За что отвечает цнс. Строение и функции нервной системы человека. Функции клеток цнс и ликвора

ЦНС (центральная нервная система), её отделы, функции.

Нервная система в целом состоит из центрального (головной и спинной мозг) и периферического отделов (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов). Центральная нервная система координирует деятельность различных органов и систем организма и регулирует эту деятельность в условиях изменяющейся внешней среды по механизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека - мышлении, памяти, разумном поведении в обществе, восприятии окружающего мира, познании законов природы и общества и т.д., т.е. вся деятельность человека, как биологическая, так и социальная, осуществляется благодаря реализации взаимоотношений организма и среды по принципу рефлекса.

О структуре центральной нервной системы.

Спинной мозг лежит в спинномозговом канале, образованном дужками позвонков. Его длина у взрослого человека в пределах 41-45см, толщина 1см. Первый шейный позвонок является границей спинного мозга сверху, а граница снизу - второй поясничный позвонок. Спинной мозг делится на пять отделов с определенным количеством сегментов: шейный, грудной, поясничный, крестцовый и копчиковый. В центре спинного мозга находится канал, заполненный спинномозговой жидкостью. На поперечном разрезе лабораторного препарата легко различают серое и белое вещество мозга. Серое вещество мозга состоит из скопления тел нервных клеток (нейронов), периферические отростки которых в составе спинномозговых нервов достигают рецепторов кожи, мышц, сухожилий, слизистых оболочек. Белое вещество, окружающее серое, состоит из отростков, связывающих между собой нервные клетки спинного мозга; восходящих чувствительных (эфферентных), связывающих все органы и ткани человеческого тела (кроме головы) с головным мозгом, нисходящих двигательных (афферентных) путей, идущих от головного мозга к двигательным клеткам спинного мозга.

Таким образом, нетрудно себе представить, что спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. В различных отделах спинного мозга находятся мотонейроны (двигательные нервные клетки), иннервирующие мышцы верхних конечностей, спины, груди, живота, нижних конечностей. В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой деятельности. Важной функцией мотонейронов является постоянное обеспечение необходимого тонуса мышц, благодаря которому все рефлекторные двигательные акты осуществляются мягко и плавно. Тонус центров спинного мозга регулируется высшими отделами центральной нервной системы. Поражения спинного мозга влекут за собой различные нарушения, связанные с выходом из строя проводниковой функции. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса и т.д.

Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела. Назовем некоторые особенности и жизненно важные функции. Так, например, такое образование заднего мозга, как продолговатый мозг, является местом расположения важнейших рефлекторных центров (дыхательного, пищевого, регулирующих кровообращение, потоотделение). Поэтому поражение этого отдела головного мозга вызывает мгновенную гибель. Необходимо отметить, что кора больших полушарий головного мозга является наиболее молодым в филогенетическом отношении отделом мозга (филогенез - процесс развития растительных и животных организмов в течение времени существования жизни на Земле). В процессе эволюции кора больших полушарий приобретает существенные структурные и функциональные особенности и становится высшим отделом центральной нервной системы, формирующим деятельность организма как единого целого в его взаимоотношениях с окружающей средой.

Вегетативная нервная система - специализированный отдел единой нервной системы мозга регулируется, в частности, корой больших полушарий. В отличие от соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и других органов чувств, вегетативная нервная система регулирует деятельность внутренних органов - дыхания, размножения, кровообращения, выделения, желез внутренней секреции и т.д. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую системы. Деятельность сердца, сосудов, органов пищеварения, выделения, половых и т.д.; регуляция обмена веществ, термообразования, участие в формировании эмоциональных реакций (страх, гнев, радость) - все это находится в ведении симпатической и парасимпатической нервной систем и все под тем же контролем со стороны высшего отдела центральной нервной системы. Экспериментально показано, что их влияние носит хотя и антагонистический характер, но согласованный в регуляции важнейших функций организма.

Рецепторы и анализаторы. Главным условием нормального существования организма человека является его способность быстро приспосабливаться к изменениям окружающей среды. Эта способность реализуется за счет наличия специальных образований - рецепторов. Рецепторы, обладая строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление и т.д.) в нервные импульсы, которые по нервным волокнам передаются в центральную нервную систему. Рецепторы человека делятся на две основные группы: экстеро (внешние) и интеро (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, в которую поступают импульсы и которая называется анализатором.

Анализатор состоит из трех отделов - рецептора, проводниковой части и центрального образования в головном мозгу. Высший отдел анализатора - корковый. Перечислим названия анализаторов, роль которых в жизнедеятельности любого человека многим известна. Это - кожный анализатор (тактильная, болевая, тепловая, холодовая чувствительность), двигательный (рецепторы в мышцах, суставах, сухожилиях и связках возбуждаются под влиянием давления и растяжения), вестибулярный (воспринимает положение тела в пространстве), зрительный (свет и цвет), слуховой (звук), обонятельный (запах), вкусовой (вкус), висцеральный (состояние ряда внутренних органов).

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.

ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ

Центры нервной системы

Процессы торможения в ЦНС

Рефлекс и рефлекторная дуга. Виды рефлекса

Функции и отделы нервной системы

Организм представляет собой сложную высокоорганизованную систему, состоящую из функционально взаимосвязанных клеток, тканей, органов и их систем. Управление их функциями, а также их интеграцию (взаимосвязь) обеспечивает нервная система . НС осуществляет также связь организма с внешней средой, путем анализа и синтеза поступающей к ней разнообразной информации от рецепторов. Она обеспечивает движения и выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру. Кроме того, с функциями ЦНС связаны процессы, лежащие в основе психической деятельности человека (внимание, память эмоции, мышление и т.п.).

Таким образом, функции нервной системы :

Регулирует все процессы, протекающие в организме;

Осуществляет взаимосвязь (интеграцию) клеток, тканей, органов и систем;

Осуществляет анализ и синтез поступающей в организм информации;



Регулирует поведение;

Обеспечивает процессы, лежащие в основе психической деятельности человека.

Согласно морфологическому принципу центральную (головной и спинной мозг) и периферическую (парные спинномозговые и черепные нервы, их корешки, ветви, нервные окончания, сплетения и ганглии, лежащие во всех отделах тела человека).

По функциональному принципу нервная система подразделяется на соматическую и вегетативную . Соматическая нервная система обеспечивает иннервацию главным образом органов тела (сомы) - скелетные мышцы, кожу и др. Этот отдел нервной системы связывает организм с внешней средой при помощи органов чувств, обеспечивает движение. Вегетативная нервная система иннервирует внутренние органы, сосуды, железы, в том числе эндокринные, гладкую мускулатуру, регулирует обменные процессы во всех органах и тканях. Вегетативная нервная система включает симпатический , парасимпатический и метасимпатический отделы.

2. Структурно-функциональные элементы НС

Основной структурно-функциональной единицей НС является нейрон с его отростками. Их функции заключаются в восприятии информации с периферии или от других нейронов, ее переработке и передаче на соседние нейроны или исполнительные органы. В нейроне различают тело (сому ) и отростки (дендриты и аксон ). Дендриты - многочисленные сильно ветвящиеся протоплазматические выросты вблизи сомы, по которым возбуждение проводится к телу нейрона. Их начальные сегменты имеют больший диаметр и лишены шипиков (выростов цитоплазмы). Аксон - единственный осево - цилиндрический отросток нейрона, имеющий длину от нескольких мкм до 1 м, диаметр которого относительно постоянен на всем его протяжении. Конечные участки аксона делятся на терминальные веточки, по которым передается возбуждение от тела нейрона к другому нейрону или рабочему органу.

Объединение нейронов в нервную систему происходит с помощью межнейрональных синапсов.

Функции нейрона:

1. Восприятие информации (дендриты и тело нейрона).

2. Интеграция, хранение и воспроизведение информации (тело нейрона). Интегративная деятельность нейрона заключается во внутриклеточном преобразовании множества приходящих к нейрону гетерогенных возбуждений и формировании единой ответной реакции.

