Собирательная трубочка капсула нефрона. Отделы нефрона, главной составляющей почки. Его строение, функции и виды. Как выглядит почечная ткань под микроскопом

20530 0

Особенности и специфика функций почек объясняются своеобразием специализации их структуры. Функциональная морфология почек изучается на разных структурных уровнях — от макромолекулярного и ультраструктурного до органного и системного. Так, гомеостатические функции почек и их нарушения имеют морфологический субстрат на всех уровнях структурной организации этого органа. Ниже рассматривается своеобразие тонкой структуры нефрона, строения сосудистой, нервной и гормональной систем почек, позволяющее понять особенности функций почек и их нарушения при важнейших почечных заболеваниях.

Нефрон, состоящий из сосудистого клубочка, его капсулы и почечных канальцев (рис. 1), имеет высокую структурно-функциональную специализацию. Эта специализация определяется гистологическими и физиологическими особенностями каждого составного элемента клубочковой и канальцевой части нефрона.

Рис. 1. Строение нефрона. 1 - сосудистый клубочек; 2 - главный (проксимальный) отдел канальцев; 3 - тонкий сегмент петли Генле; 4 - дистальный отдел канальцев; 5 - собирательные трубки.

В каждой почке содержится приблизительно 1,2-1,3 млн. клубочков . Сосудистый клубочек имеет около 50 капиллярных петель, между которыми найдены анастомозы , что позволяет клубочку функционировать как «диализирующая система». Стенка капилляра представляет собой клубочковый фильтр, состоящий из эпителия, эндотелия и располагающейся между ними базальной мембраны (БМ) (рис. 2).

Рис. 2. Гломерулярный фильтр. Схема строения стенки капилляра почечного клубочка . 1 - просвет капилляра; эндотелий; 3 - БМ; 4 - подоцит; 5 - малые отростки подоцита (педикулы).

Эпителий клубочка, или подоцит , состоит из крупного клеточного тела с ядром в его основе, митохондриями, пластинчатым комплексом, эндоплазматической сетью, фибриллярными структурами и другими включениями. Строение подоцитов и их взаимоотношения с капиллярами хорошо изучены в последнее время с помощью растрового электронного микрофона . Показано, что большие отростки подоцита отходят из перинуклеарной зоны; они напоминают «подушки», охватывающие значительную поверхность капилляра. Малые отростки, или педикулы, отходят от больших почти перпендикулярно, переплетаются между собой и закрывают все свободное от больших отростков пространство капилляра (рис. 3, 4). Педикулы тесно прилежат друг к другу, межпедикулярное пространство составляет 25-30 нм .

Рис. 3. Электронограмма фильтра

Рис. 4. Поверхность капиллярной петли клубочка покрыта телом подоцита и его отростками (педикулами), между которыми видны межпедикулярные щели . Сканирующий электронный микроскоп. Х6609.

Подоциты связаны между собой пучковыми структурами - peculiar junction» , образующимися из ининмолеммы. Фибриллярные структуры особенно отчетливо ни ряжены между малыми отростками подоцитов, где они обра¬тит так называемую щелевую диафрагму - slit diaphragma

Подоциты связаны между собой пучковыми структурами - "peculiar junction" , образующимися из плазмолеммы. Фибриллярные структуры особенно отчетливо выряжены между малыми отростками подоцитов, где они образуют так называемую щелевую диафрагму - slit diaphragma (см. рис. 3), которой отводится большая роль в гломерулярной фильтрации. Щелевая диафрагма, имея филаментарное строение (толщина 6 нм, длина 11 нм), образует своеобразную решетку, или систему пор фильтрации, диаметр которых у человека 5-12 нм . Снаружи щелевая диафрагма покрыта гликокаликсом, т. е. сиалопротеиновым слоем цитолеммы подоцита, внутри она граничит с lamina rara externa БМ капилляра (рис. 5).


Рис. 5. Схема взаимоотношений элементов гломерулярного фильтра. Подоциты (Р), содержащие миофиламенты (MF), окружены плазматической мембраной (РМ). Филаменты базальной мембраны (ВМ) образуют между малыми отростками подоцитов щелевую диафрагму (SM), покрытую снаружи гликокаликсом (GK) плазматической мембраны; те же филаменты ВМ связаны с эндотелиальными клетками (Еn), оставляя свободными лишь его поры (F) .

