Развитие электродинамики. Классическая электродинамика введение в классическую электродинамику дополнительные главы

ОПРЕДЕЛЕНИЕ

Электродинамикой называют раздел физики, который исследует переменные электромагнитные поля, электромагнитные взаимодействия.

Так называемая классическая электродинамика описывает свойства электромагнитного поля и принципы его взаимодействия с телами, несущими электрический заряд. Это описание проводится при помощи уравнений Максвелла, выражения для силы Лоренца. При этом используются такие основные понятия электродинамики как: электромагнитное поле (электрическое и магнитное поля); электрический заряд; электромагнитный потенциал; вектор Пойнтинга.

К специальным разделам электродинамики относят:

  1. электростатику;
  2. магнитостатику;
  3. электродинамику сплошной среды;
  4. релятивистскую электродинамику.

Электродинамика составляет основу для оптики (как раздела науки), физики радиоволн. Этот раздел науки является фундаментом для радиотехники и электротехники.

Основные понятия электродинамики

Электромагнитное поле - это вид материи, который проявляется во взаимодействии заряженных тел. Часто электромагнитное поле делят на электрическое и магнитное поле. Электрическое поле - это особый вид материи, которая создается телом, обладающим электрическим зарядом или изменяющимся магнитным полем. Электрическое поле оказывает воздействие на любое, размещенное в нем, заряженное тело.

Магнитное поле - это особый вид материи, который создается перемещающимися телами, имеющими электрические заряды, переменными электрическими полями. Магнитное поле воздействует на заряды (заряженные тела), находящиеся в движении.

Электрический заряд - источник электрического поля, проявляется через взаимодействие тела, несущего заряд и поля.

Электромагнитным потенциалом называют физическую величину, которая полностью определяет распределение электромагнитного поля в пространстве.

Основные уравнения электродинамики

Уравнения Максвелла — это основные законы классической макроскопической электродинамики. Они получены в результате обобщения эмпирических данных. В краткой форме эти уравнения отображают все содержание электродинамики для неподвижной среды. Выделяют структурные и материальные уравнения Максвелла. Эти уравнения можно представлять в дифференциальной и интегральной формах. Запишем структурные уравнения Максвелла в интегральной форме (система СИ):

где - вектор напряженности магнитного поля; — вектор плотности электрического тока; - вектор электрического смещения. Уравнение (1) отображает закон создания магнитных полей. Магнитное поле возникает при движении заряда (электрический ток) или при изменении электрического поля. Это уравнение - обобщение закона Био-Савара-Лапласа. Уравнение (1) называют теоремой о циркуляции магнитного поля.

где - вектор индукции магнитного поля; - вектор напряжённости электрического поля; L - замкнутый контур по которому происходит циркуляция вектора напряженности электрического поля. Иначе, уравнение (2) можно назвать законом электромагнитной индукции. Данное уравнение показывает, что вихревое электрическое поле возникает благодаря переменному магнитному полю.

где - электрический заряд; - плотность заряда. Это уравнение еще называют теоремой Остроградского — Гаусса. Электрические заряды являются источниками электрического поля, существуют свободные электрические заряды.

Уравнение (4) говорит о том, что магнитное поле носит вихревой характер и магнитных зарядов не существует.

Систему структурных уравнений Максвелла дополняют материальными уравнениями, которые отражают связь векторов c параметрами, характеризующими электрические и магнитные свойства вещества.

где - относительная диэлектрическая проницаемость, - относительная магнитная проницаемость, — удельная электропроводность, - электрическая постоянная, - магнитная постоянная. Среда в таком случае считается изотропной, неферромагнитной, несегнетоэлектрической.

При решении прикладных задач в электродинамике уравнения Максвелла дополняют начальными и граничными условиями.

Примеры решения задач

ПРИМЕР 1

Задание Определите, каким будет поток вектора напряженности электрического поля () через поверхность гипотетической сферы радиуса R, если электрическое поле создает бесконечная однородно заряженная нить, плотность распределения заряда на нити равна ? Центр сферы расположен на нити.

