Построение изображения на сетчатке. Оптическая система глаза. Построение изображения. Аккомодация. Рефракция, её нарушения Какое изображение попадает на сетчатку человеческого глаза

Глаз – тело в виде шаровидной сферы. Он достигает диаметра 25 мм и веса 8 г, является зрительным анализатором. Фиксирует увиденное и передает изображение на , затем по нервным импульсам в мозг.

Прибор оптической зрительной системы – человеческий глаз умеет сам настраиваться, в зависимости от поступающего света. Он способен увидеть удаленные предметы и находящиеся близко.

Сетчатка имеет очень сложное строение

Глазное яблоко представляет собой три оболочки. Внешняя – непрозрачная соединительная ткань, которая поддерживает форму глаза. Вторая оболочка – сосудистая, содержит большую сеть сосудов, которая питает глазное яблоко.

По цвету она черная, поглощает свет, не давая ему рассеиваться. Третья оболочка – , цветная, от ее расцветки зависит цвет глаз. В центре имеется зрачок, который регулирует поток лучей и меняется в диаметре, зависит от интенсивности освещения.

Оптическая система глаза состоит из , стекловидного тела. Хрусталик может принимать размеры маленького шарика и растягиваться до больших размеров, меняя фокус расстояния. Он способен менять свою кривизну.

Глазное дно покрывает сетчатка, имеющая толщину до 0,2 мм. Она состоит из слоистой нервной системы. Сетчатка имеет большую зрительную часть – фоторецепторные клетки и слепую переднюю часть.

Зрительные рецепторы сетчатки – палочки и колбочки. Эта часть состоит из десяти слоев, и поддается рассмотрению только под микроскопом.

Как формируется изображение на сетчатке


Проекция изображения на сетчатку

Когда лучи света проходят хрусталик, перемещаясь через стекловидное тело, они попадают на сетчатку, находящуюся на плоскости глазного дна. Напротив зрачка на сетчатке есть желтое пятно – это центральная часть, изображение на нем самое четкое.

Остальная часть – это периферическая. Центральная часть позволяет четко рассматривать предметы до мельчайших деталей. С помощью периферического зрения человек способен видеть не очень четкую картинку, но ориентироваться в пространстве.

Восприятие картинки происходит с проекцией изображения на сетчатку глаза. Фоторецепторы возбуждаются. Эта информация посылается в мозг и обрабатывается в зрительных центрах. Сетчатка каждого глаза передает через нервные импульсы свою половину изображения.

Благодаря этому и зрительной памяти возникает общий зрительный образ. На сетчатке отображается картинка в уменьшенном виде, перевернутой. А перед глазами она видится прямая и в натуральных размерах.

Снижение зрения при повреждениях сетчатки

Повреждение сетчатки ведет к снижению зрения. Если повреждена центральная ее часть, то может привести к полной потере зрения. О нарушениях периферического зрения человек долгое время может не догадываться.

Повреждение выявляется при проверке именно периферического зрения. При поражении большого участка этой части сетчатки происходит:

  1. дефект зрения в виде выпадения отдельных фрагментов;
  2. снижение ориентации при плохой освещенности;
  3. изменение восприятия цветов.

Изображение предметов на сетчатке глаза, контроль изображения мозгом


Коррекция зрения с помощью лазера

Если световой поток фокусируется перед сетчаткой, а не в центре, то это дефект зрения называется близорукостью. Близорукий человек плохо видит вдаль и хорошо видит вблизи. Когда световые лучи фокусируются за сетчаткой, то это называется дальнозоркостью.

Человек, наоборот, плохо видит близко и хорошо различает предметы вдали. Спустя некоторое время, если глаз не видит изображения предмета, оно исчезает с сетчатки. Образ, запомнившийся зрительно, хранится в сознании человека, на протяжении 0,1 сек. Это свойство называется инерцией зрения.

Как изображение контролируется мозгом

Еще ученый Иоганн Кеплер понял, что проектируемое изображение перевернутое. А другой ученый – француз Рене Декарт провел опыт и подтвердил этот вывод. Он с бычьего глаза убрал задний непрозрачный слой.

Вставил глаз в отверстие в стекле и увидел на стенке глазного дна картинку за окном в перевернутом виде. Таким образом, утверждение, что все изображения, подающие на сетчатку глаза, имеют перевернутый вид, было доказано.

А то, что мы видим изображения неперевернутыми, является заслугой мозга. Именно мозг корректирует непрерывно зрительный процесс. Это тоже доказано научным и опытным путем. Психолог Дж. Стреттон в 1896 году решил поставить эксперимент.

Он использовал очки, благодаря которым, на сетчатке глаза все предметы имели прямой вид, а не перевернутый. Тогда, как сам Стреттон видел перед собой перевернутые картинки. У него началось несогласованность явлений: видение глазами и ощущение других чувств. Появились признаки морской болезни, его тошнило, чувствовался дискомфорт и дисбаланс в организме. Продолжалось это три дня.

