по прямым соответственно ВЕ и АD, которые пересекаются в точке Н (рис. 9, е). Прямая РН = (ВРЕ) ∩ (АРD) пересекает прямую МQ в точке Н 1 (рис. 9, ж). Тогда прямая RН 1 пересекает ребро РВ в точке N = α ∩ РВ - вершине сечения (рис. 9, з).

1. К = АD ∩ ЕС; 2. К 1 = РК ∩ RF;

3. Q = МК 1 Р D; 4. H = BE ∩ А D;

5. Н 1 = РН ∩ МQ; 6. N = RН 1 ∩ РВ.

Пятиугольник MNFQR - искомое сечение (рис. 9, и).

а) б) в)

г) д) е)

ж) з) и)

Рис. 9

Задача . Постройте сечение призмы АВСDEА 1 В 1 С 1 D 1 Е 1 , плоскостью α, заданной точками М є ВВ 1 , Р є DD 1 , Q є ЕЕ 1 (рис.10).

Решение. Обозначим: β - плоскость нижнего основания призмы. Для построения искомого сечения построим точки пересечения плоскости α = (МРQ) с ребрами призмы.

Построим точку пересечения плоскости α с ребром АА 1 .

Плоскости А 1 АD и ВЕЕ 1 пересекают плоскость β по прямым соответственно АD и ВЕ, которые пересекаются в некоторой точке К. Так как плоскости А 1 АD и ВЕЕ 1 проходят через параллельные ребра АА 1 и ВВ 1 призмы и имеют общую точку К, то прямая КК 1 их пересечения проходит через точку К и параллельна ребру ВВ 1 . Точку пересечения этой прямой с прямой QМ обозначим: К 1 = КК 1 ∩ QМ, КК 1 ║ ВВ 1 . Так как QM є α, то К 1 є α.

Рис. 10

Получили: Р є α , К 1 є α => прямая РК 1 є α, при этом РК 1 ∩ АА 1 = R. Точка R служит точкой пересечения плоскости α и ребра АА 1 (R = α ∩ АА 1 ), поэтому является вершиной искомого сечения. Аналогично строим точку N = α ∩ СС 1 .

Таким образом, последовательность «шагов» построения искомого сечения такова:

    К = АD ∩ ВЕ; 2. К 1 = КК 1 ∩ MQ, КК 1 || ВВ 1 ;

    R = РК 1 ∩ АА 1 ; 4. Н = ЕС ∩АD;

    H 1 – HH 1 ∩ РR, НН 1 || СС 1 ; 6.N = QН 1 ∩ СС 1 .

Пятиугольник MNPQR- искомое сечение.

Аксиомы планиметрии:

В различных учебниках свойства прямых и плоскостей могут быть представлены по-разному, в виде аксиомы, следствия из нее, теоремы, леммы и т.д. Рассмотрим учебник Погорелова А.В.

    Прямая разбивает плоскость на две полуплоскости.

    0

    От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180 0 , и только один.

    Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

    Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Аксиомы стереометрии:

    Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие этой плоскости, и точки не принадлежащие ей.

    Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

    Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

    Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

    Из трех точек на прямой одна и только одна лежит между двумя другими.

    Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

    Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости.

    Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 0 . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

    На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.

    От полупрямой на содержащей ее плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180 0 , и только один.

    Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.

    На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.

Сечение

В пространстве две фигуры, для нашего случая плоскость и многогранник могут иметь следующее взаимное расположение: не пересекаются, пересекаются в точке, пересекаются по прямой и плоскость пересекает многогранник по его внутренности (рис.1), и при этом образуют следующие фигуры:

а) пустая фигура (не пересекаются)

б) точка

в) отрезок

г) многоугольник

Если в пересечении многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника с плоскостью .

рис.1

Определение. Сечением пространственного тела (например, многогранника) называется фигура, получающаяся в пересечении тела с плоскостью.

Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника.

Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом, пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок.

Если плоскости пересекаются по прямой, то прямую называют следом одной из этих плоскостей на другой.

В общем случае секущая плоскость многогранника пересекает плоскость каждой его грани (а также любую другую секущую плоскость этого многогранника). Она пересекает и каждую из прямых, на которых лежат ребра многогранника.