3. Синтез биологически активных веществ (тело нейрона и синаптические окончания).

4. Генерация электрических импульсов (аксонный холмик – основание аксона).

5. Аксонный транспорт и проведение возбуждения (аксон).

6. Передача возбуждений (синаптические окончания).

Существует несколько классификаций нейронов .

Согласно морфологической классификации нейроны различают по форме сомы. Выделяют нейроны зернистые, пирамидные, звездчатые нейроны и т.д. По числу отходящих от тела нейронов отростков выделяют униполярные нейроны (один отросток), псевдоуниполярные нейроны (Т- образно ветвящийся отросток), биполярные нейроны (два отростка), мультиполярные нейроны (один аксон и множество дендритов).

Функциональная классификация нейронов основана на характере выполняемой ими функции. Выделяют афферентные (чувствительные , рецепторные ) нейроны (псевдоуниполярные), эфферентные (мотонейроны , двигательные ) нейроны (мультиполярные) и ассоциативные (вставочные , интернейроны ) нейроны (в большинстве мультиполярные).

Биохимическая классификация нейронов осуществляется с учетом природы вырабатываемого медиатора . Исходя из этого выделяют холинергические (медиатор ацетилхолин), моноаминергические (адреналин, норадреналин, серотонин, дофамин), ГАМКергические (гамма-аминомасляная кислота), пептидергические (субстанция Р, энкефалины, эндорфины, другие нейропептиды) и др. На основании этой классификации выделяют четыре основные диффузные модулирующие системы:

1. Серотонинергическая система берет начало в ядрах шва и выделяет нейромедиатор серотонин. Серотонин является предшественником мелатонина, образующегося в эпифизе; может принимать участие в формировании эндогенных опиатов. Серотонин играет основную роль в регуляции настроения. С нарушением функции серотонинергической системы связывают развитие психических нарушений, проявляющихся депрессией и тревогой, суицидальном поведении. Избыток серотонина обычно вызывает панику. На механизмах блокирования обратного захвата серотонина из синаптической щели основаны антидепрессанты последнего поколения. Серотонинергические нейроны ядер шва занимают центральное место в контроле цикла сон-бодрствование, он инициирует фазу быстрого сна. Серотонинергическая система мозга участвует в регуляции сексуального поведения: повышение уровня серотонина в мозге сопровождается угнетением половой активности, а снижение его содержания ведет к ее повышению.

2. Норадренергическая система берет начало в голубом пятне моста и функционирует как "центр сигнала тревоги", который становится наиболее активным, когда появляются новые стимулы окружающей среды. Норадренергические нейроны широко распространены по всей ЦНС и обеспечивают увеличение общего уровня возбуждения, инициируют вегетативные проявления стрессорной реакции.

3. Дофаминергические нейроны широко распространены в ЦНС. Дофаминергические нейроны играют важную роль в мозговой системе удовлетворения потребностей (системе удовольствия). Эта система лежит в основе привыкания к наркотикам (включая кокаин, амфетамины, экстази, алкоголь, никотин и кокаин). В основе развития болезни Паркинсона лежит прогрессирующая дегенерация дофаминсодержащих пигментных нейронов черной субстанции и голубого пятна. Предполагается, что при шизофрении имеет место повышение активности дофаминовой системы мозга с увеличением выделения дофамина, агонисты дофамина типа амфетамина могут вызывать психозы, имеющие сходство с параноидной шизофренией. С обменом дофамина теснейшим образом связаны психомоторные процессы (исследовательское поведение, двигательные навыки).

4. Холинергические нейроны широко распространены в центральной нервной системе, особенно в базальных ядрах и стволе мозга. Холинергические нейроны участвуют в механизмах избирательного внимания к конкретной задаче и важны для обучения и памяти. Холинергические нейроны участвуют в патогенезе болезни Альцгеймера.

Одной из составных частей ЦНС является нейроглия (глиальные клетки). Она составляет почти 90 % клеток НС и состоит из двух видов: макроглии, представленной астроцитами, олигодендроцитами и эпендимоцитами, и микроглии. Астроциты – крупные звездчатые клетки выполняют опорную и трофическую (питательную) функции. Астроциты обеспечивают постоянство ионного состава среды. Олигодендроциты формируют миелиновую оболочку аксонов ЦНС. Олигодендроциты за пределами ЦНС называют Шванновскими клетками , они принимают участие в регенерации аксона. Эпендимоциты выстилают желудочки головного мозга и спинномозговой канал (это полости, заполненные мозговой жидкостью, которую секретируют эпедимоциты). Клетки микроглии могут превращаться в подвижные формы, мигрировать по ЦНС к месту повреждений нервной ткани и фагоцитировать продукты распада. В отличие от нейронов, клетки глии не генерируют потенциал действия, но могут влиять на процессы возбуждения.

По гистологическому принципу в структурах НС можно выделить белое и серое вещество . Серое вещество – это кора головного мозга и мозжечка, различные ядра головного и спинного мозга, периферические (т.е. расположенные за пределами ЦНС) ганглии . Серое вещество образовано скоплениями тел нейронов и их дендритами. Отсюда следует, что оно отвечает за рефлекторные функции : восприятия и обработки поступающих сигналов, а также формирования ответа. Остальные структуры нервной системы образованы белым веществом. Белое вещество образовано миелинизированными аксонами (отсюда цвет и название), функция которых – проведение нервных импульсов.

3. Особенности распространения возбуждения в ЦНС

Возбуждение в ЦНС не только передается от одной нервной клетки к другой, но и характеризуется рядом особенностей. Это конвергенция и дивергенция нервных путей, явления иррадиации, пространственного и временного облегчения и окклюзии.

Дивергенция пути – это контактирование одного нейрона с множеством нейронов более высоких порядков.

Так, у позвоночных существует разделение аксона чувствительного нейрона, входящего в спинной мозг, на множество веточек (коллатералей), которые направляются к разным сегментам спинного мозга и в различные отделы головного мозга. Дивергенция сигнала наблюдается и у выходных нервных клеток. Так, у человека один мотонейрон возбуждает десятки мышечных волокон (в глазных мышцах) и даже их тысячи (в мышцах конечностей).

Многочисленные синаптические контакты одного аксона нервной клетки с большим числом дендритов нескольких нейронов являются структурной основой явления иррадиации возбуждения (расширение сферы действия сигнала). Иррадиация бывает направленной , когда возбуждением охватывается определенная группа нейронов, и диффузной . Пример последней – повышение возбудимости одного рецепторного участка (например, правой лапки лягушки) при раздражении другого (болевого воздействия на левую лапку).

Конвергенция – это схождение многих нервных путей к одним и тем же нейронам. Наиболее распространенной в ЦНС является мультисенсорная конвергенция , которая характеризуется взаимодействием на отдельных нейронах нескольких афферентных возбуждений различной сенсорной модальности (зрительной, слуховой, тактильной, температурной и т.д.).

Конвергенция многих нервных путей к одному нейрону делает этот нейрон интегратором соответствующих сигналов. Если речь идет о мотонейроне , т.е. конечном звене нервного пути к мускулатуре, говорят об общем конечном пути. Наличие конвергенции множества путей, т.е. нервных цепочек, на одной группе мотонейронов лежит в основе феноменов пространственного облегчения и окклюзии.

Пространственное и временное облегчение – это превышение эффекта одновременного действия нескольких относительно слабых (подпороговых) возбуждений над суммой их раздельных эффектов. Феномен объясняется пространственной и временной суммацией.

Окклюзия – это явление, противоположное пространственному облегчению. Здесь два сильных (сверхпороговых) возбуждения вместе вызывают возбуждение такой силы, которая меньше арифметической суммы этих возбуждений отдельно.