На четвертый день ему стало лучше. На пятый – он чувствовал себя прекрасно, как и до начала эксперимента. То есть мозг приспособился к изменениям и привел все в норму через некоторое время.

Стоило ему снять очки, как все опять встало с ног на голову. Но в этом случае мозг быстрее справился с задачей, уже через полтора часа все восстановилось, и картинка стала нормальной. Такой же опыт проводили с обезьяной, но она не выдержала эксперимента, впала как бы в коматозное состояние.

Особенности зрения


Палочки и колбочки

Еще одна особенность зрения – аккомодация, это способность глаз приспосабливаться видеть как на близком расстоянии, так и на далеком. На хрусталике имеются мышцы, которые могут изменять кривизну поверхности.

При взгляде на предметы, расположенные на дальнем расстоянии, кривизна поверхности небольшая и мышцы расслаблены. При рассмотрении предметов на близком расстоянии, мышцы приводят хрусталик в сжатое состояние, кривизна увеличивается, следовательно, и оптическая сила тоже.

Но на очень близком расстоянии, напряжение мышц становится наивысшим, может деформироваться, глаза быстро утомляются. Поэтому предельное расстояние для чтения и выполнения письма составляет 25 см до предмета.

На сетчатках левого и правого глаза получаемые изображения отличаются друг от друга, потому, что каждый глаз в отдельности видит предмет со своей стороны. Чем ближе рассматриваемый предмет, тем различия ярче.

Глаза видят предметы объемно, а не в плоскости. Эта особенность называется стереоскопическим зрением. Если долго рассматривать какой-то рисунок или предмет, то переместив глаза на чистое пространство, можно увидеть очертание на мгновение этого предмета или рисунка.

Факты о зрение


Есть очень много интересных фактов о строении глаза

Интересные факты о зрении человека и животных:

  • Зеленые глаза имеют только 2% населения земного шара.
  • Разные глаза по цвету бывают у 1% всего населения.
  • Красные глаза бывают у альбиносов.
  • Угол обзора у человека от 160 до 210°.
  • У кошек глаза поворачиваются до 185°.
  • У лошади обзор глаз составляет 350°.
  • Гриф видит мелких грызунов с высоты 5 км.
  • Стрекоза имеет уникальный зрительный орган, который состоит из 30 тыс. отдельных глазков. Каждый глазок видит отдельный фрагмент, и мозг соединяет все в большую картинку. Такое зрение называется фасеточным. Стрекоза видит в секунду 300 изображений.
  • У страуса объем глаза больше, чем объем мозга.
  • Глаз крупного кита весит 1 кг.
  • Крокодилы, когда едят мясо плачут, освобождаясь от излишней соли.
  • Есть среди скорпионов виды, имеющие до 12 глаз, у некоторых пауков насчитывается 8 глаз.
  • Красный цвет не различают собаки, кошки.
  • Пчела тоже не видит красного цвета, но различает другие, хорошо чувствует ультрафиолетовое излучение.
  • Распространенное мнение, что коровы и быки реагируют на красный цвет – ошибочное. На корридах быки обращают внимание не на красный цвет, а на движение тряпки, так как они еще близорукие.

Глазной орган сложный по структуре и функциональности. Каждая составная его часть индивидуальна и неповторима, в том числе и сетчатка. От работы каждого отдела отдельно и вместе взятых, зависит правильное и четкое восприятие изображения, острота зрения и видение мира в цветах и красках.

Про близорукость и методах ее лечения — в видеосюжете:

Урок. Формирование изображения на сетчатке

1. Оптическая система глаза. Аккомодация

Епосредственно за зрачком располагается прозрачный хрусталик, имеющий форму двояковыпуклой линзы. Хрусталик эластичен, он может менять свою кривизну с помощью специальной ресничной мышцы , которая при сокращении ослабляет цинновы связки, которые прикрепляются к хрусталику. Хрусталик в силу своей природной упругости становится более выпуклым. Когда ресничная мышца расслаблена (например, когда человек смотрит вдаль), цинновы связки растягивают хрусталик, он уплощается. Пространство позади хрусталика заполнено прозрачной желеобразной массой - стекловидным телом.

Световые лучи от предметов проходят через роговицу, жидкость передней камеры глаза, зрачок, жидкость задней камеры глаза, хрусталик и стекловидное тело. У людей с нормальным зрением

лучи попадают точно на сетчатку и образуют на ней четкие изображения предметов.

Но одновременно видеть с одинаковой четкостью близко и далеко расположенные предметы мы не можем. В каждый момент времени хрусталик глаза приспосабливается либо к ближнему, либо к дальнему видению. Это достигается быстрым изменением кривизны хрусталика и называется аккомодацией . Попробуйте, рассматривая одним глазом удаленные предметы, одновременно рассмотреть карандаш, расположенный от глаза на расстоянии 20 см. Его изображение покажется вам расплывчатым.

