Витамин D (25(OH)D)

Информация об исследовании

Витамин D (Витамин Д) у человека представлен двумя веществами: витамином D3 (холекальциферол) и витамином D2 (эргокальциферол).
Витамин D 3 (холекальциферол) поступает в организм с пищей, а также может синтезироваться в коже под действием солнечного света.
Витамин Д2 (эргокальциферол) человеческий организм не производит, но получает его из витаминизирован­ных продуктов питания или с помощью различных добавок.
Витамин Д биологически инертен, и для превращения в биологически активную форму (1,25-дигидроксивитамин Д) он должен пройти два последовательных цикла гидроксилирования в печени и почках:

  • обе формы витамина D (D3 и D2) трансформируются в печени в 25-OH витамин D3 и 25-OH витамин D2 соответственно.
  • затем небольшая часть 25-ОН производных метаболизируется в почках до 1,25 (OH)2-витамина D3 и 1,25 (OH)2-витамина D2, физиологически активных форм витамина D.
Витамин Д (25-ОН) является метаболитом, который должен измеряться в крови для оценки общего статуса по витамину Д, так как он в наибольшей степени отражает запасы витамина Д в организме человека. Эта первичная циркулирующая форма витамина Д биологически неактивна, ее уровень в 1000 раз более высокий, чем у циркулирующего 1,25 (ОН)2 витамина Д. Период полужизни циркулирующего витамина Д (25-ОН) составляет 2-3 недели.
Более чем 95% витамина Д (25-ОН), доступного для измерения, является витамином Д3 (25-ОН) в котором перекрест с витамином Д2 может быть только у пациентов принимающих витамин Д2 как витаминную добавку Витамин Д2 считается менее эффективным.
Витамин Д играет важную роль для здоровья костной ткани. Дефицит витамина Д у детей приводит к остеомаляции, также известной как «рахит». Умеренная недостаточность витамина Д считается причиной сниженной эффективности для усвоения кальция, поступающего в организм с пищей] Дефицит витамина Д приводит к мышечной слабости; у людей преклонного возраста риск падения может быть связан с воздействием витамина Д на работу мышц].

Дефицит витамина Д обычно является причиной вторичного гиперпаратиреоза. Повышение уровня ПТГ, особенно у пожилых людей с дефицитом витамина Д, может привести к развитию остеомаляции, повышению костного обмена, снижению костной массы и риску костных переломов.
Низкие концентрации витамина Д (25-OH) также ассоциируются с низкой плотностью костной ткани. В сочетании с другими клиническими данными показатели этого витамина можно использовать с целью оценки костного метаболиза.
Таким образом, витамин Д воздействует на экспрессию более 200 различных генов. Его дефицит может быть связан с диабетом, различными формами рака, сердечно-сосудистыми заболеваниями, аутоиммунными заболеваниями и врожденным иммунитетом.

Показания к назначению анализа:

  • гипо - и авитаминоз D;
  • остеодистрофия почечного генеза;
  • гипопаратиреоз и гиперпаратиреоз с остеомаляцией;
  • остеопороз, сенильный и на фоне приема кортикостероидов;
  • гипокальциемия, гипофосфатемия;
  • красная волчанка с преимущественным поражением кожи;
  • хронический гастрит с ахлоргидрией;
  • болезнь Крона, радиационный энтерит;
  • хронический панкреатит с секреторной недостаточностью.

Витамин D3 (холекальциферол) синтезируется в коже под воздействием ультрафиолетовых лучей и поступает с пищей животного происхождения (рыбий жир, печень, яичный желток). Напротив, витамин D2 (эргокальциферол) поступает в организм только с растительными продуктами питания, причем весьма в небольших количествах. Обе формы витамина D гормонально неактивны, но поступая в печень, они метаболизируются до кальцидиола 25-OH витамин D, а далее в почках под воздействием паратгормона (ПТГ) превращаются в кальцитриол 1,25(ОН)2.

Статус витамина D принято определять по уровню 25-OH витамин D (его период полувыведения 2-3 недели).