Решение В соответствии с одним из уравнений Максвелла (теоремой Гаусса), имеем:

где для изотропной среды:

следовательно:

Учитывая, что заряд на нити распределен равномерно с плотностью , а сфера отсекает кусок нити длиной 2R, получим, что заряд внутри выделенной поверхности равен:

Принимая во внимание (1.3) и (1.4) окончательно получаем (считаем, что поле существует в вакууме):

Ответ

ПРИМЕР 2

Задание Запишите функцию плотности тока смещения в зависимости от расстояния от оси соленоида (), если магнитное поле соленоида изменяется по закону: . R - радиус соленоида. Соленоид является прямым. Рассмотрите случай, когда
Решение В качестве основ для решения задачи используем уравнение из системы уравнений Максвелла:

Определение 1

Электродинамика – это теория, что рассматривает электромагнитные процессы в вакууме и различных средах.

Электродинамика охватывает совокупность процессов и явлений, в которых ключевую роль играют действия между заряженными частицами, что осуществляются посредством электромагнитного поля.

История развития электродинамики

История развития электродинамики – это история эволюции традиционных физических понятий. Еще до середины 18 столетия были установлены важные опытные результаты, что обусловлены электричеством:

  • отталкивание и притяжение;
  • деление вещество на изоляторы и проводники;
  • существование двух типов электричества.

Также достигнуты немалые результаты в изучении магнетизма. Применение электричества начиналось со второй половины 18 столетия. Возникновение гипотезы об электричестве как особенной материальной субстанции связано с именем Франклина (1706-1790 гг.) А в 1785 году Кулон установил закон взаимодействия точечных зарядов.

Вольт (1745-1827 гг.) изобрел множество электроизмерительных приборов. В 1820 году был установлен закон, что определял механическую силу, с которой магнитное поле воздействует на элемент электрического тока. Данное явление приобрело название закон Ампера. Также Ампер установил закон силового воздействия нескольких токов. В 1820 году Эрстед открыл магнитное действие электрического тока. В 1826 году установлен закон Ома.

В физике особое значение имеет гипотеза молекулярных токов, которая была предложена Ампером еще в 1820 году. Фарадей в 1831 году открыл закон электромагнитной индукции. Джеймс Клерк Максвелл (1831-1879 гг.) в 1873 году изложил уравнения, которые позже стали теоретической базой электродинамики. Следствием уравнений Максвелла является предсказание электромагнитной природы света. Также он предсказал возможность существования электромагнитных волн.

Со временем в физической науке сложилось представление об электромагнитном поле как о независимой материальной сущности, которая является неким носителем электромагнитных взаимодействий в пространстве. Различные магнитные и электрические явления всегда пробуждали интерес людей.

Зачастую под термином «электродинамика» понимается традиционная электродинамика, которая описывает только непрерывные свойства электромагнитного поля.

Электромагнитное поле – это главный предмет изучения электродинамики, а также особый вид материи, который проявляется при взаимодействии с заряженными частицами.

Попов А.С. в 1895 году изобрел радио. Именно оно оказало ключевой воздействие на дальнейшее развитие техники и науки. При помощи уравнений Максвелла можно описать все электромагнитные явления. Уравнения устанавливают взаимосвязь величин, которые характеризуют магнитные и электрические поля, распределяя в пространстве токи и заряды.

Рисунок 1. Развитие учения об электричестве. Автор24 - интернет-биржа студенческих работ

Становление и развитие традиционной электродинамики

Ключевым и наиболее значимым шагом в развитии электродинамики стало открытие Фарадея – явление электромагнитной индукции (возбуждение электродвижущей силы в проводниках при помощи переменного электромагнитного поля). Именно это стало основой электротехники.

Майкл Фарадей – это английский физик, который родился в семье кузнеца в Лондоне. Он окончил начальную школу и с 12 лет работал разносчиком газет. В 1804 году он стал учеником французского эмигранта Рибо, который поощрял стремление Фарадея к самообразованию. На лекциях он стремился пополнить свои знания по естественным наукам химии и физике. В 1813 году ему подарили билет на лекции Гемфри Дэви, которые сыграли решающую роль в его судьбе. С его помощью Фарадей получил место ассистента в Королевском институте.

Научная деятельность Фарадея проходила в Королевском институте, где он сначала помогал Дэви в его химических экспериментах, после чего начал проводить их самостоятельно. Фарадей получил бензол, осуществив снижение хлора и других газов. В 1821 году он обнаружил, как вращается магнит вокруг проводника с током, создав при этом первую модель электродвигателя.