Причина окклюзии состоит в том, что эти афферентные входы в силу конвергенции отчасти возбуждают одни и те же структуры и поэтому каждый может создать в них почти такое же сверхпороговое возбуждение, как и вместе.

Центры нервной системы

Функционально связанная совокупность нейронов, расположенных в одной или нескольких структурах ЦНС и обеспечивающих регуляцию той или иной функции или осуществление целостной реакции организма, называется центром нервной системы. Физиологическое понятие нервного центра отличается от анатомического представления о ядре , где близко расположенные нейроны объединяются общими морфологическими особенностями.

Спинной мозг.( medulla spinalis )

Представляет собой уплощённый цилиндрический тяж длиной 42 – 45 см, диаметром 1см, массой 34 – 38 г. Находится в костном позвоночном канале. Начинается от продолговатого мозга (т.е. переходит в ГМ), внизу заканчивается на уровне 1 – 2 поясничных позвонков конусом (от него идут нити – «конский хвост»), до 2 копчикового позвонка. Имеются утолщения – шейное и пояснично-крестцовое. Спинной мозг делится на 31 сегмент. От каждого сегмента отходят 2 передних (аксоны двигательных нейронов) и 2 задних (аксоны чувствительных нейронов) корешка . Корешки каждой стороны, соединяясь, образуют смешанный нерв.

На поперечном разрезе СМ можно выделить 2 вещества.

а) Серое вещество занимает центр вокруг канала и имеет форму буквы Н (или бабочки). В нем – тела нейронов, дендриты и синапсы.

б) Белое вещество окружает серое и состоит из пучков нервных волокон. Они соединяют сегменты между собой и ГМ со СМ.

в) Спинномозговой канал , расположен по центру и заполненспинномозговой жидкостью .

Функции спинного мозга:

I.Рефлекторная.

а) Через серое вещество проходят дуги рефлексов, управляющих скелетной мускулатурой (спинальные рефлексы).

б) Здесь расположены центры некоторых простых рефлексов – регуляция просвета сосудов, потоотделения, мочеиспускания, дефекации и др.

II. Проводниковая – осуществление связи с ГМ.

а) Нервные импульсы по восходящим путям идут в ГМ.

б) Импульсы из ГМ идут по нисходящим путям в СМ, а оттуда к органам.

Спинной мозг новорожденного является наиболее зрелой частью ЦНС, но всё же окончательное его развитие заканчивается к 20 годам (за этот период он увеличивается в 8 раз).

Головной мозг ( encephalon ).

Передний отдел ЦНС, расположенный в полости черепа, главный регулятор всех жизненных функций организма и материальный субстрат его ВНД.

В процессе эмбриогенеза закладываются три мозговых пузыря, в дальнейшем из них и образуются отделы ГМ:

1.Продолговатый мозг.

2. Мозжечок и варолиев мост

3. Средний мозг.

4. Промежуточный мозг .

5. Конечный (передний) мозг .

Б
елое вещество
ГМ представляет собой проводящие пути, соединяющие части мозга между собой.Серое вещество расположено внутри белого в виде ядер и покрывает поверхность мозжечка и больших полушарий в виде коры. Внутри ГМ находятся полости, заполненныемозговой жидкостью (состав и функции те же, что успинномозговой жидкости )– желудочки мозга . Всего их четыре (четвёртый значительно редуцирован), они соединены между собой и со спинномозговым каналом каналами, каналы образуют так называемыймозговой (сильвиев) водопровод.

Отделы ГМ.

I.Продолговатый мозг (medulla oblogata ).

Самый задний участок ГМ, непосредственное продолжение спинного мозга. Длина = 25 мм, форма усеченный конус, обращённый основанием вверх. На его спинной поверхности – ромбовидное углубление (остатки четвёртого желудочка ).

В толще продолговатого мозга расположены ядра серого вещества – это центры простых, но жизненно важных рефлексов – дыхание, сердечно-сосудистый центр, центры управления пищеварительными функциями, центр управления речью, глотания, кашля, чихания, слюноотделения и т.д., таким образом, при повреждении этого мозга наступает смерть. Кроме этогопродолговатый мозг выполняет проводниковую функцию и здесь имеется сетевидное образование, нейроны которого посылают импульсы в СМ для поддержания его в деятельном состоянии.

II.Мозжечок (cerebellum ).

Состоит из двух полушарий, имеет кору серого цвета с грубыми извилинами (своеобразная уменьшенная копия всего ГМ), анатомически выделен от остальных частей мозга.

Серое вещество содержит крупные грушевидные нейроны (клетки Пуркинье), от них отходит множество дендритов. Эти клетки получают импульсы, связанные с мышечной активностью из множества разнообразных источников – рецепторы вестибулярного аппарата, суставов, сухожилий, мышц и от моторных центров КБП.

Мозжечок интегрирует эту информацию и обеспечивает координированную работу всех мышц, участвующих в том или ином движении или поддержании определённой позы. При повреждениимозжечка – резкие и плохо управляемые движения. Мозжечок абсолютно необходим для координации быстрых мышечных движений (бег, разговор, печатанье).

Все функции мозжечка осуществляются без участия сознания, но на ранних этапах тренировки необходим элемент научения (т.е. участие КБП) и волевые усилия. Например, при обучении плаванью, езде на машине и т. д. После выработки навыка мозжечок берёт на себя функцию рефлекторного контроля. Белое вещество мозжечка выполняет проводниковую функцию.

III.Средний мозг (mesencephalon ).

Связывает все отделы мозга между собой, меньше других отделов претерпел эволюционные изменения. Все нервные пути ГМ проходят через эту область. Выделяют крышу среднего мозга иножки мозга. Крышу мозга образует –четверохолмие , где находятся центры зрительных и слуховых рефлексов. Например, движение головы и глаз, поворот головы к источнику звука.

В центре среднего мозга расположены многочисленные центры или ядра, управляющие разнообразными бессознательными движениями – наклоны или повороты головы или туловища. Из них особо выделяют –красное ядро – оно управляет и регулирует тонус скелетных мышц.

IV. Промежуточный мозг (diencephalon ).

Расположен выше среднего мозга под мозолистым телом. Состоит из множества ядер, расположенных вокруг 3-го желудочка. Получает импульсы от всех рецепторов тела. Основными и важными частями его являются –таламус игипоталамус . Здесь же расположены железы– гипофиз иэпифиз.

а) Таламус.

Парное образование серого цвета, яйцевидной формы. В нем оканчиваются аксоны всех сенсорных нейронов (кроме обоняния) и от мозжечка. Получаемая информация перерабатывается, получает соответствующую эмоциональную окраску и направляет всоответствующие зоны КБП.

Таламус посредник , в котором сходятся все раздражения от внешнего мира, видоизменяются и направляются к подкорковым и корковым центрам – следовательно, организм адекватно приспосабливаются к постоянно меняющимся условиям среды.

Кроме того, таламус отвечает за питание клеток мозга, повышает возбудимость клеток КБП.Таламус – высший центр болевой активности.

б) Гипоталамус.

Состоит из 32 пар отдельных участков – ядер, обильно снабжен кровеносными сосудами. Через продолговатый и спинной мозг передает информацию на эффекторы и участвует в регуляции: сердечного ритма, кровяного давления, дыхания и перистальтики. Здесь также расположены специальные центры регулирующие: голод (при повреждении заболевание булемия – волчий аппетит), жажду, сон, температуру тела, водный и углеводный обмены и т.д.

Кроме этого здесь расположены центры, участвующие в сложных поведенческих реакциях – пищевые, агрессии и полового поведения. Также гипоталамус «следит» за концентрацией метаболитов и гормонов в крови, т.е. вместе с гипофизом регулирует секрецию ЖВС и поддерживает гомеостаз организма.

Таким образом, гипоталамус является центром, объединяющим нервные и эндокринные регуляторные механизмы регуляции функций внутренних органов.