Изображение на сетчатке получается хотя и четким, но перевернутым. Почему же мы тогда не видим все вокруг нас перевернутым вверх ногами? Один австрийский ученый изобрел специальные очки, переворачивающие изображение на сетчатке. Он их носил постоянно. Первое время он видел все предметы вверх ногами, но вскоре вновь научился видеть их нормально. В этих очках он смог даже научиться ездить на велосипеде. Но стоило ему снять очки, как первое время он снова видел все окружающие предметы перевернутыми. Значит, такая особенность нашего глаза исправляется с помощью обучения и тренировки, в которой участвуют не только зрительный, но и другие анализаторы. Следовательно, зрительное восприятие окружающего мира основывается не только на самих зрительных ощущениях, а использует сведения от других анализаторов. Среди них главную роль выполняют органы равновесия, мышечного и кожного чувства. В результате взаимодействия этих анализаторов возникают целостные образы внешних предметов и явлений.

При изменении интенсивности освещенности происходит рефлекторное изменение диаметра зрачка. Снижение интенсивности освещения рефлекторно расширяет диаметр зрачка. Мышцы-сфинктеры, суживатели находятся в радужке и иннервируются парасимпатическими нервами, радиальные мышцы, расширители зрачка иннервируются симпатическими нервами, поэтому страх и боль приводят к расширению зрачков, недаром говорят: «У страха глаза велики».

2

Сетчатка глаза

Сетчатка имеет толщину 0,15-0,20 мм и состоит из нескольких слоев нервных клеток. Первый слой сетчатки непосредственно прилегает к черным пигментным клеткам. Этот слой образован зрительными рецепторами - палочками и колбочками . В сетчатке глаза человека палочек в десятки раз больше, чем колбочек (130 млн на 7 млн). Палочки возбуждаются очень быстро слабым сумеречным светом, и обеспечивают черно-белое видение. В мембране палочек находится пигмент родопсин , под действием света он разрушается и палочки возбуждаются. Для образования родопсина

необходим витамин А . При его недостатке палочки не возбуждаются и в сумерках человек плохо видит, развивается «куриная слепота» . У кур из рецепторов – только колбочки, в темноте они видят очень плохо. Колбочки возбуждаются медленнее и только ярким светом, они обеспечивают цветное видение. Колбочки бывают трех типов – красночувствительные, сине- и зеленочувствительные и содержат пигмент йодопсин . Палочки сравнительно равномерно распределены по сетчатке.

Рямо напротив зрачка в сетчатке находится желтое пятно , в состав которого входят исключительно колбочки. Поэтому наиболее отчетливо мы различаем те предметы, изображения которых попадают прямо на желтое пятно. С помощью глазных мышц мы можем управлять движением глаз и изменять направление взора. Но всегда при рассматривании нового предмета происходит перемещение взора так, чтобы изображение частей предмета последовательно попадало на желтое пятно.

От нервных клеток сетчатки отходят длинные отростки. В одном месте сетчатки они собираются в пучок и образуют зрительный нерв . Более миллиона его волокон передают в мозг зрительную информацию в форме слабых нервных импульсов. Место на сетчатке, откуда выходит зрительный нерв, лишено рецепторов и называется поэтому слепым пятном . Каждый школьник может убедиться в его существовании с помощью простого опыта.

Ля этого используйте рисунок, на котором изображены на сплошном черном фоне белые круги и крестик. Возьмите учебник в вытянутую руку и поместите рисунок перед глазами на расстоянии 20-25 см. Закройте левый глаз, а правым глазом фиксируйте крестик, изображение которого при этом попадает на желтое пятно. Не сводя взгляда с крестика, медленно приближайте и удаляйте рисунок. Найдите такое положение рисунка, при котором один из белых кругов перестанет быть видимым.

Это произойдет тогда, когда его изображение попадает на слепое пятно. Заметьте, на каком расстоянии от глаз возникает эффект исчезновения одного из белых кругов, если проводить наблюдение правым и левым глазом.

Основные термины и понятия:

Хрусталик. Ресничная мышца. Цинновы связки. Стекловидное тело. Сетчатка. Палочки. Родопсин. Колбочки. Йодопсин. Желтое пятно. Зрительный нерв. Слепое пятно.

Карточка у доски:

    Человек смотрит вдаль. Что происходит с его ресничной мышцей и цинновыми связками?

    Человек читает книгу. Что происходит с его ресничной мышцей и цинновыми связками?

    Какое изображение получается на сетчатке?

    Что происходит с отверстием зрачка в темной комнате?

    Сетчатка состоит из трех слоев клеток. Где располагаются палочки и колбочки?

    Сколько палочек и колбочек в сетчатке?

    Какие рецепторы отвечают за черно-белое, какие за цветное видение?

    Какие пигменты находятся в палочках? Колбочках?