На протяжении последующих 10 лет Фарадей занимается исследованием связей между магнитными и электрическими явлениями. Все его исследования были увенчаны открытием явления электромагнитной индукции, что свершилось в 1831 году. Он детально изучил это явление, а также сформировал его основной закон, в ходе которого выявил зависимость индукционного тока. Также Фарадей исследовал явления замыкания, размыкания и самоиндукции.

Открытие электромагнитной индукции произвело научное значение. Данное явление лежит в основе всех генераторов переменного и постоянного тока. Поскольку Фарадей постоянно стремился выявить природу электрического тока, это привело его к проведению экспериментов по прохождению тока через растворы солей, кислот и щелочей. В результате проведения этих исследований появился закон электролиза, который был открыт в 1833 году. В этом году он открывает вольтметр. В 1845 году Фарадей открыл явление поляризации света в магнитном поле. В этом году он также открыл диамагнетизм, а в 1847 году – парамагнетизм.

Замечание 1

На развитие всей физики ключевое влияние оказали идеи Фарадея о магнитном и электрическом полях. В 1832 году он высказал мысль о том, что распространение электромагнитных явлений – это волновой процесс, который происходит с конечной скоростью. В 1845 году Фарадей впервые употребляет термин «электромагнитное поле».

Открытия Фарадея получили широкую популярность во всем научном мире. В его честь Британское химическое общество учредило медаль Фарадея, которая стала почетной научной наградой.

Объясняя явления электромагнитной индукции и встретившись с затруднениями, Фарадей высказал предположение о реализации электромагнитных взаимодействий при помощи электрического и магнитного поля. Это все положило начало созданию концепции электромагнитного поля, что была оформлена Джеймсом Максвеллом.

Вклад Максвелла в развитие электродинамики

Джеймс Клерк Максвелл – это английский физик, который родился в Эдинбурге. Именно под его руководством создана Кавендишская лаборатория в Кембридже, которую он возглавлял всю свою жизнь.

Работы Максвелла посвящаются электродинамике, общей статистике, молекулярной физике, механике, оптике, а также теории упругости. Наиболее значимый вклад он сделал в электродинамику и молекулярную физику. Одним из основателей кинетической теории газов является Максвелл. Он установил функции распределения молекул по скоростям, что основаны на рассмотрении обратных и прямых столкновений максвелл развил теорию переноса в общем виде и применил ее к процессам диффузии, внутреннего трения, теплопроводности, а также ввел понятие релаксации.

В 1867 году он впервые показал статистическую природу термодинамики, а в 1878 году ввел понятие «статистическая механика». Наиболее значимым научным достижением Максвелла является созданная им теория электромагнитного поля. В своей теории он использует новое понятие «ток смещения » и дает определение электромагнитного поля.

Замечание 2

Максвелл предсказывает новый важный эффект: существование электромагнитного излучения и электромагнитных волн в свободном пространстве, а также распространение их со скоростью света. Также он сформулировал теорему в теории упругости, устанавливая соотношение между ключевыми теплофизическими параметрами. Максвелл развивает теорию цветного зрения, исследует устойчивость колец Сатурна. Он показывает, что кольца не являются жидкими или твердыми, они представляют собой рой метеоритов.

Максвелл был известным популяризатором физических знаний. Содержание его четырех уравнений электромагнитного поля сводятся к следующему:

  1. Магнитное поле зарождается при помощи движущихся зарядов и переменного электрического поля.
  2. Электрическое поле с замкнутыми силовыми линиями зарождается при помощи переменного магнитного поля.
  3. Линии магнитного поля всегда замкнуты. Данное поле не имеет магнитных зарядов, которые подобны электрическим.
  4. Электрическое поле, которое имеет незамкнутые силовые линии, порождается электрическими зарядами, что являются источниками данного поля.
Классическая электродинамика (рус. электродинамики, англ. Electrodynamics, нем. Elektrodynamik f) – раздел физики, который занимается изучением взаимодействия наэлектризованных, намагниченных тел и проводников с токами. Базовыми понятиями классической электродинамики является представление о электрическое и магнитное поле вокруг заряженных тел и проводников с током.
Состоит из двух частей: макроскопической Е., базирующаяся на уравнениях Максвелла, и классической электронной теории.
Основные уравнениями классической электродинамики является уравнения Максвелла, устанавливающих связь величин, характеризующих электрические и магнитные поля, с распределением в пространстве зарядов и токов. Суть четырех уравнений Максвелла для электромагнитного поля качественно сводится к следующему:
1. Магнитное поле порождается движущимися зарядами и переменным электрическим полем;
2. Электрическое поле с замкнутыми силовыми линиями (вихревое поле) порождается переменным магнитным полем;
3. Силовые линии магнитного поля всегда замкнуты (это означает, что оно не имеет источников – магнитных зарядов, подобных электрическим);
4. Электрическое поле с незапертой силовыми линиями (потенциальное поле) порождается электрическими зарядами – источниками этого поля. Из теории Максвелла вытекает конечность скорости распространения электромагнитных взаимодействий и существовании электромагнитных волн.
В классической электродинамике рассматриваются также электромагнитные волны, их излучение и распространение в пространстве.
Отдельным разделом классической электродинамики является электродинамика сплошных сред, в которой рассматривается отзыв физических сред на возмущения внешним электрическим и магнитным полем.

§ 1. Закон Кулона
§ 2. Напряженность электрического поля
§ 3. Теорема Гаусса
§ 4. Дифференциальная форма теоремы Гаусса
§ 5. Второе уравнение электростатики и скалярный потенциал
§ 6. Поверхностные распределения зарядов и диполей. Скачки электрического поля и потенциала
§ 7. Уравнения Лапласа и Пуассона
§ 8. Теорема Грина
§ 9. Единственность решения при граничных условиях Дирихле или Неймана
§ 10. Формальное решение граничных задач электростатики с помощью функции Грина
§ 11. Потенциальная энергия и плотность энергии электростатического поля
Рекомендуемая литература
Задачи

§ 1. Метод изображений
§ 2. Точечный заряд вблизи заземленного сферического проводника
§ 3. Точечный заряд вблизи заряженного изолированного сферического проводника
§ 4. Точечный заряд вблизи сферического проводника с заданным потенциалом
§ 5. Сферический проводник в однородном электрическом поле
§ 6. Метод инверсии
§ 7. Функция Грина для сферы. Общее выражение для потенциала
§ 8. Две примыкающие проводящие полусферы, имеющие различный потенциал
§ 9. Разложение по ортогональным функциям
§ 10. Разделение переменных. Уравнение Лапласа в декартовых координатах
Рекомендуемая литература
Задачи

§ 1. Уравнение Лапласа в сферических координатах
§ 2. Уравнение Лежандра и полиномы Лежандра
§ 3. Граничные задачи с азимутальной симметрией
§ 4. Присоединенные функции Лежандра и сферические гармоники
§ 5. Теорема сложения для сферических гармоник
§ 6. Уравнение Лапласа в цилиндрических координатах. Функции Бесселя
§ 7. Граничные задачи в цилиндрических координатах
§ 8. Разложение функций Грина в сферических координатах
§ 9. Нахождение потенциала с помощью разложений для сферических функций Грина
§ 10. Разложение функций Грина в цилиндрических координатах
§ 11. Разложение функций Грина по собственным функциям
§ 12. Смешанные граничные условия. Заряженный проводящий диск
Рекомендуемая литература
Задачи

§ 1. Разложение по мультиполям
§ 2. Разложение по мультиполям энергии распределения зарядов во внешнем поле
§ 3. Макроскопическая электростатика. Эффекты совокупного действия атомов
§ 4. Изотропные диэлектрики и граничные условия
§ 5. Граничные задачи при наличии диэлектриков
§ 6. Поляризуемость молекул и диэлектрическая восприимчивость
§ 7. Модели поляризуемости молекул
§ 8. Энергия электрического поля в диэлектрике
Рекомендуемая литература
Задачи