V. Конечный мозг ( telencephalon ).

Образует два полушария (левое и правое), которые покрывают сверху большую часть ГМ. Состоит из коры и лежащего под ней белого вещества. Полушария отделены друг от друга продольной щелью, в глубине которой видно соединяющее их широкое мозолистое тело (из белого вещества).

Площадь коры = 1500 см 2 (220 тыс. мм 2). Такая площадь обусловлена развитием большого кол-ва борозд и извилин (в них 70% коры). Борозды делят кору на 5 долей – лобная, теменная, затылочная, височная и островковая.

Кора имеет малую толщину (1,5 – 3 мм) и имеет очень сложное строение. В ней насчитывают шесть основных слоёв, которые отличаются строением, формой и размерами нейронов (пирамидальные клетки Беца ). Их общее кол-во около 10 – 14 млрд., расположены они столбиками.

В белом веществе расположены три желудочка и базальные ганглии (центры безусловные рефлексов).

В КБП различают отдельные области (зоны) трех типов:

1. Сенсорные – входные участки коры, которые получают информацию от всех рецепторов организма.

а) Зрительная зона – в затылочной доле.

б) Слуховая зона – в височной доле.

в) Кожно-мышечная чувствительность – в теменной доле.

г) Вкусовая и обонятельная – диффузно на внутренней поверхности КБП и в височной доле.

2. Ассоциативные зоны – названы так по следующим причинам:

а) Они связывают вновь поступающую информацию с полученной ранее и хранящейся в блоках памяти – следовательно, новые стимулы «узнаются».

б) Информация от одних рецепторов сопоставляется с информацией от других рецепторов.

в) Сенсорные сигналы интерпретируются, «осмысливаются» и при надобности используются для «вычисления» наиболее подходящей реакции, которая вычисляется и передается в двигательную зону. Таким образом, эти зоны участвуют в процессах запоминания, научения мышления и т.д. – то есть того что называется «интеллектом».

3. Моторные зоны – выходные зоны коры. В них возникают двигательные импульсы идущие по нисходящим путям белого вещества.

4. Префронтальные зоны – их функции неясны (они не отвечают на раздражение – «немые» области). Предполагают, что они ответственны за индивидуальные особенности или личность. Взаимосвязи между зонами позволяют КБП контролировать все произвольные и некоторые непроизвольные формы деятельности, включаявысшую нервную деятельность.

Правое и левое полушарие функционально различаются между собой (функциональная асимметрия полушарий ). Правши – у них доминирует левое полушарие, мыслят формулами, таблицами, логическими рассуждениями. Левши – у них доминирует правое полушарие, мыслят образами, картинами.

Принципы координации нервных процессов .

Координация нервных процессов, без которой были бы невозможны согласованная деятельность всех органов организма и его адекватные реакции на воздействия внешней среды, основывается на следующих принципах:

1.Конвергенция нервных процессов . К одному нейрону могут приходить импульсы из разных участков нервной системы, это обусловлено широкой межнейронной связью.

2. Иррадиация . Возбуждение или торможение, возникнув в одном нервном центре, могут распространяться на другие нервные центры.

3. Индукция нервных процессов . В каждом нервном центре один процесс легко переходит в свою противоположность. Если возбуждение сменяется на торможение, то индукция « – », наоборот – «+» индукция.

4. Концентрация нервных процессов . Противоположно индукции, процессы возбуждения и торможения концентрируются в каком-либо участке нервной системы.

5. Принцип доминанты . Это возникновение временно господствующего очага возбуждения. При наличии доминанты раздражения, поступающие, в другие участки нервной системы только усиливаютдоминантный (господствующий) очаг. Принцип открыт А.А.Ухтомским.

Таким образом, в мозгу непрерывно происходит смена, перекомбинация ,изменение мозаики из очагов возбуждения и торможения.

Методы исследования функций ГМ.

1. Электроэнцефалография . Изучение активности мозга с помощью электрофизиологических методов. На коже головы испытуемого укрепляют специальные электроды, которые регистрируют электрические импульсы, отражающие активность нейронов мозга. Импульсы записываются, обнаружены следующие основные электрических волн:

а) альфа-волны. Когда человек расслаблен и глаза закрыты.

б) бета-волны. Имеют частый ритм (хорошо выявлены под наркозом). Их отсутствие – показатель клинической смерти.

в) гамма-волны. Имеют наименьшую частоту и максимальную амплитуду, регистрируются во время сна.

ЭЭГ имеет большое диагностическое значение, т.к. позволяет определить локализацию очагов нарушения.

2. Энцефалоскопия. Это регистрация колебаний яркости свечения точек мозга.

3. Метод регистрации медленных электрических потенциалов (МЭП). Позволяют определить электрические колебания, протекающих в мозге.

Местные операции под местной анестезией. Испытуемый описывает ощущения при раздражении различных участков мозга током.

4. Фармакологический метод. Изучение влияния фармакологических веществ на мозг.

5. Кибернетический метод . Математическое моделирование процессов в мозге.

6. Вживление в мозг микроэлектродов .

Основные принципы работы головного мозга .

И.П.Павлов сформулировал три основных принципа работы ГМ:

I.Принцип структурности . Психическая функция любой степени сложности осуществляется отделами головного мозга.

II.Принцип детерминизма . Любой психический процесс – ощущение, воображение, память, мышление, сознание, воля, чувства и др. – есть отражение материальных событий, происходящих в окружающем мире и в организме. Именно эти материальные явления в итоге определяют поведение. Кроме физиологических потребностей у человека есть и социальные (общение, труд и др.)

III.Принцип анализа и синтеза . Сложные предметы и явления действительности воспринимаются обычно не целиком, а по отдельным признакам. Раздражители, воздействуя на рецепторы соответствующих органов чувств, вызывают потоки нервных импульсов. Они поступают в мозг и там синтезируются, в результате чего возникает целостный субъективный образ. Эти образы составляют своеобразную модель окружающей обстановки и дают возможность ориентироваться в ней.

Возрастные особенности ГМ.

Основные части ГМ выделяются уже к 3-му месяцу эмбриогенеза, а к 5-му месяцу уже хорошо заметны основные борозды больших полушарий.

К моменту рождения общая масса ГМ составляет примерно 388г у девочек и 391г у мальчиков. По отношению к массе тела мозг новорожденного больше, чем у взрослого. 1/8 у новорожденного, а у взрослого – 1/40.

Наиболее интенсивно ГМ человека развивается в первые два года постнатального развития. Затем темпы его развития немного снижаются, но продолжают оставаться высокими до 6 – 7 лет, к этому моменту масса мозга достигает уже 4/5 массы взрослого мозга.

Окончательное созревание ГМ заканчивается только к 17 – 20 годам. К этому возрасту, масса мозга увеличивается по сравнению с новорожденными в 4 – 5 раз и составляет в среднем у мужчин 1400г, а у женщин – 1260г. У некоторых выдающихся людей (И.С.Тургенев, Д.Байрон, О.Кромвель и др.) масса мозга= от 2000 до 2500г. Следует отметить, что абсолютная масса мозга не определяет непосредственно умственные способности человека (например, мозг талантливого французского писателя А.Франса весил около 1000г). Установлено, что интеллект человека снижается только в том случае, если масса мозга уменьшается до 900г и менее.

Изменение размеров, формы и массы мозга сопровождаются изменением его внутренней структуры. Усложняется строение нейронов, форма межнейронных связей, становится четко разграниченным белое и серое вещество, формируются проводящие пути ГМ,

Развитие ГМ идет гетерохронно. Прежде всего, созревают те структуры, от которых зависит нормальная жизнедеятельность организма на данном возрастном этапе. Функциональной полноценности достигают, прежде всего, стволовые, подкорковые и корковые структуры, регулирующие вегетативные функции организма. Эти отделы приближаются о своему развитию к мозгу взрослого человека уже к 2 – 4 годам постнатального развития. Интересно отметить, что число межнейронных связей находится в прямой зависимости от процессов обучения: чем интенсивнее идет обучение, тем большее число синапсов образуется.