    Где в сетчатке больше всего колбочек?

    Где в сетчатке отсутствуют зрительные рецепторы?

Письменные карточки:

    Что характерно для бесполого и полового размножения?

    Почему для эволюции важно половое размножение?

    Сравните развитие зародышей человека и животных. Сделайте вывод.

    Дайте определения или раскройте понятия: Половые клетки. Семенники. Яичники. Маточные трубы. Матка. Фолликул. Желтое тело. Зигота. Оплодотворение.

Компьютерное тестирование:

Тест 1 . Человек смотрит вдаль. Что происходит с его ресничной мышцей и цинновыми связками:

Тест 2 . Человек читает книгу. Что происходит с его ресничной мышцей и цинновыми связками:

    Ресничная мышца расслаблена, связки тоже.

    Ресничная мышца расслаблена, связки натянуты.

    Ресничная мышца сокращена, связки натянуты.

    Ресничная мышца сокращена, связки расслаблены.

Тест 3 . Какое изображение получается на сетчатке?

    Перевернутое, уменьшенное.

    Неперевернутое, уменьшенное.

Тест 4 . Что происходит с отверстием зрачка в темной комнате?

    Ничего не происходит.

    Уменьшается.

    Увеличивается

Тест 5 . Сетчатка состоит из трех слоев клеток. Где располагаются палочки и колбочки?

    Ближе к стекловидному телу.

    Перед слоем пигментных клеток сетчатки.

    Между двумя слоями клеток сетчатки.

    Между склерой и сосудистой оболочкой.

Тест 6 . Сколько палочек и колбочек в сетчатке?

    Палочек – 130 млн, колбочек – 7 млн.

    Палочек – 7 млн, колбочек – 130 млн..

    Палочек – 130 млн, колбочек – 100 млн.

    Палочек – 7 млн, колбочек – 7 млн.

Тест 7 . Какие рецепторы отвечают за черно-белое, какие за цветное видение?

    За черно-белое – палочки, за цветное – колбочки.

    За черно-белое – колбочки, за цветное – палочки.

Тест 8 . Какие пигменты находятся в палочках? Колбочках?

    В палочках – йодопсин, в колбочках – родопсин.

    В палочках – родопсин, в колбочках – йодопсин.

Тест 9 . Где в сетчатке больше всего колбочек?

    В слепом пятне.

    На периферии глаза.

    Колбочки распределены в сетчатке равномерно.

    В желтом пятне.

Тест 10 . Где в сетчатке отсутствуют зрительные рецепторы?

    В слепом пятне.

    На периферии глаза.

    Зрительные рецепторы равномерно распределены по сетчатке.

    Строение глаза.

    Глаз человека – зрительный анализатор, 95% информации об окружающем нас мире мы получаем через глаза. Современному человеку приходится целый день работать с близкорасположенными объектами: смотреть на экран компьютера, читать и т. д. Наш глаз испытывает огромную нагрузку, в результате чего многие люди страдают глазными болезнями, дефектами зрения. Каждый должен знать как устроен глаз, каковы его функции

    Глаз является оптической системой, он имеет почти сферическую форму. Глаз представляет собой шарообразное тело диаметром около 25 мм и массой 8 г. Стенки глазного яблока образованы тремя оболочками. Наружная – белочная оболочка состоит из плотной непрозрачной соединительной ткани. Она позволяет глазу сохранять свою форму. Следующая оболочка глаза – сосудистая, в ней располагаются все кровеносные сосуды, питающие ткани глаза. Сосудистая оболочка черная, т. к. ее клетки содержат черный пигмент, который поглощает световые лучи, препятствуя их рассеиванию вокруг глаза. Сосудистая оболочка переходит в радужную 2, у разных людей она имеет различную окраску, которая определяет цвет глаз. Радужная оболочка – это кольцевая мышечная диафрагма с небольшим отверстием в центре – зрачком 3. Он черный потому, что то место, откуда не исходят световые лучи, воспринимается нами черным. Через зрачок световые лучи проникают внутрь глаза, но обратно не выходят, оказавшись как бы в ловушке. Зрачок регулирует поступление света в глаз, рефлекторно сужаясь или расширяясь, зрачек может иметь размер от 2 до 8 мм в зависимости от освещения.

    Между роговицей и радужной оболочкой находится водянистая жидкость, за которой - хрусталик 4. Хрусталик представляет собой двояковыпуклую линзу, он эластичен, и может менять свою кривизну с помощью ресничной мышцы 5 поэтому обеспечивается точная фокусировка лучей света. . Показатель преломления хрусталика составляет 1,45. За хрусталиком находится стекловидное тело 6, которое заполняет основную часть глаза. Стекловидное тело и водянистая жидкость имеют показатель преломления почти такой же, как и у воды - 1,33. Задняя стенка склеры покрыта очень тонкими волокнами, которые устилают дно глаза, и называются сетчаткой глаза 7. Эти волокна являются разветвлением зрительного нерва. Именно на сетчатке глаза возникает изображение. Место наилучшего изображения, которое расположено над выходом зрительного нерва, называется желтым пятном 8, а участок сетчатки, где зрительный нерв выходит из глазу, которая не дает изображения, - называется слепым пятном 9.