Функцию фильтрации осуществляет не только щелевая диафрагма, но и миофиламенты цитоплазмы подоцитов , с помощью которых происходит их сокращение. Так, «субмикроскопические насосы» перекачивают ультрафильтрат плазмы в полость капсулы клубочка. Той же функции транспорта первичной мочи служит и система микротрубочек подоцитов . С подоцитами связана не только функция фильтрации, но и продукция вещества БМ . В цистернах гранулярной эндоплазматической сети этих клеток находят материал, аналогичный веществу базальной мембраны, что подтверждается авторадиографической меткой .

Изменения подоцитов чаще всего бывают вторичными и обычно наблюдаются при протеинурии, нефротическом синдроме (НС). Они выражаются в гиперплазии фибриллярных структур клетки, исчезновении педикул, вакуолизации цитоплазмы и нарушений щелевой диафрагмы. Эти изменения связаны как с первичным повреждением базальной мембраны, так и с самой протеинурией [Серов В. В., Куприянова Л. А., 1972]. Инициальные и типичные изменения подоцитов в виде исчезновения их отростков характерны лишь для липоидного нефроза, который хорошо воспроизводится в эксперименте с помощью аминонуклеозида .

Эндотелиальные клетки капилляров клубочка имеют поры размером до 100-150 нм (см. рис. 2) и снабжены специальной диафрагмой . Поры занимают около 30% эндотелиальной выстилки, покрытой гликокаликсом. Поры рассматривают как основной путь ультрафильтрации, но допускают и трансэндотелиальный путь, минующий поры; в пользу этого допущения говорит высокая пиноцитозная активность гломерулярного эндотелия. Помимо ультрафильтрации, эндотелий гломерулярных капилляров участвует в образовании вещества БМ .

Изменения эндотелия капилляров клубочка разнообразны: набухание, вакуолизация, некробиоз, пролиферация и десквамация, однако преобладают деструктивно-пролиферативные изменения, столь характерные для гломерулонефрита (ГН).

Базальная мембрана клубочковых капилляров, в образовании которой участвуют не только подоциты и эндотелий , но и мезангиальные клетки , имеет толщину 250-400 нм и в электронном микроскопе выглядит трехслойной; центральный плотный слой (lamina densa) окружен более тонкими слоями с наружной (lamina rara externa) и внутренней (lamina rara interna) стороны (см. рис. 3). Собственно БМ служит lamina densa, состоящая из филаментов белка, подобного коллагену, гликопротеинов и липопротеинов ; наружный и внутренний слои, содержащие мукосубстанции, являются по существу гликокаликсом подоцитов и эндотелия . Филаменты lamina densa толщиной 1,2-2,5 нм входят в «подвижные» соединения с молекулами окружающих их веществ и образуют тиксотропный гель . Неудивительно, что вещество мембраны тратится на осуществление функции фильтрации; БМ полностью обновляет свою структуру в течение года .

С присутствием в плотной пластинке коллагеноподобных филаментов связана гипотеза о порах фильтрации в базальной мембране. Показано, что средний радиус пор мембраны равен 2,9±1 нм и определяется расстоянием между нормально расположенными и неизмененными филаментами коллагеноподобного белка . При падении гидростатического давления в капиллярах клубочков первоначальная «упаковка» коллагеноподобных филаментов в БМ изменяется, что ведет к увеличению размера пор фильтрации .

Предполагают, что при нормальном кровотоке поры базальной мембраны гломерулярного фильтра достаточно велики и могут пропускать молекулы альбумина, IgG, каталазы, но проникновение этих веществ ограничено высокой скоростью фильтрации. Фильтрация ограничена также дополнительным барьером гликопротеинов (гликокаликс) между мембраной и эндотелием, причем этот барьер в условиях нарушенной гломерулярной гемодинамики повреждается.

Для объяснения механизма протеинурии при повреждении базальной мембраны большое значение имели методы с применением маркеров, в которых учтен электрический заряд молекул .

Изменения БМ клубочка характеризуются ее утолщением, гомогенизацией, разрыхлением и фибриллярностью. Утолщение БМ встречается при многих заболеваниях с протеинурией. При этом наблюдаются увеличение промежутков между филаментами мембраны и деполимеризация цементирующего вещества, с чем связывают повышенную порозность мембраны для белков плазмы крови. Кроме того, к утолщению БМ гломерул ведут мембранозная трансформация (по J. Churg), в основе которой лежит избыточная продукция вещества БМ подоцитами, и мезангиальная интерпозиция (по М. Arakawa, P. Kimmelstiel), представленная «выселением» отростков мезангиоцитов на периферию капиллярных петель, отслаивающих эндотелий от БМ.