§ 1. Введение и основные определения
§ 2. Закон Био и Савара
§ 3. Дифференциальные уравнения магнитостатики и закон Ампера
§ 4. Векторный потенциал
§ 5. Векторный потенциал и магнитная индукция кругового витка тока
§ 6. Магнитное поле ограниченного распределения токов. Магнитный момент
§ 7. Сила и момент, действующие на ограниченное распределение тока во внешнем магнитном поле
§ 8. Макроскопические уравнения
§ 9. Граничные условия для магнитной индукции и поля
§ 10. Однородно намагниченный шар
§ 11. Намагниченный шар во внешнем поле. Постоянные магниты
§ 12. Магнитное экранирование. Сферическая оболочка из магнитного материала в однородном поле
Рекомендуемая литература
Задачи

§ 1. Закон индукции Фарадея
§ 2. Энергия магнитного поля
§ 3. Максвелловский ток смещения. Уравнения Максвелла
§ 4. Векторный и скалярный потенциалы
§ 5. Калибровочные преобразования. Лоренцовская калибровка. Кулоновская калибровка
§ 6. Функция Грина для волнового уравнения
§ 7. Задача с начальными условиями. Интегральное представление Кирхгофа
§ 8. Теорема Пойнтинга
§ 9. Законы сохранения для системы заряженных частиц и электромагнитных полей
§ 10. Макроскопические уравнения
Рекомендуемая литература
Задачи

§ 1. Плоские волны в непроводящей среде
§ 2. Линейная и круговая поляризация
§ 3. Суперпозиция волн в одном измерении. Групповая скорость
§ 4. Примеры распространения импульсов в диспергирующей среде
§ 5. Отражение и преломление электромагнитных волн на плоской границе раздела между диэлектриками
§ 6. Поляризация при отражении и полное внутреннее отражение
§ 7. Волны в проводящей среде
§ 8. Простая модель проводимости
§ 9. Поперечные волны в разреженной плазме
Рекомендуемая литература
Задачи

§ 1. Поля на поверхности и внутри проводника
§ 2. Цилиндрические резонаторы и волноводы
§ 3. Волноводы
§ 4. Волны в прямоугольном волноводе
§ 5. Поток энергии и затухание в волноводах
§ 6. Резонаторы
§ 7. Потери мощности в резонаторе. Добротность резонатора
§ 8. Диэлектрические волноводы
Рекомендуемая литература
Задачи

§ 1. Поля, создаваемые ограниченными колеблющимися источниками
§ 2. Электрическое дипольное поле и излучение
§ 3. Магнитные дипольные и электрические квадрупольные поля
§ 4. Линейная антенна с центральным возбуждением
§ 5. Интеграл Кирхгофа
§ 6. Векторные эквиваленты интеграла Кирхгофа
§ 7. Принцип Бабине для дополнительных экранов
§ 8. Дифракция на круглом отверстии
§ 9. Дифракция на малых отверстиях
§ 10. Рассеяние коротких волн проводящей сферой
Рекомендуемая литература
Задачи

§ 1. Введение и основные понятия
§ 2. Уравнения магнитной гидродинамики
§ 3. Магнитная диффузия, вязкость и давление
§ 4. Магнитогидродинамический поток между границами в скрещенных электрическом и магнитном полях
§ 5. Пинч-эффект
§ 6. Динамическая модель пинч-эффекта
§ 7. Неустойчивости сжатого плазменного столба
§ 8. Магнитогидродинамические волны
§ 9. Высокочастотные плазменные колебания
§ 10. Коротковолновые плазменные колебания. Дебаевский радиус экранирования
Рекомендуемая литература
Задачи

§ 1. Исторические предпосылки и основные эксперименты
§ 2. Постулаты специальной теории относительности и преобразование Лоренца
§ 3. Сокращение Фицджеральда-Лоренца и замедление времени
§ 4. Сложение скоростей. Аберрация и опыт Физо. Допплеровское смещение
§ 5. Прецессия Томаса
§ 6. Собственное время и световой конус
§ 7. Преобразования Лоренца как ортогональные преобразования в четырехмерном пространстве
§ 8. Четырехвекторы и четырехтензоры. Ковариантность уравнений физики
§ 9. Ковариантность уравнений электродинамики
§ 10. Преобразование электромагнитного поля
§ 11. Ковариантность выражения для силы Лоренца и законов сохранения
Рекомендуемая литература
Задачи