    Изображение в глазе.

    Теперь рассмотрим глаз, как оптическую систему. Она включает в себя роговицу, хрусталик, стекловидное тело. Главная роль в создании изображения принадлежит хрусталику. Он фокусирует лучи на сетчатке, благодаря чему возникает действительное уменьшенное перевернутое изображение предметов, которое мозг корректирует в прямое. Ллучи фокусируются на сетчатке, на задней стенке глаза.

    В разделе "Опыты" приведён пример того, как вы можете получить изображение источника света на зрачке, созданное отраженными от глаза лучами.

    С древних времен глаз был символом всеведения, тайного знания, мудрости и бдительности. И это неудивительно. Ведь именно благодаря зрению мы получаем большую часть информации об окружающем мире. С помощью глаз мы оцениваем размеры, форму, удаленность и взаиморасположение предметов, наслаждаемся многообразием красок и наблюдаем движение.

    Как устроено любознательное око?

    Человеческий глаз нередко сравнивают с фотоаппаратом. Роговица, прозрачная и выпуклая часть наружной оболочки, подобна линзе объектива. Вторая оболочка — сосудистая — спереди представлена радужкой, содержание пигмента в которой определяет цвет глаз. Отверстие в центре радужки — зрачок — суживаясь при ярком и расширяясь при тусклом освещении, регулирует количество света, поступающего внутрь глаза, подобно диафрагме. Вторая линза — подвижный и гибкий хрусталик окружен ресничной мышцей, которая изменяет степень его кривизны. Позади хрусталика расположено стекловидное тело — прозрачное студенистое вещество, которое поддерживает упругость и шаровидную форму глазного яблока. Лучи света, проходя сквозь внутриглазные структуры, падают на сетчатку — тончайшую оболочку из нервной ткани, выстилающую глаз изнутри. Фоторецепторы — светочувствительные клетки сетчатки, подобно фотопленке фиксируют изображение.

    Почему говорят, что мы «видим» мозгом?

    И все же орган зрения устроен гораздо сложнее самой современной фототехники. Ведь мы не просто фиксируем увиденное, а оцениваем ситуацию и реагируем словами, действиями и эмоциями.

    Правый и левый глаз видят предметы под разным углом. Головной мозг соединяет оба изображения воедино, в результате чего мы можем оценить объем предметов и их взаиморасположение.

    Таким образом, картина зрительного восприятия формируется в головном мозге.

    Почему, стараясь рассмотреть что-либо, мы обращаем взгляд в эту сторону?

    Наиболее четкое изображение формируется при попадании световых лучей в центральную зону сетчатки - макулу. Поэтому, стараясь рассмотреть что-либо повнимательнее, мы обращаем взгляд в соответствующую сторону. Свободное движение каждого глаза во всех направлениях обеспечивается работой шести мышц.

    Веки, ресницы и брови — не только красивое обрамление?

    Глазное яблоко защищено от внешних воздействий костными стенками орбиты, мягкой жировой клетчаткой, выстилающей ее полость, и веками.

    Мы прищуриваемся, стараясь уберечь глаза от слепящего света, иссушающего ветра и пыли. Густые ресницы при этом смыкаются, образуя защитный барьер. А брови предназначены задерживать капельки пота, стекающие со лба.

    Конъюнктива — тонкая слизистая оболочка, покрывающая глазное яблоко и внутреннюю поверхность век, содержит сотни мельчайших желёзок. Они вырабатывают «смазку», которая обеспечивает свободное движение век при смыкании и защищает роговицу от высыхания.

    Аккомодация глаза

    Как формируется изображение на сетчатке?

    Для того чтобы понять, как формируется изображение на сетчатке, необходимо вспомнить, что при прохождении из одной прозрачной среды в другую световые лучи преломляются (т.е. отклоняются от прямолинейного распространения).

    Прозрачными средами в глазу являются роговица с покрывающей ее слезной пленкой, водянистая влага, хрусталик и стекловидное тело. Наибольшей преломляющей силой обладает роговица, вторая по силе линза - хрусталик. Слезная пленка, водянистая влага и стекловидное тело обладают пренебрежимо малой преломляющей способностью.

    Проходя сквозь внутриглазные среды, световые лучи преломляются и сходятся на сетчатке, формируя четкое изображение.

    Что такое аккомодация?

    Любая попытка перевести взгляд приводит к дефокусированию изображения и требует дополнительной настройки оптической системы глаза. Она осуществляется за счет аккомодации - изменения преломляющей силы хрусталика.