Прямую, по которой секущая плоскость пересекает плоскость какой-либо грани многогранника, называют следом секущей плоскости на плоскости этой грани, а точку, в которой секущая плоскость пересекает прямую, содержащую какое – либо ребро многогранника, называют следом секущей плоскости на этой прямой. Эта точка является и следом прямой на секущей плоскости. Если секущая плоскость пересекает непосредственно грань многогранника, то можно говорить о следе секущей плоскости на грани, и, аналогично, о следе секущей плоскости на ребре многогранника, то есть о следе ребра на секущей плоскости.

Так как прямая однозначно определяется двумя точками, то для нахождения следа секущей плоскости на любой другой плоскости и, в частности, на плоскости любой грани многогранника, достаточно построить две общие точки плоскостей

Для построения следа секущей плоскости, а также для построения сечения многогранника этой плоскостью, должен быть задан не только многогранник, но и секущая плоскость. А построение плоскости сечения проходит в зависимости от задания этой плоскости. Основными способами задания плоскости, и в частности секущей плоскости, являются следующие:

    тремя точками не лежащих на одной прямой;

    прямой и не лежащей на ней точкой;

    двумя параллельными прямыми;

    двумя пересекающимися прямыми;

    точкой и двумя скрещивающимися прямыми;

Возможны и другие способы задания секущей плоскости.

Поэтому все способы построения сечений многогранников можно разделить на методы.

Методы построения сечений многогранников

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Существует три основных метода построения сечений многогранников:

    Аксиоматический метод:

    Метод следов.

    Комбинированный метод.

    Координатный метод.

Заметим , что метод следов и метод вспомогательных сечений являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

    построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;

    построение сечения, проходящего через заданную прямую параллельно, другой заданной прямой;

    построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;

    построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;

    построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

Основными действиями, составляющие методы построения сечений, являются нахождение точки пересечения прямой с плоскостью, построения линии пересечения двух плоскостей, построение прямой параллельной плоскости, перпендикулярной плоскости. Для построения прямой пересечения двух плоскостей обычно находят две ее точки и проводят через них прямую. Для построения точки пересечения прямой и плоскости находят в плоскости прямую, пересекающую данную. Тогда искомая точка получается в пересечении найденной прямой с данной.

Рассмотрим отдельно перечисленные нами методы построения сечений многогранников:

Метод следов.

Метод следов основывается (операеться) на аксиомах стереометрии, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют основным следом секущей плоскости . Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.

Отметим, что при построении основного следа секущей плоскости используется следующее утверждение.

Если точки принадлежат секущей плоскости и не лежат на одной прямой, а их проекция (центральными или параллельными) на плоскость, выбранную в качестве основной, являются соответственно точки то точки пересечения соответственных прямых, то есть точки и лежат на одной прямой (рис.1, а, б).

рис.1.а рис.1.б

Эта прямая является основным следом секущей плоскости. Так как точки лежат на основном следе, то для его построения достаточно найти две точки из этих трех.

Метод вспомогательных сечений.

Этот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее, в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Комбинированный метод

Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

Координатный метод построения сечений.

Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.

Заметим , что это способ построения сечения многогранника приемлем для компьютера, так как он связан с большим объемом вычислений и поэтому этот метод целесообразно реализовать с помощью ЭВМ.

Наша основная задача будет состоять в построении сечения многогранника с плоскостью, т.е. в построении пересечения этих двух множеств.

Построение сечений многогранников

Прежде всего заметим, что сечение выпуклого многогранника есть выпуклый плоский многоугольник, вершины которого в общем случае являются точками пересечения секущей плоскости с ребрами многогранника, а стороны с его гранями.

Примеры построения сечений:

Способы задания сечения весьма разнообразны. Наиболее распространенным из них является способ задания секущей плоскости тремя точками, не лежащими на одной прямой.

Пример 1. Для параллелепипеда ABCDA 1 B 1 C 1 D 1 . Построить сечение проходящее через точки M, N, L.

Решение:

Соединим точки M и L, лежащие в плоскости AA 1 D 1 D.

Пересечем прямую ML (принадлежащую сечению) с ребром A 1 D 1 1 D 1 D. Получим точку X 1 .

Точка X1 лежит на ребре A 1 D 1 , а значит и плоскости A 1 B 1 C 1 D 1 , соединим ее сточкой N, лежащей в этой же плоскости.

X 1 N пересекается с ребром A 1 B 1 в точке К.

Соединим точки K и M, лежащие в одной плоскости AA 1 B 1 B.