При многих заболеваниях с протеинурией, помимо утолщения мембраны, методом электронной микроскопии выявляются различные отложения (депозиты) в мембране или в непосредственной близости от нее. При этом каждому отложению той или иной химической природы (иммунные комплексы, амилоид, гиалин) соответствует своя ультраструктура. Наиболее часто в БМ выявляются депозиты иммунных комплексов, что ведет не только к глубоким изменениям самой мембраны, но и к деструкции подоцитов, гиперплазии эндотелиальных и мезангиальных клеток.

Капиллярные петли связывает друг с другом и подвешивает наподобие брыжейки к гломерулярному полюсу соединительная ткань клубочка, или мезангий, структура которого подчинена в основном функции фильтрации. С помощью электронного микроскопа и методов гистохимии внесено много нового в прежние представления о волокнистых структурах и клетках мезангия. Показаны гистохимические особенности основного вещества мезангия, приближающие его к фибромуцину фибрилл, способных воспринимать серебро, и клеток мезангия, отличающихся ультраструктурной организацией от эндотелия, фибробласта и гладкомышечного волокна.

В мезангиальных клетках, или мезангиоцитах, хорошо выряжены пластинчатый комплекс, гранулярная эндоплазматическая сеть, в них много мелких митохондрий, рибосом. Цитоплазма клеток богата основными и кислыми белками, тирозином, триптофаном и гистидином, полисахаридами, РНК, гликогеном. Своеобразие ультраструктуры и богатство пластического материала объясняют высокие секреторные и гиперпластические потенции мезангиальных клеток .

Мезангиоциты способны реагировать на те или иные повреждения гломерулярного фильтра продукцией вещества БМ , в чем проявляется репаративная реакция в отношении основного компонента гломерулярного фильтра. Гипертрофия и гиперплазия мезангиальных клеток ведут к расширению мезангиума, к его интерпозиции , когда отростки клеток, окруженные мембраноподобным веществом, или сами клетки выселяются на периферию клубочка, что вызывает утолщение и склероз стенки капилляра, а в случае прорыва эндотелиальной выстилки - облитерацию его просвета. С интерпозицией мезангия связано развитие гломерулосклероза при многих гломерулопатиях (ГН, диабетический и печеночный гломерулосклероз и т. д.).

Мезангиальные клетки как один из компонентов юкстагломерулярного аппарата (ЮГА) [Ушкалов А. Ф., Вихерт А. М., 1972; Зуфаров К. А., 1975; Rouiller С., Orci L., 1971] способны в определенных условиях к инкреции ренина . Этой функции служат, видимо, взаимоотношения отростков мезангиоцитов с элементами гломерулярного фильтра: определенное количество отростков перфорирует эндотелий клубочковых капилляров, проникает в их просвет и имеет непосредственные контакты с кровью .

Помимо секреторной (синтез коллагеноподобного вещества базальной мембраны) и инкреторной (синтез ренина) функций, мезангиоциты выполняют и фагоцитарную функцию - «очищения» клубочка, его соединительной ткани. Считают, что мезангиоциты способны к сокращению, которое подчинено фильтрационной функции. Это предположение основано на том, что в цитоплазме мезангиальных клеток найдены фибриллы, обладающие актиновой и миозиновой активностью .

Капсула клубочка представлена БМ и эпителием. Мембрана , продолжающаяся в главный отдел канальцев, состоит из ретикулярных волокон. Тонкие коллагеновые волокна закрепляют клубочек в интерстиции . Эпителиальные клетки фиксированы на базальной мембране с помощью филаментов, содержащих актомиозин . На этом основании эпителий капсулы рассматривают как разновидность миоэпителия, изменяющего объем капсулы, что служит функции фильтрации. Эпителий имеет кубическую форму, но в функциональном отношении близок к эпителию главного отдела канальцев ; в области полюса клубочка эпителий капсулы переходит в подоциты.


Клиническая нефрология

под ред. Е.М. Тареева

От работы почек в организме зависит многое: и то, насколько успешно будет поддерживаться водный и электролитно-солевой баланс, и то, как будут выводиться отработанные продукты метаболизма. О том, как функционируют, органы мочевыделения, и как называется основная структурная единица почки читайте в нашем обзоре.