    Подвижный и гибкий хрусталик прикреплен с помощью волокон цинновой связки к цилиарной мышце. При зрении вдаль мышца расслаблена, волокна цинновой связки находятся в натянутом состоянии, не позволяя хрусталику принять выпуклую форму. При попытке рассмотреть предметы вблизи цилиарная мышца сокращается, мышечный круг суживается, циннова связка расслабляется и хрусталик приобретает выпуклую форму. Тем самым увеличивается его преломляющая способность, и на сетчатке фокусируются предметы, расположенные на близком расстоянии. Этот процесс называется аккомодацией.

    Почему нам кажется, что «с возрастом руки становятся короче»?

    С возрастом хрусталик теряет свои эластические свойства, становится плотным и с трудом изменяет свою преломляющую способность. В результате мы постепенно утрачиваем способность к аккомодации, что затрудняет работу на близком расстоянии. При чтении мы стараемся отодвинуть газету или книгу дальше от глаз, но скоро длина рук оказывается недостаточной для обеспечения четкого зрения.

    Для коррекции пресбиопии применяют собирающие линзы, сила которых увеличивается с возрастом.

    Нарушения зрения

    У 38% жителей нашей страны выявляются нарушения зрения, требующие очковой коррекции.

    В норме оптическая система глаза способна преломлять световые лучи таким образом, чтобы они сходились точно на сетчатке, обеспечивая четкое зрение. Для того чтобы сфокусировать изображение на сетчатке, глазу с нарушением рефракции требуется дополнительная линза.

    Какие бывают нарушения зрения?

    Преломляющая сила глаза определяется двумя основными анатомическими факторами: длиной переднезадней оси глаза и кривизной роговицы.

    Близорукость или миопия. Если длина оси глаза увеличена или роговица имеет большую преломляющую силу, изображение формируется перед сетчаткой. Такое нарушение зрения называется близорукостью или миопией. Близорукие хорошо видят на близком расстоянии и плохо вдаль. Коррекция достигается ношением очков с рассеивающими (минусовыми) линзами.

    Дальнозоркость или гиперметропия. Если длина оси глаза уменьшена или преломляющая сила роговицы невелика, изображение формируется в мнимой точке позади сетчатки. Такое нарушение зрения называется дальнозоркостью или гиперметропией. Существует ошибочное мнение, что дальнозоркие хорошо видят вдаль. Они испытывают трудности при работе на близком расстоянии и нередко плохо видят вдаль. Коррекция достигается ношением очков с собирающими (плюсовыми) линзами.

    Астигматизм. При нарушении сферичности роговицы существует разница в преломляющей силе по двум главным меридианам. Изображение предметов на сетчатке искаженное: одни линии четкие, другие размытые. Такое нарушение зрения называется астигматизмом и требует ношения очков с цилиндрическими линзами.

    Темы кодификатора ЕГЭ: глаз как оптическая система.

    Глаз - удивительно сложная и совершенная оптическая система, созданная природой. Сейчас мы в общих чертах узнаем, как функционирует человеческий глаз. Впоследствии это позволит нам лучше понять принципы работы оптических приборов; да, кроме того, это интересно и важно само по себе.

    Строение глаза.

    Мы ограничимся рассмотрением лишь самых основных элементов глаза. Они показаны на рис. 1 (правый глаз, вид сверху).

    Лучи, идущие от предмета (в данном случае предметом является фигура человека), попадают на роговицу - переднюю прозрачную часть защитной оболочки глаза. Преломляясь в роговице и проходя сквозь зрачок (отверстие в радужной оболочке глаза), лучи испытывают вторичное преломление в хрусталике . Хрусталик является собирающей линзой с переменным фокусным расстоянием; он может менять свою кривизну (и тем самым фокусное расстояние) под действием специальной глазной мышцы.

    Преломляющая система роговицы и хрусталика формирует на сетчатке изображение предмета. Сетчатка состоит из светочувствительных палочек и колбочек - нервных окончаний зрительного нерва . Падающий свет вызывает раздражение этих нервных окончаний, и зрительный нерв передаёт соответствующие сигналы в мозг. Так в нашем сознании формируются образы предметов - мы видим окружающий мир.

    Ещё раз взгляните на рис. 1 и обратите внимание, что изображение разглядываемого предмета на сетчатке - действительное, перевёрнутое и уменьшенное. Так получается потому, что предметы, рассматриваемые глазом без напряжения, расположены за двойным фокусом системы роговица-хрусталик (помните случай для собирающей линзы?).

    То, что изображение является действительным, понятно: на сетчатке должны пересекаться сами лучи (а не их продолжения), концентрируя световую энергию и вызывая раздражения палочек и колбочек.

    Насчёт того, что изображение является уменьшенным, тоже вопросов не возникает. А каким же ему ещё быть? Диаметр глаза равен примерно 25 мм, а поле нашего зрения попадают предметы куда большего размера. Естественно, глаз отображает их на сетчатке в уменьшенном виде.