Найдем прямую пересечения плоскости сечения с плоскостью DD 1 C 1 C:

Пересечем прямую ML (принадлежащую сечению) с ребром DD 1 , они лежат в одной плоскости AA 1 D 1 D, получим точку X 2 .

Пересечем прямую KN (принадлежащую сечению) с ребром D 1 C 1 , они лежат в одной плоскости A 1 B 1 C 1 D 1 , получим точку X3;

Точки X2 и X3 лежат в плоскости DD 1 C 1 C. Проведем прямую X 2 X 3 , которая пересечет ребро C 1 C в точке T, а ребро DC в точке P. И соединим точки L и P, лежащие в плоскости ABCD.

Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника, что и мы сделали. MKNTPL - искомое сечение.

Заметим. Эту же самую задачу на построение сечения, можно решить воспользуевавшийся свойством параллельных плоскостей.

Из выше сказанного можно составить алгоритм (правило) решения задач, данного типа.

Правила построения сечений многогранников:

    1. проводим прямые через точки, лежащие в одной плоскости;

      ищем прямые пересечения плоскости сечения с гранями многогранника, для этого:

Пример 2. D L , M

Решим аксиоматическим методом:

Проведем вспомогательную плоскость DKM , которая пересекает ребра АВ и ВС в точках Е и F (ход решение на рис 2.). Построим «след» КМ плоскости сечения на этой вспомогательной плоскости, найдем точку пересечения КМ и Е F – точку Р. Точка Р, как и L , лежит в плоскости АВС, и можно провести прямую, по которой плоскость сечения пересекает плоскость АВС(«след» сечения в плоскости АВС).

Пример 3. На ребрах AB и AD пирамиды MABCD зададим соответственно точки P и Q - середины этих ребер, а на ребре MC зададим точку R. Построим сечение пирамиды плоскостью, проходящей через точки P, Q и R.

Решение проведем комбинированным методом:

1). Ясно, что основным следом плоскости PQR является прямая PQ.

2). Найдем точку К, в которой плоскость МАС пересекает прямую PQ. Точки К и R принадлежат и плоскости PQR, и плоскости MAC. Поэтому, проведя прямую KR, мы получим линию пересечения этих плоскостей.

3). Найдем точку N=AC BD, проведем прямую MN и найдем точку F=KR MN.

4). Точка F является общей точкой плоскостей PQR и MDB, то есть эти плоскости пересекаются по прямой, проходящей через точку F. Вместе с тем так как PQ - средняя линия треугольника ABD, то PQ параллена BD, то есть прямая PQ параллельна и плоскости MDB. Тогда плоскость PQR, проходящая через прямую PQ, пересекает плоскость MDB по прямой, параллельной прямой PQ, то есть параллельной и прямой BD. Поэтому в плоскости MDB через точку F проведем прямую, параллельную прямой BD.

5). Дальнейшие построения понятны из рисунка. В итоге получаем многоугольник PQD"RB" - искомое сечение

Рассмотрим сечения призмы для простоты, то есть удобства логических размышлений рассмотрим сечения куба (рис.3.а):

Рис. 3.а

Сечения призмы плоскостями, параллельными боковым ребрам, является параллелограммами. В частности, параллелограммами являются диагональные сечения (рис. 4).

Опр. Диагональным сечением призмы называется сечение плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Многоугольник, получающийся при диагональном сечении призмы, является параллелограммом. Вопрос о числе диагональных сечений n -угольной призмы труднее, чем вопрос о числе диагоналей. Сечений будет столько же сколько диагоналей у основания. Мы знаем, что у выпуклой призмы в основаниях – выпуклые многоугольники, а у выпуклого n -угольника диагоналей. И так можно говорить, что диагональных сечений вдвое меньше, чем диагоналей.

Заметим: При построении сечений параллелепипеда на рисунке следует учитывать тот факт, что если секущая плоскость пересекает две противоположные грани по каким – то отрезкам, то эти отрезки параллельны «по свойству параллелепипеда т.е. противоположные грани параллелепипеда параллельны и равны.»

Дадим ответы на часто возникающие вопросы:

    Какие многоугольники получаются в сечении куба плоскостью?

«треугольник, четырехугольник, пятиугольник, шестиугольник ».

    Может ли в сечении куба плоскостью получиться семиугольник? А восьмиугольник?

«не могут».

3)Возникает вопрос чему равно наибольшее число сторон многоугольника, полученного сечением многогранника с плоскостью?

Наибольшее число сторон многоугольника, полученного в сечении многогранника плоскостью, равно числу граней многогранника .