Как устроен нефрон

Основной анатомо-физиологической единицей почки является нефрон. За сутки в этих структурах происходит образование до 170 л первичной урины, ее дальнейшее сгущение с реабсорбцией (обратным всасыванием) полезных веществ и, наконец, выделение 1-1,5 л конечного продукта метаболизма – вторичной мочи.

Сколько нефронов насчитывается в организме? По данным учёных, это число составляет около 2 миллионов. Общая площадь выделительной поверхности всех структурных элементов правой и левой почки составляет 8 квадратных метров, что втрое больше площади кожи. При этом одновременно работают не более трети нефронов: это создаёт высокий резерв для мочевыделительной системы и позволяет организму активно функционировать даже с одной почкой.

Итак, из чего же состоит главный функциональный элемент в мочевыделительной системе человека? Нефрон почки включает:

  • почечное тельце – в нем происходит фильтрация крови и образование разбавленной, или первичной мочи;
  • система канальцев – часть, отвечающая за реабсорбцию нужных организму и секрецию отработанных веществ.

Почечное тельце


Строение нефрона сложное и представлено несколькими анатомо-физиологическими единицами. Начинается он с почечного тельца, которое также состоит из двух образований:

  • почечные клубочки;
  • капсулы Боумена-Шумлянского.

В клубочках содержится несколько десятков капилляров, которые получают кровь от восходящей артериолы. В газообмене эти сосуды не участвуют (после прохождения через них насыщенность крови кислородом практически не меняется), однако по градиенту давления осуществляют фильтрацию жидкости и всех растворенных в ней компонентов в капсулу.

Физиологическая скорость прохождения крови через клубочки почек (СКФ) составляет 180-200 л/сутки. Другими словами, за 24 часа весь объем крови в организме человека проходит через клубочки нефронов 15-20 раз.

В капсулу нефрона, состоящую из внешнего и внутреннего листков, поступает прошедшая через фильтр жидкость. Через мембраны клубочков свободно проникают вода, ионы хлора и натрия, аминокислоты и протеины массой до 30 кДа, мочевина, глюкоза. Таким образом, в пространство капсулы поступает по сути жидкая часть крови, лишённая крупных молекул белка.

Почечные канальцы

Во время микроскопического исследования можно заметить наличие в почке множества канальцевых структур, состоящих из элементов с различным гистологическим строением и выполняемыми функциями.

В системе канальцев нефрона почки выделяют:

  • проксимальный каналец;
  • петлю Генле;
  • дистальный извитой каналец.

Проксимальный каналец – самая вытянутая и протяженная часть нефронов. Его основная функция – транспорт отфильтрованной плазмы в петлю Генле. Кроме того, в нем происходит обратное всасывание воды и электролитных ионов, а также секреция аммиака (NH3, NH4) и органических кислот.

Петля Генле – отрезок части пути, соединяющего два типа канальцев (центральные и краевые). В ней происходит реабсорбция воды и электролитов в обмен на мочевину и переработанные вещества. Именно в этом отделе осмолярность урины резко возрастает и достигает 1400 мОсм/кг.

В дистальном отделе транспортные процессы продолжаются, и на выходе образуется концентрированная вторичная моча.

Собирательные трубки

Собирательные трубки находятся в околоклубочковой зоне. Они отличаются наличием юкстагломерулярного аппарата (ЮГА). Он, в свою очередь, состоит из:

  • плотного пятна;
  • юкстагломерулярных клеток;
  • юкставаскулярных клеток.

В ЮГА происходит синтез ренина – важнейшего участника ренин-ангиотензиновой системы, которая контролирует артериальное давление. Кроме того, собирательные трубки являются конечной частью нефрона: в них поступает вторичная моча из множества дистальных канальцев.

Классификация нефронов


В зависимости от того, какой структурной и функциональной особенностью нефроны обладают, они делятся на:

  • корковые;
  • юкстагломерулярные.

В корковом слое почек находится два типа нефронов – суперфициальные и интракортикальные. Первые малочисленны (их количество менее 1%), расположены поверхностно и имеют небольшой объём фильтрации. Интракортикальные нефроны составляют большую часть (80-83%) основной структурной единицы почек. Они располагаются в центральной части коркового слоя и осуществляют практически весь объем происходящей фильтрации.

Общее число юкстагломерулярных нефронов не превышает 20%. Их капсулы располагаются на границе двух почечных слоев – коркового и мозгового, а петля Генле спускается к лоханке. Такой вид нефронов считается ключевым для способности почек концентрировать урину.