Можно полагать, что эффективность работы мозга зависит от его внутренней организации и непременным атрибутом талантливого человека является богатство синаптических связей его мозга.

Периферическая нервная система .

Образована нервами, выходящими из ЦНС и нервными узлами и сплетениями, расположенными главным образом вблизи головного и спинного мозга, а также рядом с внутренними органами или в стенках этих органов. Выделяют соматический ивегетативный отделы.

Соматическая нервная система.

Образована чувствительными нервами, идущими к ЦНС от различных рецепторов и двигательными нервами, иннервирующими (т.е. обеспечивающими нервное управление) скелетную мускулатуру.

Характерные особенности этих нервов – они на всем пути нигде не прерываются, имеют относительно большой диаметр, скорость проведения нервного импульса= 30 – 120 м/с.

Из головного мозга выходят 12 пар черепно-мозговых нервов всех трёх типов: сенсорные – 3 пары (обоняние, зрение, слух); двигательные – 5 пар; смешанные – 4 пары. Эти нервы иннервируют рецепторы и эффекторы головы.

Спинномозговые нервы, их 31 пара формируется из корешков отходящих от сегментов СМ – 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1 копчиковый. Каждому сегменту соответствует определённый участок тела – метамер. На 1 метамер – 3 соседних сегмента. Спинномозговые нервы – являются смешанными нервами и обеспечивают управление скелетной мускулатурой.

Вегетативная (автономная) нервная система.

Координирует и регулирует деятельность всех внутренних органов, обмен веществ и гомеостаз организма. Автономность её относительна, т.к. все вегетативные функции находятся под контролем ЦНС (в первую очередь КБП).

Характерные особенности нервов ВНС – нервы тоньше, чем у соматической; нервы на своём пути от ЦНС к органу прерываются узлами (ганглиями). В ганглиях – переключение на несколько (до 10 и более) нейронов – мультипликация.

1. Симпатическая нервная система . Представляет собой 2 цепочки ганглиев по обе стороны грудного и поясничного отдела позвоночника. Предузловое волокно короткое, послеузловое длинное.

2. Парасимпатическая нервная система . Отходит длинными предузловыми волокнами от ствола ГМ и крестцового отдела СМ, ганглии расположены во внутренних органах или возле них – послеузловое волокно короткое.

Как правило, влияние симпатической и парасимпатической нервной системы носит антагонистический характер. Так, например, симпатическая усиливает и учащает сердечные сокращения, а парасимпатическая – ослабляет и замедляет. Однако этот антагонизм имеет, относительный характер и в некоторых ситуациях оба отдела ВНС могут действовать однонаправленно.

Самый крупный нерв парасимпатической системы – блуждающий нерв , он иннервирует почти все органы грудной и брюшной полости –сердце, лёгкие ,печень, желудок, поджелудочную железу, кишечник, мочевой пузырь .

Контроль над ВНС через гипоталамические структуры осуществляет КБП, особенно её лобные и височные отделы.

Деятельность ВНС происходит вне сферы сознания, но сказывается на общем самочувствии и эмоциональной реактивности. При патологических повреждениях нервных центров ВНС может наблюдаться раздражительность, расстройство сна, неадекватность поведения, расторможенность инстинктивных форм поведения (повышенный аппетит, агрессивность, гиперсексуальность).

Рецепторы.

Это клетки или небольшие группы клеток, которые воспринимают раздражения (т.е. изменения внешней среды) и трансформируют их в процесс нервного возбуждения. Представляют собой видоизменённые эпителиальные клетки, на которых оканчиваются дендриты сенсорных нейронов. Рецепторами могут быть сами нейроны или окончания нервов.

Различают 3 основные группы рецепторов:

1. Экстерорецепторы – воспринимают изменения внешней среды.

2. Интерорецепторы – располагаются внутри тела и раздражаются изменением гомеостаза внутренней среды организма.

3. Проприорецепторы – расположены в скелетных мышцах, они посылают информацию о состоянии мышц и сухожилий.

Кроме того, по природе раздражителя, который воспринимается рецепторами, их, делят на: хеморецепторы (вкус, обоняние); механорецепторы (осязание, боль, слух); фоторецепторы (зрение); терморецепторы (холод и тепло).

Свойства рецептора :

а) Лабильность. Рецептор реагирует только на адекватный раздражитель.

б) Порог раздражения . Существует определенный минимум (порог) силы раздражения, чтобы возник нервный импульс

в) Адаптация, т.е. приспособление к действию постоянных раздражителей. Чем сильнее раздражитель, тем быстрее наступает адаптация.

1. Управление деятельностью опорно-двигательного ап­парата. ЦНС регулирует тонус мышц и посредством его перерас­пределения поддерживает естественную позу, а при нарушении восстанавливает ее, инициирует все виды двигательной активнос­ти (физическая работа, физкультура, спорт, любое перемещение организма).

2. Регуляция работы внутренних органов осуществляет­ся вегетативной нервной системой и эндокринными железами; обеспечивает интенсивность их функционирования согласно потребностям организма в различных условиях его жизнедея­тельности.


3. Обеспечение сознания и всех видов психической дея­тельности. Психическая деятельность - это идеальная, субъек­тивно осознаваемая деятельность организма, осуществляемая с помощью нейрофизиологических процессов. И. П. Павлов ввел представление о высшей и низшей нервной деятельности. Высшая нервная деятельность - это совокупность нейрофизиологиче­ских процессов, обеспечивающих сознание, подсознательную пе­реработку информации и целенаправленное поведение организма в окружающей среде. Психическая деятельность осуществляется с помощью высшей нервной деятельности и протекает осознанно, т.е. во время бодрствования, независимо от того, сопровождается она физической работой или нет. Высшая нервная деятельность про­текает во время бодрствования и сна (см. разделы 15.8, 15.9, 15.10). Низшая нервная деятельность - это совокупность нейрофизиоло­гических процессов, обеспечивающих осуществление безусловных рефлексов.

4. Формирование взаимодействия организма с окружаю­щей средой. Это реализуется, например, с помощью избегания или избавления от неприятных раздражителей (защитные реакции орга­низма), регуляции интенсивности обмена веществ при изменении температуры окружающей среды. Изменения внутренней среды организма, воспринимаемые субъективно в виде ощущений, также побуждают организм к той или иной целенаправленной двигатель­ной активности. Так, например, в случае недостатка воды и при по­вышении осмотического давления жидкостей организма возника­ет жажда, которая инициирует поведение, направленное на поиск и прием воды. Любая деятельность самой ЦНС реализуется в ко­нечном итоге с помощью функционирования отдельных клеток.

ФУНКЦИИ КЛЕТОК ЦНС И ЛИКВОРА,

КЛАССИФИКАЦИЯ НЕЙРОНОВ ЦНС,

ИХ МЕДИАТОРЫ И РЕЦЕПТОРЫ

Мозг человека содержит около 50 миллиардов нервных клеток, взаимодействие между которыми осуществляется посредством множества синапсов, число которых в тысячи раз больше количе­ства самих клеток (10 15 -10 16), так как их аксоны делятся много­кратно дихотомически, поэтому один нейрон может образовы­вать до тысячи синапсов с другими нейронами. Нейроны оказывают свое влияние на органы и ткани также посредством синапсов.

А. Нервная клетка (нейрон) является структурной и функци­ональной единицей ЦНС, она состоит из сомы (тела клетки с яд-


ром) и отростков, представляющих собой большое число дендри-тов и один аксон (рис. 5.5). Потенциал покоя (ПП) нейрона состав­ляет 60-80 мВ, потенциал действия (ПД) -80-110 мВ. Сома и ден­дриты покрыты нервными окончаниями - синаптическими бутонами и отростками глиальных клеток. На одном нейроне чис­ло синаптических бутонов может достигать 10 тысяч (см. рис. 5.5). Аксон начинается от тела клетки аксонным холмиком. Диаметр тела клетки составляет 10-100 мкм, аксона - 1-6 мкм, на периферии длина аксона может достигать метра и более. Нейроны мозга обра­зуют колонки, ядра и слои, выполняющие определенные функции.