    Но вот как быть с тем, что изображение на сетчатке является перевёрнутым? Почему же тогда мы видим мир не вверх ногами? Здесь подключается корректирующее действие нашего мозга. Оказывается, кора головного мозга, обрабатывая изображение на сетчатке, переворачивает картинку обратно! Это установленный факт, проверенный экспериментами.

    Как мы уже сказали, хрусталик - это собирающая линза с переменным фокусным расстоянием. Но зачем хрусталику менять своё фокусное расстояние?

    Аккомодация.

    Представьте себе, что вы смотрите на приближающегося к вам человека. Вы всё время чётко его видите. Каким образом глазу удаётся это обеспечивать?

    Чтобы лучше понять суть вопроса, давайте вспомним формулу линзы:

    В данном случае - это расстояние от глаза до предмета, - расстояние от хрусталика до сетчатки, - фокусное расстояние оптической системы глаза. Величина является неиз
    менной, поскольку это геометрическая характеристика глаза. Следовательно, чтобы формула линзы оставалась справедливой, вместе с расстоянием до разглядываемого предмета должно меняться и фокусное расстояние .

    Например, если предмет приближается к глазу, то уменьшается, поэтому и должно
    уменьшаться. Для этого глазная мышца деформирует хрусталик, делая его более выпуклым и уменьшая тем самым фокусное расстояние до нужной величины. При удалении предмета, наоборот, кривизна хрусталика уменьшается, а фокусное расстояние возрастает.

    Описанный механизм самонастройки глаза называется аккомодацией. Итак, аккомодация - это способность глаза отчётливо видеть предметы на различных расстояниях. В процессе аккомодации кривизна хрусталика меняется так, что изображение предмета всегда оказывается на сетчатке.

    Аккомодация глаза совершается бессознательно и очень быстро. Эластичный хрусталик может легко менять свою кривизну в определённых пределах. Этим естественным пределам деформации хрусталика отвечает
    область аккомодации - диапазон расстояний, на которых глаз способен чётко видеть предметы. Область аккомодации характеризуется своими границами -дальней и ближней точками аккомодации.

    Дальняя точка аккомодации (дальняя точка ясного видения) - это точка нахождения предмета, изображение которого на сетчатке получается при расслабленной глазной мышце, т. е. когда хрусталик не деформирован.

    Ближняя точка аккомодации (ближняя точка ясного видения) - это точка нахождения предмета, изображение которого на сетчатке получается при наибольшем напряжении глазной мышцы, т. е. при максимально возможной деформации хрусталика.

    Дальняя точка аккомодации нормального глаза находится на бесконечности: в ненапряжённом состоянии глаз фокусирует параллельные лучи на сетчатке (рис. 2 , слева). Иными словами, фокусное расстояние оптической системы нормального глаза при недеформированном хрусталике равно расстоянию от хрусталика до сетчатки.

    Ближняя точка аккомодации нормального глаза расположена на некотором расстоянии от него (рис. 2 , справа; хрусталик максимально деформирован). Это расстояние с возрастом увеличивается. Так, у десятилетнего ребёнка см; в возрасте 30 лет см; к 45 годам ближняя точка аккомодации находится уже на расстоянии 20–25 см от глаза.

    Теперь мы переходим к простому, но очень важному понятию угла зрения. Оно является ключевым для понимания принципов работы различных оптических приборов.

    Угол зрения.

    Когда мы хотим получше рассмотреть предмет, мы приближаем его к глазам. Чем ближе предмет, тем больше его деталей оказываются различимыми. Почему так получается?

    Давайте посмотрим на рис. 3 . Пусть стрелка - рассматриваемый предмет, - оптический центр глаза. Проведём лучи и (которые не преломляются) и получим на сетчатке изображение нашего предмета - красную изогнутую стрелочку.

    Угол называется углом зрения . Если предмет расположен далеко от глаза, то угол зрения мал, и размер изображения на сетчатке также оказывается малым.

    Но если предмет расположить ближе, то угол зрения увеличивается (рис. 4 ). Соответственно увеличивается и размер изображения на сетчатке. Сравните рис. 3 и рис. 4 - во втором случае изогнутая стрелочка оказывается явно длиннее!

    Размер изображения на сетчатке - вот что важно для подробного разглядывания предмета. Сетчатка, напомним, состоит из нервных окончаний зрительного нерва. Поэтому чем крупнее изображение на сетчатке, тем больше нервных окончаний раздражается идущими от предмета световыми лучами, тем больший поток информации о предмете направляется по зрительному нерву в мозг - и, следовательно, тем больше подробностей мы различаем, тем лучше мы видим предмет!

    Ну а размер изображения на сетчатке, как мы уже убедились из рисунков 3 и 4 , напрямую зависит от угла зрения: чем больше угол зрения, тем крупнее изображение. Поэтому вывод: увеличивая угол зрения, мы различаем больше подробностей рассматриваемого объекта.