Физиологические особенности работы почек

Подобное сложное строение нефрона позволяет обеспечить высокую функциональную активность почек. Попадая по афферентным артериолам в клубочек, кровь подвергается процессу фильтрации, при котором белки и крупные молекулы остаются в сосудистом русле, а жидкость с растворенными в ней ионами и прочими мелкими частицами попадает в капсулу Боумена-Шумлянского.

Затем отфильтрованная первичная моча поступает в систему канальцев, где происходит реабсорбция в кровь жидкости и необходимых организму ионов, а также секреция переработанных веществ и продуктов метаболизма. В конечном итоге образованная вторичная моча по собирательным трубкам поступает в малые почечные чашечки. На этом процесс мочеобразования заканчивается.

Роль нефронов в развитии ПН


Доказано, что после 40-летнего рубежа у здорового человека ежегодно отмирает около 1% от всех функционирующих нефронов. Учитывая огромный «запас» структурных элементов почки, этот факт не слишком отражается на здоровье и самочувствии даже после 80-90 лет.

Помимо возраста, к причинам гибели клубочков и системы канальцев относится воспаление почечной ткани, инфекционно-аллергические процессы, острые и хронические интоксикации. В случае, если объем отмерших нефронов превышает 65-67% от общего объёма, у человека развивается почечная недостаточность (ПН).

ПН – патология, при которой почки оказываются неспособными фильтровать и образовывать мочу. В зависимости от основного причинного фактора выделяют:

  • острую, ОПН – внезапную, но часто обратимую;
  • хроническую, ХПН – медленнопрогрессирующую и необратимую.

Таким образом, нефрон является целостной структурной единицей почки. Именно в нем происходит процесс мочеобразования. В нем находятся несколько функциональных элементов, без четкой и слаженной работы которых работа системы мочевыделения была бы невозможна. Каждый из почечных нефронов не только обеспечивает постоянную фильтрацию крови и способствует мочеобразованию, но и позволяет своевременно проводить очистку организма и поддерживать гомеостаз.

Осуществляют большое количество полезной функциональной работы в организме, без которой нельзя представить нашу жизнь. Главная из них – это ликвидация из организма лишней воды и заключительных продуктов метаболизма. Происходит это в мельчайших структурах почки – нефронах.

Для того, чтобы перейти к мельчайшим единицам почки, нужно разобрать общее ее строение. Если рассмотреть почку в разрезе, то по своей форме она напоминает боб или фасоль.

Человек рождается с двумя почками, но, правда, бывают исключения, когда присутствует всего одна почка. Расположены они у задней стенки брюшины, на уровне I и II поясничных позвонков.

Весит каждая почка примерно 110-170 грамм, ее длина составляет 10-15 см, ширина — 5-9 см, а толщина – 2-4 см.

Почка имеет заднюю и переднюю поверхности. Задняя поверхность располагается в почечном ложе. Это напоминает большую и мягкую кровать, которая выстелена поясничной мышцей. А вот передняя поверхность соприкасается с другими соседними органами.

Левая почка контактирует с левым надпочечником, ободочной кишкой, и поджелудочной железой, а правая сообщается с правым надпочечником, толстым и тонким кишечником.

Ведущие структурные компоненты почки:

  • Почечная капсула – это ее оболочка. Она включает в себя три слоя. Фиброзная капсула почки — по своей толщине довольно неплотная, имеет очень прочное строение. Защищает почку от различных повреждающих воздействий. Жировая капсула – слой жировой ткани, которая по своей структуре нежная, мягкая и рыхлая. Предохраняет почку от сотрясений и ударов. Наружная капсула – почечная фасция. Состоит из тонкой соединительной ткани.
  • Паренхима почки – ткань, которая состоит из нескольких слоев: коркового и мозгового вещества. Последнее складывается из 6-14 почечных пирамид. А вот сами пирамидки формируются из собирательных канальцев. В корковом веществе располагаются нефроны. Эти слои четко различимы по цвету.
  • Лоханка почки – углубление, похожее на воронку, которое получает от нефронов. Состоит она из чашечек разного калибра. Самые маленькие – это чашечки I порядка, в них проникает моча из паренхимы. Соединяясь, маленькие чашечки, образуют более крупные – чашечки II порядка. Насчитывают таких чашечек в почке около трех. При слиянии этих трех чашечек образуется почечная лоханка.
  • Почечная артерия – крупный кровеносный сосуд, ответвляясь от аорты, он доставляет зашлакованную кровь в почку. Примерно 25% всей крови поступает ежеминутно в почки для очищения. В течение дня почечная артерия снабжает почку примерно 200 литрами крови.
  • Почечная вена – по ней уже очищенная кровь из почки попадает в полую вену.