Клеточные скопления образуют серое вещество мозга. Между клет­ками проходят немиелинизированные и миелинизированные не­рвные волокна (дендриты и аксоны нейронов).

Функциями нервной клетки являются получение, переработ­ка и хранение информации, передача сигнала другим нервным клет­кам, регуляция деятельности эффекторных клеток различных ор­ганов и тканей организма. Целесообразно выделить следующие функциональные структуры нейрона.

1. Структуры, обеспечивающие синтез макромолекул, - это сома (тело нейрона), выполняющая трофическую функцию по от­ношению к отросткам (аксону и дендритам) и клеткам-эффекторам. Отросток, лишенный связи с телом нейрона, дегенерирует. Макро­молекулы транспортируются по аксону и дендритам.

2. Структуры, воспринимающие импульсы от других нервных клеток, - это тело и дендриты нейрона с расположенными на них шипиками, занимающими до 40% поверхности сомы нейрона и ден-дритов. Причем, если шипики не получают импульсацию, они исчезают. Импульсы могут поступать и к окончанию аксона - аксо-аксонные синапсы, например, в случае пресинаптического тормо­жения.

3. Структуры, где обычно возникает потенциал действия (гене­раторный пункт ПД), - аксонный холмик.

4. Структуры, проводящие возбуждение к другому нейрону или к эффектору, - аксон.

5. Структуры, передающие импульсы на другие клетки, - си­напсы.

Б. Классификация нейронов ЦНС. Нейроны делят на следу­ющие основные группы.

1. В зависимости от отдела ЦНС выделяют нейроны сомати­ческой и вегетативной нервной системы.

2. По источнику или направлению информации нейроны под­разделяют на: а) афферентные, воспринимающие с помощью ре­цепторов информацию о внешней и внутренней среде организма и передающие ее в вышележащие отделы ЦНС; б) эфферентные, передающие информацию к рабочим органам - эффекторам; не­рвные клетки, иннервирующие эффекторы, иногда называют эф-фекторными; эффекторные нейроны спинного мозга (мотонейроны) делят на а- иу-мотонейроны; в) вставочные (интернейроны), обес­печивающие взаимодействие между нейронами ЦНС.

3. По медиатору, выделяющемуся в окончаниях аксонов, раз­личают нейроны адренергические, холинергические, серотонинер-гические и т. д.

4. По влиянию - возбуждающие и тормозящие.


В. Глиальные клетки (нейроглия - «нервный клей») более многочисленны, чем нейроны, составляют около 50% объема ЦНС. Они способны к делению в течение всей жизни. Размеры глиальных клеток в 3-4 раза меньше нервных, с возрастом их число увеличивается (число нейронов уменьшается). Тела нейронов, как и их аксоны, окружены глиальными клетками. Глиальные клетки выполняют несколько функций: опорную, защитную, изолирующую, обменную (снабжение нейронов питательными веществами). Микроглиальные клетки способны к фагоцитозу, ритмическому изменению своего объема (период «сокращения» -1,5 мин, «расслабления» - 4 мин). Циклы изменения объема повторяются через каждые 2-20 час. Полагают, что пульсация способствует продвижению аксоплазмы в нейронах и влияет на ток межклеточной жидкости. Мембранный потенциал клеток нейроглии составляет 70-90 мВ, однако ПД они не генерируют, возникают только лишь локальные токи, электротонически распространяющиеся от одной клетки к другой. Процессы возбуж­дения в нейронах и электрические явления в глиальных клетках, по-видимому, взаимодействуют."

Г. Ликвор - бесцветная прозрачная жидкость, заполняющая мозговые желудочки, Спинномозговой канал и субарахноидальное пространство. Ее происхождение связано с интерстициальной жид­костью мозга, значительная часть ликвора образуется сосудисты­ми сплетениями желудочков мозга. Непосредственной питатель­ной средой клеток мозга является интерстициальная жидкость, в которую клетки выделяют также и продукты своего обмена. Лик-вор представляет собой совокупность фильтрата плазмы крови и интерстициальной жидкости: она содержит около 90% воды и око­ло 10% сухого остатка (2% - органические, 8% - неорганические вещества).

Д. Медиаторы и рецепторы синапсов ЦНС. Медиаторами синапсов ЦНС являются многие химические вещества, разнород­ные в структурном отношении (в головном мозге к настоящему времени обнаружено около 30 биологически активных веществ). Вещество, из которого синтезируется медиатор (предшественник медиатора), попадает в нейрон или его окончание из крови или ликвора, в результате биохимических реакций под действием ферментов в нервных окончаниях превращается в соответствую­щий медиатор и накапливается в синаптических везикулах. По химическому строению медиаторы можно разделить на несколько групп, главными из которых являются амины, аминокислоты, полипептиды. Достаточно широко распространенным медиатором является ацетилхолин.


Согласно принципу Дейла, один нейрон синтезирует и ис­пользует один и тот же медиатор или одни и те же медиаторы во всех разветвлениях своего аксона («один нейрон - один меди­атор»). Кроме основного медиатора, как выяснилось, в окончаниях аксона могут выделяться и другие - сопутствующие медиаторы (ко-медиаторы), играющие модулирующую роль и более медленно дей­ствующие. Однако в спинном мозге установлено два быстродейству­ющих медиатора в одном тормозном нейроне - ГАМК и глицин и даже один тормозной (ГАМК) и один возбуждающий (АТФ). По­этому принцип Дейла в новой редакции сначала звучал: «Один ней­рон - один быстрый медиатор», а затем: «Один нейрон - один быс­трый синаптический эффект» (предполагаются и другие варианты).

Эффект действия медиатора зависит в основном от свойств постсинаптической мембраны и вторых посредников. Это явление особенно ярко демонстрируется при сравнении эффектов отдельных медиаторов в ЦНС и в периферических синапсах организма. Ацетил­холин, например, в коре мозга при микроаппликациях на разные нейроны может вызывать возбуждение и торможение, в синапсах сер­дца - торможение, в синапсах гладкой мускулатуры желудочно-ки­шечного тракта - возбуждение. Катехоламины стимулируют сердеч­ную деятельность, но тормозят сокращения желудка и кишечника.

5.7. МЕХАНИЗМ ВОЗБУЖДЕНИЯ НЕЙРОНОВ ЦНС

В любых химических синапсах (ЦНС, вегетативных ганглиях, в нервно-мышечном) механизмы передачи сигнала в общих чертах подобны (см. раздел 2.1). Однако в возбуждении нейронов ЦНС имеются характерные особенности, основными из которых явля­ются следующие.

1. Для возбуждения нейрона (возникновения ПД) необ­ходимы поток афферентных импульсов и их взаимодействие. Это объясняется тем, что один пришедший к нейрону импульс вы­зывает небольшой возбуждающий постсинаптический потенциал (ВПСП, рис. 5.6) - всего 0,05 мВ (миниатюрный ВПСП). Один пу­зырек содержит до нескольких десятков тысяч молекул медиатора, например ацетилхолина. Если учесть, что пороговый потенциал нейрона 5-10 мВ, ясно, что для возбуждения нейрона требуется множество импульсов.

2. Место возникновения генераторных ВПСП, вызываю­щих ПД нейрона. Подавляющее большинство нейрональных си­напсов находится на дендритах нейрона. Однако наиболее эффек­тивно вызывают возбуждение нейрона синаптические контакты,

расположенные на теле нейрона. Это связано с тем, что постси-наптические мембраны этих синапсов располагаются в непосред­ственной близости от места первичного возникновения ПД, рас­полагающегося в аксонном холмике. Близость соматических синапсов к аксонному холмику обеспечивает участие их ВПСП в механизмах генерации ПД. В этой связи некоторые авторы предла­гают называть их генераторными синапсами.