    Вот почему мы одинаково плохо видим как мелкие объекты, пусть и находящиеся рядом, так и крупные объекты, но расположенные далеко. В обоих случаях угол зрения мал, и на сетчатке раздражается небольшое число нервных окончаний. Известно, кстати, что если угол зрения меньше одной угловой минуты (1/60 градуса), то раздражается лишь одно нервное окончание. В этом случае мы воспринимаем объект просто как точку, лишённую деталей.

    Расстояние наилучшего зрения.

    Итак, приближая предмет, мы увеличиваем угол зрения и различаем больше деталей. Казалось бы, оптимального качества видения мы достигнем, если расположим предмет максимально близко к глазу - в ближней точке аккомодации (в среднем это 10–15 см от глаза).

    Однако мы так не поступаем. Например, читая книгу, мы держим её на расстоянии примерно 25 см. Почему же мы останавливаемся на этом расстоянии, хотя ещё имеется ресурс дальнейшего увеличения угла зрения?

    Дело в том, что при достаточно близком расположении предмета хрусталик чрезмерно деформируется. Конечно, глаз ещё способен чётко видеть предмет, но при этом быстро утомляется, и мы испытываем неприятное напряжение.

    Величина см называется расстоянием наилучшего зрения для нормального глаза. При таком расстоянии достигается компромисс: угол зрения уже достаточно велик, и в то же время глаз не утомляется ввиду не слишком большой деформации хрусталика. Поэтому с расстояния наилучшего зрения мы можем полноценно созерцать предмет в течении весьма долгого времени.

    Близорукость.

    Напомним, что фокусное расстояние нормального глаза в расслабленном состоянии равно расстоянию от оптического центра до сетчатки. Нормальный глаз фокусирует параллельные лучи на сетчатке и поэтому может чётко видеть удалённые предметы, не испытывая напряжения.

    Близорукость - это дефект зрения, при котором фокусное расстояние расслабленного глаза меньше расстояния от оптического центра до сетчатки. Близорукий глаз фокусирует параллельные лучи перед сетчаткой, и от этого изображения удалённых объектов оказываются размытыми (рис. 5 ; хрусталик не изображаем).

    Потеря чёткости изображения наступает, когда предмет находится дальше определённого расстояния. Это расстояние соответствует дальней точке аккомодации близорукого глаза. Таким образом, если у человека с нормальным зрением дальняя точка аккомодации находится на бесконечности, то у близорукого человека дальняя точка аккомодации расположена на конечном расстоянии перед ним .

    Соответственно, ближняя точка аккомодации у близорукого глаза находится ближе, чем у нормального.

    Расстояние наилучшего зрения для близорукого человека меньше 25 см. Близорукость корректируется с помощью очков с рассеивающими линзами. Проходя через рассеивающую линзу, параллельный пучок света становится расходящимся, в результате чего изображение бесконечно удалённой точки отодвигается на сетчатку (рис. 6 ). Если при этом мысленно продолжить расходящиеся лучи, попадающие в глаз, то они соберутся в дальней точке аккомодации .

    Таким образом, близорукий глаз, вооружённый подходящими очками, воспринимает параллельный пучок света как исходящий из дальней точки аккомодации. Вот почему близорукий человек в очках может отчётливо рассматривать удалённые предметы без напряжения в глазах. Из рис. 6 мы видим также, что фокусное расстояние подходящей линзы равно расстоянию от глаза до дальней точки аккомодации.

    Дальнозоркость.

    Дальнозоркость - это дефект зрения, при котором фокусное расстояние расслабленного глаза больше расстояния от оптического центра до сетчатки.

    Дальнозоркий глаз фокусирует параллельные лучи за сетчаткой, отчего изображения удалённых объектов оказываются размытыми (рис. 7 ).

    На сетчатке же фокусируется сходящийся пучок лучей. Поэтому дальняя точка аккомодации дальнозоркого глаза оказывается мнимой : в ней пересекаются мысленные продолжения лучей сходящегося пучка, попадающего на глаз (мы увидим это ниже на рис. 8 ). Ближняя точка аккомодации у дальнозоркого глаза расположена дальше, чем у нормального.Расстояние наилучшего зрения для дальнозоркого человека больше 25 см.

    Дальнозоркость корректируется с помощью очков с собирающими линзами. После прохождения собирающей линзы параллельный пучок света становится сходящимся и затем фокусируется на сетчатке (рис. 8 ).

    Параллельные лучи после преломления в линзе идут так, что продолжения преломлённых лучей пересекаются в дальней точке аккомодации . Поэтому дальнозоркий человек, вооружённый подходящими очками, будет отчётливо и без напряжения рассматривать удалённые предметы. Мы также видим из рис. 8 , что фокусное расстояние подходящей линзы равно расстоянию от глаза до мнимой дальней точки аккомодации.