Пример 3. Построить сечение призмы A 1 B 1 C 1 D 1 ABCD плоскостью, проходящей через три точки M, N, K.

Рассмотрим случай расположения точек M, N, K на поверхности призмы (рис. 5).

Рассмотрим случай: В данном случае очевидно, что M1 = B1.

Построение:

Пример 4. Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.6)).

Решение:

Рис. 6

Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.

Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.

Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.

Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два не соседних боковых ребра пирамиды.

Пример 4. Построить сечение пирамиды АВС D плоскостью, проходящей через точки К, L , M .

Решение:


    1. Проведем еще одну вспомогательную плоскость DCK и построим точку пересечения В L и D К – точку Е. Эта точка принадлежит обеим вспомогательным плоскостям (рис. 7, б);

      Найдем точку пересечения отрезков LM и ЕС (эти отрезки лежат в плоскости BLC , рис.7, в) – точку F . Точка F лежит в плоскости сечения и в плоскости DCK ;

      Проведем прямую KF и найдем точку пересечения этой прямой с DC – точку N (точка N принадлежит сечению). Четырехугольник KLNM – искомое сечение.

Этот же пример решим по другому .

Допустим что по точкам К, L , и М построено сечение KLNM (рис. 7). Обозначим через F точку пересечения диагоналей четырехугольника KLNM . Проведем прямую DF и обозначим через F 1 ее точку пересечения с гранью АВС. Точка F 1 совпадает с точкой пересечения прямых АМ и СК (F 1 одновременно принадлежит плоскостям АМ D и D СК). Точку F 1 легко построить. Далее строим точку F как точку пересечения DF 1 и LM . Далее находим точку N .

Рассмотренный прием называют методом внутреннего проектирования . (Для нашего случая речь идет о центральном проектировании. Четырехугольник K МСА есть проекция четырехугольника KMNL из точки D . При этом точка пересечения диагоналей KMNL – точка F – переходит в точку пересечения диагоналей четырехугольника K МСА – точку F 1 .

Площадь сечения многогранника.

Задача на вычисление площади сечения многогранника обычно решается в несколько этапов. Если в задаче говориться, что сечение построено (или что секущая плоскость проведена и т.п.), то на первом этапе решения выясняют вид фигуры полученной в сечении.

Это необходимо сделать, чтобы выбрать соответствующую формулу для вычисления площади сечения. После того как вид фигуры, полученной в сечении, выяснен и выбрана формула для подсчета площади этой фигуры, переходят непосредственно к вычислительной работе.

В некоторых случаях может оказаться проще, если, не выясняя вида фигуры, полученной в сечении, перейти сразу к вычислениям ее площади по формуле, которая следует из теоремы.

Теорема о площади ортогональной проекции многоугольника: площадь ортогональной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции: .

Справедлива формула для вычисления площади сечения: где это площадь ортогональной проекции фигуры, полученной в сечении, аэто угол между секущей плоскостью и плоскостью, на которую фигура спроектирована. При таком ходе решения необходимо построить ортогональную проекцию фигуры, полученной в сечении, и подсчитать

Если в условии задачи говориться, что сечение требуется построить и найти площадь полученного сечения, то на первом этапе следует обосновано выполнить построение заданного сечения, и затем, естественно, определить вид фигуры, полученной в сечении, и т.д.

Отметим следующий факт: так как строятся сечения выпуклых многогранников, то многоугольник сечения будет тоже выпуклым, поэтому его площадь можно найти разбиением на треугольники, то есть площадь сечения равна сумме площадей треугольников из которых оно составлено.

Задача 1.

правильная треугольная пирамида со стороной основания равной и высотой равной Постройте сечение пирамиды плоскостью, проходящей через точки, где – середина стороны, и найдите его площадь (рис.8).

Решение.

Сечением пирамиды является треугольник. Найдем его площадь.

Так как основание пирамиды – равносторонний треугольник и точка – середина стороны, то является высотой и тогда, .

Площадь треугольника можно найти:

Задача 2.

Боковое ребро правильной призмы равно стороне основания. Построить сечения призмы плоскостями, проходящими через точку A , перпендикулярно прямой Если найти площадь полученного сечения призмы.

Решение.

Построим заданное сечение. Сделаем это из чисто геометрических соображений, например, следующим образом.