3. Генераторный пункт нейрона, т.е. место возникнове­ния ПД, - аксонный холмик. Синапсьг на нем отсутствуют, отли­чительной особенностью мембраны аксонного холмика является вы-" сокая возбудимость, в 3-4 раза превосходящая возбудимость сома-дендритной мембраны нейрона, что объясняется более высо­кой концентрацией Ыа-каналов на аксонном холмике. ВПСП элек-тротонически достигают аксонный холмик, обеспечивая здесь уменьшение мембранного потенциала до критического уровня. В этот момент возникает ПД. Возникший в аксонном холмике ПД, с одной стороны, ортодромно переходит на аксон, с другой - анти­дромно на тело нейрона.

4. Роль дендритов в возникновении возбуждения до сих пор дискутируется. Полагают, что множество ВПСП, возникающих на дендритах, электротонически управляют возбудимостью нейрона. В этой связи дендритные синапсы получили название модулятор­ных синапсов.

5.8. ХАРАКТЕРИСТИКА РАСПРОСТРАНЕНИЯ ВОЗБУЖДЕНИЯ В ЦНС

Особенности распространения возбуждения в ЦНС объясняют­ся ее нейронным строением - наличием химических синапсов, мно­гократным ветвлением аксонов нейронов, наличием замкнутых ней­ронных путей. Этими особенностями являются следующие.


1. Одностороннее распространение возбуждения в нейрон­ных цепях, в рефлекторных дугах. Одностороннее распростране­ние возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно, объясняется свойствами химиче­ских синапсов, которые проводят возбуждение только в одном на­правлении.

2. Замедленное распространение возбуждения в ЦНС по сравнению с нервным волокном объясняется наличием на путях распространения возбуждения множества химических синапсов. Суммарная задержка передачи возбуждения в нейроне до возник­новения ПД достигает величины порядка 2 мс.

3. Иррадиация (дивергенция) возбуждения в ЦНС объяс­няется ветвлением аксонов нейронов, их способностью устанавли­вать многочисленные связи с другими нейронами, наличием вста­вочных нейронов, аксоны которых также ветвятся (рис. 5.7 - А).

4. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Объясняется наличием мно­гих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных ней­ронов. На одном нейроне ЦНС могут располагаться до 10 000 си­напсов, на мотонейронах - до 20 000 (рис. 5.7 - Б).

5. Циркуляция возбуждения по замкнутым нейронным цепям, которая может продолжаться минутами и даже часами (рис. 5.8).


6. Распространение возбуждения в центральной нервной системе легко блокируется фармакологическими препаратами, что находит широкое применение в клинической практике. В физиоло­гических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию отличительных свойств нервных центров.

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ

Рассматриваемые ниже свойства нервных центров связаны с некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являют­ся следующие.

А. Инерционность - сравнительно медленное возникновение возбуждения всего комплекса нейронов центра при поступлении к нему импульсов и медленное исчезновение возбуждения нейронов центра после прекращения входной импульсации. Инерционность центров связана с суммацией возбуждения и последействием.

Явление суммации возбуждения в ЦНС открыл И. М. Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки сла­быми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождаются от­ветной реакцией - лягушка совершает прыжок. Различают времен­ную (последовательную) и пространственную суммацию (рис. 5.9).


Последействие - это продолжение возбуждения нервного цен­тра после прекращения поступления к нему импульсов по аффе­рентным нервным путям. Основной причиной последействия явля­ется циркуляция возбуждения по замкнутым нейронным цепям (см. рис. 5.8), которая может продолжаться минуты и даже часы.

Б. Фоновая активность нервных центров (тонус) объяс­няется: 1) спонтанной активностью нейронов ЦНС; 2) гумораль­ными влияниями биологически активных веществ (метаболиты, гормоны, медиаторы и др.), циркулирующих в крови и влияющих на возбудимость нейронов; 3) афферентной импульсацией от раз­личных рефлексогенных зон; 4) суммацией миниатюрных по­тенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах; 5) циркуляцией возбуждения в ЦНС. Значение фоновой актив­ности нервных центров заключается в обеспечении некоторого

исходного уровня деятельного состояния центра и эффекторов. Этот уровень может увеличиваться или уменьшаться в зависимос­ти от колебаний суммарной активности нейронов нервного цент­ра-регулятора.

В. Трансформация ритма возбуждения - это изменение числа импульсов, возникающих в нейронах центра на выходе относительно числа импульсов, поступающих на вход данного центра. Трансформация ритма возбуждения возможна как в сторону увеличения, так и в сторону уменьшения. Увеличению числа импульсов, возникающих в центре в ответ на афферентную импульсацию, способствуют иррадиация процесса возбуждения и последействие. Уменьшение числа импульсов в нервном центре объясняется снижением его возбудимости за счет процессов пре-и постсинаптического торможения, а также избыточным потоком афферентных импульсов. При большом потоке афферентных влияний, когда уже все нейроны центра или нейронного пула возбуждены, дальнейшее увеличение афферентных входов не увеличивает число возбужденных нейронов.

Г. Большая чувствительность ЦНС к изменениям внут­ренней среды, например, к изменению содержания глюкозы в кро­ви, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую оче­редь реагируют синапсы нейронов. Особенно чувствительны ней­роны ЦНС к недостатку глюкозы и кислорода. При снижении со­держания глюкозы в 2 раза ниже нормы (до 50% от нормы) могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови. Прекращение кровотока всего лишь на 10 с приводит к очевидным нарушениям функций мозга, человек теряет сознание. Прекращение кровотока на 8-12 мин вызывает необратимые нарушения деятельности мозга - погибают многие нейроны, в первую очередь корковые, что ведет к тяжелым послед­ствиям.

Д. Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств. Основные про­явления пластичности следующие.

1. Синаптическое облегчение - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Сте­пень выраженности облегчения возрастает с увеличением частоты импульсов, оно максимально, когда импульсы поступают с интер­валом в несколько миллисекунд.

Длительность синаптического облегчения зависит от свойств синапса и характера раздражения - после одиночных стимулов оно невелико, после раздражающей серии облегчение в ЦНС может


продолжаться от нескольких минут до нескольких часов. По-види­мому, главной причиной возникновения синаптического облегче­ния является накопление Са 2+ в пресинаптических окончаниях, поскольку Са 2+ , который входит в нервное окончание во время ПД, накапливается там, так как ионная помпа не успевает выводить его из нервного окончания. Соответственно увеличивается высвобож­дение медиатора при возникновении каждого импульса в нервном окончании, возрастает ВПСП. Кроме того, при частом использо­вании синапсов ускоряется синтез рецепторов и медиатора и ус­коряется мобилизация пузырьков медиатора, напротив, при редком использовании синапсов синтез медиаторов уменьшается - важ­нейшее свойство ЦНС. Поэтому фоновая активность нейронов спо­собствует возникновению возбуждения в нервных центрах. Зна­чение синаптического облегчения заключается в том, что оно создает предпосылки улучшения процессов переработки информа­ции на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки двигательных навыков, условных рефлексов.

2. Синаптическая депрессия - это ухудшение проведения в синапсах в результате длительной посылки импульсов, например, при длительном раздражении афферентного нерва (утомляемость центра). Утомляемость нервных центров продемонстрировал Н. Е. Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения п. тлЫаНз и п. регопеиз. В этом случае ритмическое раздражение одного нерва вызывает ритмические сокращения мыш­цы, приводящие к ослаблению силы ее сокращения вплоть до пол­ного отсутствия сокращения. Переключение раздражения на дру­гой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в цент­ральной части рефлекторной дуги (рис. 5.10). Ослабление реакции центра на афферентные импульсы выражается в снижении постси-наптических потенциалов. Оно объясняется расходованием меди­атора, накоплением метаболитов, в частности, закислением среды при длительном проведении возбуждения по одним и тем же ней­ронным цепям.