§ 1. Импульс и энергия частицы
§ 2. Кинематика осколков при распаде нестабильной частицы
§ 3. Преобразование к системе центра масс и пороги реакций
§ 4. Преобразование импульса и энергии из системы центра масс в лабораторную систему
§ 5. Ковариантные уравнения движения. Лагранжиан и гамильтониан для релятивистской заряженной частицы
§ 6. Релятивистские поправки первого порядка для лагранжиан взаимодействующих заряженных частиц
§ 7. Движение в однородном статическом магнитном поле
§ 8. Движение в однородных статических электрическом и магнитном полях
§ 9. Дрейф частиц в неоднородном статическом магнитном поле
§ 10. Адиабатическая инвариантность магнитного потока сквозь орбиту частицы
Рекомендуемая литература
Задачи

§ 1. Передача энергии при кулоновских соударениях
§ 2. Передача энергии гармоническому осциллятору
§ 3. Классическое и квантовомеханическое выражение для потерь энергии
§ 4. Влияние плотности на потери энергии при соударении
§ 5. Потери энергии в электронной плазме
§ 6. Упругое рассеяние быстрых частиц атомами
§ 7. Среднеквадратичное значение угла рассеяния и угловое распределение при многократном рассеянии
§ 8. Электропроводность плазмы
Рекомендуемая литература
Задачи

§ 1. Потенциалы Лиенара-Вихерта и поле точечного заряда
§ 2. Полная мощность, излучаемая ускоренно движущимся зарядом. Формула Лармора и ее релятивистское обобщение
§ 3. Угловое распределение излучения ускоряемого заряда
§ 4. Излучение заряда при произвольном ультрарелятивистском движениим
§ 5. Спектральное и угловое распределения энергии, излучаемой ускоренными зарядами
§ 6. Спектр излучения релятивистской заряженной частицы при мгновенном движении по окружности
§ 7. Рассеяние на свободных зарядах. Формула Томсона
§ 8. Когерентное и некогерентное рассеяние
§ 9. Излучение Вавилова-Черенкова
Рекомендуемая литература
Задачи

§ 1. Излучение при соударениях
§ 2. Тормозное излучение при нерелятивистских кулоновских соударениях
§ 3. Тормозное излучение при релятивистском движении
§ 4. Влияние экранирования. Потери на излучение в релятивистском случае
§ 5. Метод виртуальных фотонов Вейцзеккера-Вильямса
§ 6. Тормозное излучение как рассеяние виртуальных фотонов
§ 7. Излучение при бета-распаде
§ 8. Излучение при захвате орбитальных электронов. Исчезновение заряда и магнитного момента
Рекомендуемая литература
Задачи

§ 1. Собственные функции скалярного волнового уравнения
§ 2. Разложение электромагнитных полей по мультиполям
§ 3. Свойства полей мультиполей. Энергия и момент количества движения мультипольного излучения
§ 4. Угловое распределение мультипольного излучения
§ 5. Источники мультипольного излучения. Мультипольные моменты
§ 6. Мультипольное излучение атомных и ядерных систем
§ 7. Излучение линейной антенны с центральным возбуждением
§ 8. Разложение векторной плоской волны по сферическим волнам
§ 9. Рассеяние электромагнитных волн на проводящей сфере
§ 10. Решение граничных задач с помощью разложений по мультиполям
Рекомендуемая литература
Задачи

§ 1. Вводные замечания
§ 2. Определение силы реакции излучения из закона сохранения энергии
§ 3. Вычисление силы реакции излучения по Абрагаму и Лоренцу
§ 4. Трудности модели Абрагама-Лоренца
§ 5. Трансформационные свойства модели Абрагама-Лоренца. Натяжения Пуанкаре
§ 6. Ковариантное определение собственной электромагнитной энергии и импульса заряженной частицы
§ 7. Интегро-дифференциальное уравнение движения с учетом радиационного затухания
§ 8. Ширина линии и сдвиг уровня для осциллятора
§ 9. Рассеяние и поглощение излучения осциллятором
Рекомендуемая литература
Задачи

§ 1. Единицы измерения и размерности. Основные и производные единицы
§ 2. Единицы измерения и уравнения электродинамики
§ 3. Различные системы электромагнитных единиц
§ 4. Перевод формул и численных значений величин из гауссовой системы единиц в систему МКС