В плоскости проходящей через заданную прямую и заданную точку проведем через эту точку прямую, перпендикулярную прямой (рис. 9). Воспользуемся с этой целью тем, что в треугольнике то есть его медиана является и высотой этого треугольника. Таким образом, прямая.

Через точку проведем еще одну прямую, перпендикулярную прямой. Проведем ее, например, в плоскости, проходящей через прямую. Ясно, что этой прямой является прямая

    Итак, построены две пересекающиеся прямые, перпендикулярные прямой. Этими прямимы определяется плоскость, проходящая через точку перпендикулярно прямой то есть задана секущая плоскость.

    Построим сечение призмы этой плоскостью. Заметим, что так как, то прямая параллельна плоскости. Тогда плоскость, проходящая через прямую, пересекает плоскость по прямой, параллельной прямой, то есть и прямой. Проведем через точку прямую и полученную точку соединим точкой.

Четырехугольник заданное сечение. Определим его площадь.

Понятно что четырехугольник является прямоугольником, то есть его площадь

рис. 9

ПОСТРОЕНИЕ СЕЧЕНИЙ И РАЗРЕЗОВ НА ЧЕРТЕЖАХ

Формирование чертежа детали производится путем последовательного добавления необходимых проекций, разрезов и сечений. Первоначально создается произвольный вид с указанной пользователем модели, при этом задается ориентация модели, наиболее подходящая для главного вида. Далее по этому и следующим видам создаются необходимые разрезы и сечения.

Главный вид (вид спереди) выбирается таким образом, чтобы он давал наиболее полное представление о формах и размерах детали.

Разрезы на чертежах

В зависимости от положения секущей плоскости различают следующие виды разрезов:

А) горизонтальные, если секущая плоскость располагается параллельно горизонтальной плоскости проекций;

Б) вертикальные, если секущая плоскость перпендикулярна горизонтальной плоскости проекций;

В) наклонные - секущая плоскость наклонена к плоскостям проекций.

Вертикальные разрезы подразделяются на:

· фронтальные - секущая плоскость параллельна фронтальной плоскости проекций;

· профильные - секущая плоскость параллельна профильной плоскости проекций.
В зависимости от числа секущих плоскостей разрезы бывают:

· простые - при одной секущей плоскости (рис.107);

· сложные - при двух и более секущих плоскостях (рис.108)
Стандартом предусмотрены следующие виды Сложных разрезов:

· ступенчатые, когда секущие плоскости располагаются параллельно (рис.108 а) и ломаные - секущие плоскости пересекаются (рис.108 б)

Рис.107 Простой разрез

А) б)

Рис.108 Сложные разрезы

Обозначение разрезов

В случае, когда в простом разрезе секущая плоскость совпадает с плоскостью симметрии предмета, разрез не обозначается (рис.107). Во всех остальных случаях разрезы обозначаются прописными буквами русского алфавита, начиная с буквы А, например А-А.

Положение секущей плоскости на чертеже указывают линией сечения – утолщенной разомкнутой линией. При сложном разрезе штрихи проводят также у перегибов линии сечения. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны находиться на расстоянии 2-3 мм от наружных концов штрихов. С наружной стороны каждой стрелки, указывающей направление взгляда, наносят одну и ту же прописную букву.

Для обозначения разрезов и сечений в системе КОМПАС используется одна и та же кнопка Линия разреза, расположенная на странице Обозначения (рис.109).

Рис.109 Кнопка Линия разреза

Соединение половины вида с половиной разреза

Если вид и разрез представляют собой симметричные фигуры (рис.110), то можно соединять половину вида и половину разреза, разделяя их штрихпунктирой тонкой линией, являющейся осью симметрии. Часть разреза обычно располагают справа от оси симметрии, разделяющей часть вида с частью разреза, или снизу от оси симметрии. Линии невидимого контура на соединяемых частях вида и разреза обычно не показываются. Если с осевой линией, разделяющий вид и разрез, совпадает проекция какой-либо линии, например, ребра гранной фигуры, то вид и разрез разделяются сплошной волнистой линией, проводимой левее оси симметрии, если ребро лежит на внутренней поверхности, или правее, если ребро наружное.

Рис. 110 Соединение части вида и разреза

Построение разрезов

Построение разрезов в системе КОМПАС изучим на примере построения чертежа призмы, задание для которого изображено на рис.111.

Последовательность построения чертежа следующая:

1. По заданным размерам построим твердотельную модель призмы (рис.109 б). Сохраним модель в памяти компьютера в файле с именем «Призма».