Каналец, выходящий из капсулы, именуется извитым канальцем I порядка. Он правда не ровный, а извитой. Проходя по мозговому слою почки, этот каналец формирует петлю Генле и вновь поворачивается в сторону коркового слоя. На своем пути извитой каналец делает несколько витков и в обязательном порядке соприкасается с основанием клубочка.

В корковом слое образуется каналец II порядка, он вливается в собирательную трубочку. Небольшое количество собирательных трубочек, соединяясь вместе, объединяются в выводные протоки, переходящие в почечную лоханку. Именно эти трубочки, двигаясь к мозговому веществу, формируют мозговые лучи.

Типы нефронов

Выделяют эти типы из-за специфичности местонахождения клубочков в коре почек, канальцев и особенностей состава и локализации кровеносных сосудов. К ним относят:

  • корковые – занимают примерно 85% от общего числа всех нефронов
  • юкстамедуллярные – 15% из всего количества

Корковые нефроны самые многочисленные и тоже имеют внутри себя классификацию:

  1. Суперфициальные или их еще называют поверхностными. Главная особенность их в расположении почечных тел. Они находятся во внешнем слое коркового вещества почки. Их количество примерно 25%.
  2. Интракортикальные. У них мальпигиевые тельца располагаются в средней части коркового вещества. Преобладают по численности — 60% всех нефронов.

Корковые нефроны имеют сравнительно укороченную петлю Генле. Из-за своих маленьких размеров она способна проникнуть только во внешнюю часть мозгового вещества почек.

Образование первичной мочи — вот главная функция таких нефронов.

У юкстамедуллярных нефронов мальпигиевые тельца обнаруживаются в основании коркового вещества, находятся практически на линии начала мозгового слоя. Петля Генле у них более продолжительна, чем у корковых, она инфильтрируется настолько глубоко в мозговой слой, что достигает вершин пирамид.

Эти нефроны в мозговом веществе формируют высокое осмотическое давление, которое необходимо, чтобы происходило сгущение (увеличение концентрации), и сокращение объемов конечной мочи.

Функция нефронов

Функция их заключается в образовании мочи. Процесс этот стадийный и состоит из 3 фаз:

  • фильтрация
  • реабсорбция
  • секреция

В начальную фазу формируется первичная моча. В капиллярных клубочках нефрона плазма крови очищается (ультрафильтруется). Совершается очищение плазмы из-за разности давления в клубочке (65 мм рт. ст.) и в оболочке нефрона (45 мм рт. ст.).

Около 200 л первичной мочи образуется в организме человека за сутки. Эта моча имеет схожий с плазмой крови состав.

Во вторую фазу – реабсорбции происходит повторное поглощение нужных для организма веществ из первичной мочи. В эти вещества входят: , вода, различные полезные соли, растворенные аминокислоты и глюкоза. Происходит это в проксимальных извитых канальцах. Внутри которых находится большое количество ворсинок, они увеличивают площадь и скорость всасывания.

Из 150 л первичной мочи образуется всего 2 л вторичной мочи. В ней отсутствуют важные питательные вещества для организма, но сильно увеличивается концентрация токсичных веществ: мочевины, мочевой кислоты.

Третья фаза характеризуется выделением вредных веществ в мочу, которые не прошли почечный фильтр: , различные красители, лекарственные средства, яды.

Структура нефрона очень сложная, несмотря на его маленькие размеры. Удивительно, но практически каждая составляющая нефрона выполняет свою функцию.

Ноя 7, 2016 Виолетта Лекарь

Нефроном является структурная единица почки, отвечающая за формирование урины. Работая 24 часа, органы пропускают до 1700 л плазмы, образуя немногим больше литра урины.

Нефрон

От работы нефрона, которым является структурно-функциональная единица почки, зависит, насколько успешно осуществляется поддержание баланса, выводятся отработанные продукты. За сутки два миллионов нефронов почек, столько, сколько их в организме, вырабатывают 170 л первичной мочи, сгущают до суточного количества, доходящего до полутора литров. Суммарная площадь выделительной поверхности нефронов составляет почти 8 м 2 , что в 3 раза превышает площадь кожи.