3. Доминанта - стойкий господствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров. Доми­нанта - это более стойкий феномен облегчения. Явление доминан­ты открыл А. А. Ухтомский (1923) в опытах с раздражением двига­тельных зон большого мозга и наблюдением сгибания конечности животного. Как выяснилось, если раздражать корковую двигатель­ную зону на фоне избыточного повышения возбудимости другого

нервного центра, сгибания конечности может не произойти. Вместо^ сгибания конечности раздражение двигательной зоны вызывает ре­акцию тех эффекторов, деятельность которых контролируется гос­подствующим, т. е. доминирующим в данный момент в ЦНС, нерв­ным центром.

Доминантный очаг возбуждения обладает рядом особых свойств, главными из которых являются следующие: инерционность, стойкость, повышенная возбудимость, способность «притягивать» к себе ирра-диирующие по ЦНС возбуждения, способность оказывать.угнета­ющие влияния на центры-конкуренты и другие нервные центры.

Значение доминантного очага возбуждения в ЦНС заключает­ся в том, что на его базе формируется конкретная приспособитель­ная деятельность, ориентированная на достижение полезных ре­зультатов, необходимых для устранения причин, поддерживающих тот или иной нервный центр в доминантном состоянии. Напри­мер, на базе доминантного состояния центра голода реализуется пищедобывательное поведение, на базе доминантного состояния центра жажды запускается поведение, направленное на поиск воды. Успешное завершение данных поведенческих актов в ко­нечном итоге устраняет физиологические причины доминантно­го состояния центров голода или жажды. Доминантное состоя­ние центров ЦНС обеспечивает автоматизированное выполнение двигательных реакций.


4. Компенсация нарушенных функций после повреждения того или иного центра - также результат проявления пластичности ЦНС. Хорошо известны клинические наблюдения за больными, у которых после кровоизлияний в вещество мозга повреждались цен­тры регуляции мышечного тонуса и акта ходьбы. Тем не менее, со временем отмечалось, что парализованная конечность у больных постепенно начинает вовлекаться в двигательную активность, при этом нормализуется тонус ее мышц. Нарушенная двигательная функция частично, а иногда и полностью восстанавливается за счет большей активности сохранившихся нейронов и вовлечения в эту функцию других - «рассеянных» нейронов в коре большого мозга^с подобными функциями. Этому способствуют регулярные (настой­чивые, упорные) пассивные и активные движения.

ТОРМОЖЕНИЕ В ЦНС

Торможение - это активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Тор­можение вторично относительно процесса возбуждения, так как всегда возникает как следствие возбуждения.

Торможение в ЦНС открыл И. М. Сеченов (1863). В опыте на таламической лягушке он определял латентное время сгибатель-ного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса зна­чительно увеличивается, если на зрительный бугор предваритель­но положить кристаллик поваренной соли. Открытие И. М. Се­ченова послужило толчком для дальнейших исследований торможения в ЦНС, при этом было открыто два механизма тормо­жения: пост- и пресинаптическое.

А. Постсинаптическое торможение возникает на постси-наптических мембранах нейрона в результате гиперполяризаци­онного постсинаптическрго потенциала, уменьшающего возбуди­мость нейрона, угнетающего его способность реагировать на возбуждающие влияния. По этой причине вызванный гиперполя­ризационный потенциал был назван тормозным постсинаптиче-ским потенциалом, ТПСП "(см. рис. 5.6). АмплитудаТПСП 1-5 мВ, он способен суммироваться.

Возбудимость клетки от ТПСП (гиперполяризационного постси-наптического потенциала) уменьшается потому, что увеличивается пороговый потенциал (МО, так как Е кр (критический уровень депо­ляризации, КУД) остается на прежнем уровне, а мембранный потен­циал (Е) возрастает. ТПСП возникает под влиянием и аминокисло-


Ты глицина, и ГАМК - гамма-аминомасляной кислоты. В спинном мозге глицин выделяется особыми тормозными клетками (клет­ками Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинапти-ческой мембраны, глицин увеличивает ее проницаемость для СГ, при этом СГ поступает в клетку согласно концентрационному градиенту вопреки электрическому градиенту, в результате чего развивается гиперполяризация. В безхлорной среде тормозная роль глицина не реализуется. Ареактивность нейрона к возбуждающим импуль­сам является следствием алгебраической суммации ТПСП и ВПСП, в связи с чем в зоне аксонного холмика не происходит депо­ляризации мембраны до критического уровня. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в результате входа СГ в клетку или выхода К + из клетки. Концентрационные гра­диенты ионов К + в процессе развития торможения нейронов поддер­живаются Ыа/К-помпой, ионов СГ - СГ-помпой. Разновидности постсинаптического торможения представлены на рис. 5.11.




Б. Пресинаптическое торможение развивается в преси-наптических окончаниях. При этом мембранный потенциал и возбудимость исследуемых нейронов не изменяются либо реги­стрируется низкоамплитудный ВПСП, недостаточный для возникновения ПД (рис. 5.12). Возбуждение блокируется в преси» наптических окончаниях вследствие деполяризации их. В очаге де­поляризации нарушается процесс распространения возбужде­ния, следовательно, поступающие импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амп­литуды, не обеспечивают выделение медиатора в синаптическую щель в достаточном количестве, поэтому нейрон не возбуждается, его функциональное состояние, естественно, остается неизменным. Деполяризацию пресинаптической терминали вызывают специаль­ные тормозные вставочные клетки, аксоны которых образу-


ют синапсы на пресинаптических окончаниях аксона-мишени (см. рис 5.12). Торможение (деполяризация) после одного аффе­рентного залпа продолжается 300-400 мс, медиатором является гамма-аминомасляная кислота (ГАМК), которая действует на ГАМК-рецепторы.

Деполяризация является следствием повышения проницаемо­сти для СГ, в результате чего он выходит из клетки согласно элек­трическому градиенту. Это доказывает, что в составе мембран пресинаптических терминалей имеется хлорный насос, обеспечи­вающий транспорт СГ внутрь клетки вопреки электрическому гра­диенту.

Разновидности пресинаптического торможения изучены недостаточно. По-видимому, имеются те же варианты, что и для постсинаптического торможения. В частности, на рис. 5.12 пред­ставлено параллельное и латеральное пресинаптическое торможе­ние. Однако возвратное пресинаптическое торможение на уровне спинного мозга (по типу возвратного постсинаптического тормо­жения) у млекопитающих обнаружить не удалось, хотя у лягушек

оно выявлено.

В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рис. 5.11 и 5.12, тем не менее все варианты пре- и постсинаптиче­ского торможений можно объединить в две группы: 1) когда бло­кируется собственный путь самим распространяющимся возбуж­дением с помощью вставочных тормозных клеток (параллельное и возвратное торможение) и 2) когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих ней­ронов с включением тормозных клеток (латеральное и прямое тор­можения). Поскольку тормозные клетки сами могут быть затормо­жены другими тормозными нейронами (торможение торможения), это может облегчить распространение возбуждения.


В. Роль торможения.

1. Оба известных вида торможения со всеми их разновидно­стями выполняют охранительную роль. Отсутствие торможе­ния привело бы к истощению медиаторов в аксонах нейронов и пре­кращению деятельности ЦНС.

2. Торможение играет важную роль в обработке поступаю­щей в ЦНС информации. Особенно ярко выражена эта роль у пре-синаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблоки­рованы отдельные нервные волокна. К одному возбуждающему ней­рону могут подходить сотни и тысячи импульсов по разным терми-налям. Вместе с тем, число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение лате­ральных путей обеспечивает выделение существенных сигналов, из фона. Блокада торможения ведет к широкой иррадиации возбуж­дения и судорогам (например, при выключении пресинаптического торможения бикукулином).

3. Торможение является важным фактором обеспечения координационной деятельности ЦНС.