Рис.112 Панель Линии

3. Для построения профильного разреза (рис.113) начертим линию разреза А-А на главном виде с помощью кнопки Линия разреза.


Рис.113 Построение профильного разреза

Направление взгляда и текст обозначения можно выбрать на панели управления командой внизу экрана (рис.114). Завершается построение линии разреза нажатием на кнопку Создать объект.

Рис.114 Панель управления командой построения разрезов и сечений

4. На панели Ассоциативные виды (рис.115) выберем кнопку Линия разреза, затем появившейся на экране ловушкой укажем линию разреза. Если все сделано верно (линия разреза должна быть обязательно построена в активном виде), то линия разреза окрасится в красный цвет. После указания линии разреза А-А на экране появится фантом изображения в виде габаритного прямоугольника.

Рис.115 Панель Ассоциативные виды

С помощью переключателя Разрез/сечение на Панели свойств выбирается тип изображения – Разрез (рис.116) и масштаб отображаемого разреза.

Рис.116 Панель управления командой построения разрезов и сечений

Профильный разрез построится автоматически в проекционной связи и со стандартным обозначением. При необходимости проекционную связь можно отключать переключателем Проекционная связь (рис.116). Для настройки параметров штриховки, которая будет использована в создаваемом разрезе (сечении) используется элементы управления на вкладке Штриховка.

Рис.117 Построение горизонтального разреза Б-Б и сечения В-В

Если выбранная секущая плоскость при построении разреза совпадает с плоскостью симметрии детали, то в соответствии со стандартом такой разрез не обозначается. Но если просто стереть обозначение разреза, то из-за того, что вид и разрез в памяти компьютера связаны между собой, то сотрется и весь разрез. Поэтому для того, чтобы удалить обозначение, вначале следует разрушить связь вида и разреза. Для этого щелчком левой кнопки мыши выделяется разрез, а затем щелчком правой кнопки мыши вызывается контекстное меню, из которого выбирается пункт Разрушить вид (рис.97). Теперь обозначение разреза можно удалить.

5. Для построения горизонтального разреза проведем через нижнюю плоскость отверстия на виде спереди линию разреза Б-Б. Предварительно обязательно двумя щелчками левой кнопки мыши вид спереди следует сделать текущим. Затем строится горизонтальный разрез (рис.117).

6. При построении фронтального разреза совместим часть вида и часть разреза, т.к. это симметричные фигуры. На линию разделяющую вид и разрез проецируется наружное ребро призмы, поэтому разграничим вид и разрез сплошной тонкой волнистой линией, проводимой правее оси симметрии, т.к. ребро наружное. Для построения волнистой линии используется кнопка Кривая Безье, расположенной на панели Геометрия, вычерчиваемая стилем Для линии обрыва (рис.118). Последовательно указывайте точки, через которые должна пройти кривая Безье. Закончить выполнение команды следует нажатием на кнопку Создать объект.

Рис.118 Выбор стиля линии для обрыва

Построение сечений

Сечением называется изображения предмета, которые получаются при мысленном рассечении предмета плоскостью. На сечении показывают только то, что расположено в секущей плоскости.

Положение секущей плоскости, с помощью которой образуется сечение, на чертеже указывают линией сечения, так же как для разрезов.

Сечения в зависимости от расположения их на чертежах разделяются на вынесенные и наложенные. Вынесенные сечения располагаются чаще всего на свободном поле чертежа и обводятся основной линией. Наложенные сечения располагают непосредственно на изображении предмета и обводят тонкими линиями (рис.119).

Рис.119 Построение сечений

Рассмотрим последовательность построения чертежа призмы с вынесенным наклонным сечением Б-Б (рис.117).

1. Сделаем вид спереди активным двойным щелчком левой кнопкой мыши по виду и начертим линию разреза с помощью кнопки Линия разреза. Выберем текст надписи В-В.

2. С помощью кнопки Линия разреза, расположенной на панели Ассоциативные виды (рис.115), появившейся ловушкой укажем линию секущей плоскости В-В. С помощью переключателя Разрез/сечение на Панели свойств следует выбрать тип изображения – Сечение (рис.116), масштаб отображаемого сечения выбирается из окна Масштаб.

Построенное сечение располагается в проекционной связи, что ограничивает его перемещение по чертежу, но проекционную связь можно отключать с помощью кнопки Проекционная связь.

На готовом чертеже следует прочертить осевые линии, при необходимости проставить размеры.