У выделительной системы высокий резерв прочности. Создается он благодаря тому, что одновременно работает лишь третья часть нефронов, что позволяет выжить при удалении почки.

Очищается в почках артериальная кровь, идущая по приносящей артериоле. Выходит очищенная кровь по выходящей артериоле. Поперечник приносящей артериолы больше, чем у артериолы, за счет чего создается перепад давления.

Строение

Отделы нефрона почки такие:

  • Начинаются в корковом слое почки капсулой Боумена, которая располагается над клубочком капилляров артериолы.
  • Капсула нефрона почки сообщается с проксимальным (ближайшим) канальцем, направляемым в мозговое вещество — это и является ответом на вопрос в какой части почки находятся капсулы нефронов.
  • Каналец переходит в петлю Генле – сначала в проксимальный отрезок, затем – дистальный.
  • Окончанием нефрона принято считать место, где начинается собирательная трубочка, куда поступает вторичная моча из множества нефронов.

Схема нефрона

Капсула

Клетки подоциты, окружают клубочек капилляров подобием шапочки. Образование называют почечным тельцем. В его поры проникает жидкость, которая оказывается в пространстве Боумена. Здесь собирается инфильтрат – продукт фильтрации кровяной плазмы.

Проксимальный каналец

Этот вид состоит из клеток, покрытых снаружи базальной мембраной. Внутренняя часть эпителия снабжена выростами – микроворсинками, как щеточка, выстилающими каналец по всей длине.

Снаружи находится базальная мембрана, собранная в многочисленные складки, которые при наполнении канальцев распрямляются. Каналец при этом приобретает округлую форму в поперечнике, а эпителий уплощается. При отсутствии жидкости поперечник канальца становится узким, клетки приобретают призматический вид.

К функциям относится реабсорбция:

  • H 2 O;
  • Na – 85%;
  • ионов Ca, Mg, K, Cl;
  • солей — фосфатов, сульфатов, бикарбоната;
  • соединений — белков, креатинина, витаминов, глюкозы.

Из канальца реабсорбенты попадают в кровеносные сосуды, которые густой сетью оплетают каналец. На этом участке в полость канальца всасывается желчная кислота, поглощаются щавелевая, парааминогиппуровая, мочевая кислоты, происходит всасывание адреналина, ацетилхолина, тиамина, гистамина, транспортируются лекарственные средства – пенициллина, фуросемида, атропина и др.

Петля Генле

После вхождения в мозговой луч проксимальный каналец переходит в начальный отдел петли Генле. Каналец переходит в нисходящий отрезок петли, которая спускается в мозговое вещество. Затем восходящая часть поднимается в корковое вещество, сближаясь с капсулой Боумена.

Внутреннее устройство петли сначала не отличается от строения проксимального канальца. Затем просвет петли сужается, через него проходит фильтрация Na в межтканевую жидкость, которая становится гипертонической. Это имеет значение для работы собирательных трубочек: благодаря высокой концентрации соли в омывающей жидкости, в них происходит всасывание воды. Восходящий отдел расширяется, переходит в дистальный каналец.

Петля Гентле

Дистальный каналец

Этот участок уже, короче, состоит из низких эпителиальных клеток. Ворсинки внутри канала отсутствуют, с наружной стороны хорошо выражена складчатость базальной мембраны. Здесь идет реабсорбция натрия, продолжается реабсорбция воды, секреция в просвет канальца ионов водорода, аммиака.

На видео схема строения почки и нефрона:

Виды нефронов

По особенностям строения, функциональному назначению различают такие типы нефронов, которые функционируют в почке:

  • корковые — суперфициальные, интракортикальные;
  • юкстамедуллярные.

Корковые

В корковом слое находятся две разновидности нефронов. Суперфициальные составляют около 1% от общего числа нефронов. Отличаются поверхностным расположением клубочков в коре, самой короткую петлей Генле, небольшим объемом фильтрации.

Количество интракортикальных — более 80% нефронов почки, располагаются в середине коркового слоя, играют основную роль в фильтрации урины. Кровь в клубочке интракортикального нефрона проходит под давлением, так как приводящая артериола значительно шире выводящей.

Юкстамедуллярные

Юкстамедуллярные — малочисленная часть нефронов почки. Их число не превышает 20% от числа нефронов. Капсула находится на границе коркового и мозгового слоя, остальная его часть расположена в мозговом слое, петля Генле спускается почти к самой почечной лоханке.

Этот вид нефронов имеет определяющее значение в способности концентрировать мочу. У особенности юкстамедуллярного нефрона относится то, что выводящая артериола этого вида нефрона имеет тот же диаметр, что и приносящая, а петля Генле самая длинная из всех.

Выносящие артериолы образуют петли, которые движутся в мозговой слой параллельно петле Генле, впадают в венозную сеть.

Функции

В функции нефрона почки входит:

  • концентрирование урины;
  • регуляция тонуса сосудов;
  • контроль над давлением крови.

Моча образуется в несколько этапов:

  • в клубочках фильтруется плазма крови, поступающая по артериоле, образуется первичная моча;
  • реабсорбция из фильтрата полезных веществ;
  • концентрация мочи.

Корковые нефроны

Основная функция — образование урины, реабсорбция полезных соединений, белков, аминокислот, глюкозы, гормонов, минералов. Корковые нефроны участвуют в процессах фильтрации, реабсорбции за счет особенностей кровоснабжения, а реабсорбированные соединения сразу проникают в кровь через близко расположенную капиллярную сеть выносящей артериолы.

Юкстамедуллярные нефроны

Основная работа юкстамедуллярного нефрона заключается в концентрировании мочи, что возможно, благодаря особенностям движения крови в выходящей артериоле. Артериола не переходит в капиллярную сеть, а переходит в венулы, впадающие в вены.

Нефроны этого вида участвуют в формировании структурного образования, регулирующего кровяное давление. Этот комплекс секретирует ренин, необходимый для выработки ангиотензина 2 – сосудосуживающего соединения.

Нарушение функций нефрона и как восстановить

Нарушение работы нефрона приводит к изменениям, которые отражаются на всех системах организма.

К расстройствам, вызванным дисфункцией нефронов, относятся нарушения:

  • кислотности;
  • водно-солевого баланса;
  • обмена веществ.

Заболевания, которые вызываются нарушением транспортных функций нефронов, называются тубулопатиями, среди которых различают:

  • первичные тубулопатии – врожденные дисфункции;
  • вторичные – приобретенные нарушения транспортной функции.

Причинами появления вторичной тубулопатии служит повреждение нефрона, вызванное действием токсинов, в том числе лекарств, злокачественных опухолей, тяжелых металлов, миеломы.

По месту локализации тубулопатии:

  • проксимальные – повреждение проксимальных канальцев;
  • дистальные – повреждение функций дистальных извитых канальцев.

Виды тубулопатии

Проксимальная тубулопатия

Повреждение проксимальных участков нефрона приводит к формированию:

  • фосфатурии;
  • гипераминоацидурии;
  • почечного ацидоза;
  • глюкозурии.

Нарушение реабсорбции фосфатов приводит к развитию рахитоподобного строения костей – состояния, устойчивого к лечению витамином D. Патологию связывают с отсутствием белка-переносчика фосфата, нехваткой рецепторов, связывающих кальцитриол.

Связана со снижением способности всасывать глюкозу. Гипераминоацидурия – это явления, при котором нарушается транспортная функция аминокислот в канальцах. В зависимости от вида аминокислоты, патология приводит к различным системным заболеваниям.

Так, если нарушена реабсорбция цистина, развивается заболевание цистинурия – аутосомно-рецессивное заболевание. Болезнь проявляется отставанием в развитии, почечной коликой. В моче при цистинурии возможно появление цистиновых камней, которые легко растворяются в щелочной среде.

Проксимальный канальцевый ацидоз вызывается неспособностью поглощать бикарбонат, из-за чего он выделяется с мочой, а в крови его концентрация понижается, а ионов Cl, напротив, повышается. Это приводит к метаболическому ацидозу, при этом происходит усиление выведения ионов K.

Дистальная тубулопатия

Патологии дистальных отделов проявляются почечным водным диабетом, псевдогипоальдостеронизмом, канальцевым ацидозом. Почечный диабет — повреждение наследственное. Врожденное нарушение вызвано отсутствием реакции клеток дистальных канальцев на антидиуретический гормон. Отсутствие реакции приводит к нарушению способности к концентрации урины. У больного развивается полиурия, в день может выделяться до 30 л мочи.

При комбинированных нарушениях развиваются сложные патологии, одна из которых называется . При этом нарушена реабсорбция фосфатов, бикарбонатов, не всасываются аминокислоты, глюкоза. Синдром проявляется задержкой развития, остеопорозом, патологией строения костей, ацидозом.