Основная функция витамина D - это регуляция обмена кальция и фосфора, которые регулируют процесс минерализации костной ткани, нервно-мышечной передачи, а также участвуют в метаболических реакциях. Доказана роль в угнетении роста онкологических новообразований молочных желез, кишечника.

Недостаток витамина D проявляется рахитом у детей и остеомаляцией (снижением минерализации костей) у взрослых, проявления дефицита витамина D сходны с проявлениями гиперпаратиреоидизма, который может развиваться вторично. Комплекс лабораторных исследований при подозрении на дефицит витамина D должен включать определение кальция и фосфора крови (при выраженном дефиците ожидается снижение этих показателей), паратгормона и 25-OH витамин D. Исследование может быть дополнено определением мочевины, креатинина, магния для исключения состояний, связанных с патологией почек и дефицитом магния.

Избыток витамина D может приводить к токсическим эффектам (чаще наблюдается у детей), что проявляется, в зависимости от дозы и длительности применения, в гиперкальциемии, гиперфосфатемии, кальцификации мягких тканей, тошноте, рвоте, запорах, анорексии, задержке роста и развития.

Уровень витамина D может варьировать в зависимости от возраста (у пожилых людей чаще наблюдается снижение уровня), сезона (выше в конце лета, ниже зимой), характера принимаемой пищи, этнической и географической популяции, наблюдается снижение содержания в крови витамина D при беременности. Помимо известной роли витамина D в кальциевом обмене, в исследованиях последних лет продемонстрировано, что достаточное количество витамина D связано со снижением риска развития ряда онкологических заболеваний, сахарного диабета, рассеянного склероза, сердечно-сосудистых заболеваний, туберкулёза.

1. Высокие концентрации витамина D и кальция могут привести к кальцинозу и повреждению органов, особенно почек и кровеносных сосудов;

2. Уровни витамина D, кальция, фосфора и паратиреоидного гормона тесно связаны. Так, при избытке витамина D и кальция снижается синтез паратгормона;

3. Во время беременности метаболизм витамина D контролируется пролактином и соматотропным гормоном.


ОБЩИЕ ПРАВИЛА ПОДГОТОВКИ К ИССЛЕДОВАНИЯМ:

1. Для большинства исследований кровь рекомендуется сдавать утром, в период с 8 до 11 часов, натощак (между последним приемом пищи и взятием крови должно пройти не менее 8-ми часов, воду можно пить в обычном режиме), накануне исследования легкий ужин с ограничением приема жирной пищи. Для тестов на инфекции и экстренных исследований допустимо сдавать кровь через 4-6 часов после последнего приема пищи.

2. ВНИМАНИЕ! Специальные правила подготовки для ряда тестов: строго натощак, после 12-14 часового голодания, следует сдавать кровь на гастрин-17, липидный профиль (холестерин общий, холестерин-ЛПВП, холестерин-ЛПНП, холестерин-ЛПОНП, триглицериды, липопротеин (а), аполипо-протен А1, аполипопротеин В); глюкозотолерантный тест выполняется утром натощак после 12-16 часов голодания.

3. Накануне исследования (в течение 24 часов) исключить алкоголь, интенсивные физические нагрузки, прием лекарственных препаратов (по согласованию с врачом).

4. За 1-2 часа до сдачи крови воздержаться от курения, не употреблять сок, чай, кофе, можно пить негазированную воду. Исключить физическое напряжение (бег, быстрый подъем по лестнице), эмоциональное возбуждение. За 15 минут до сдачи крови рекомендуется отдохнуть, успокоиться.

5. Не следует сдавать кровь для лабораторного исследования сразу после физиотерапевтических процедур, инструментального обследования, рентгенологического и ультразвукового исследований, массажа и других медицинских процедур.

6. При контроле лабораторных показателей в динамике рекомендуется проводить повторные исследования в одинаковых условиях – в одной лаборатории, сдавать кровь в одинаковое время суток и пр.

7. Кровь для исследований нужно сдавать до начала приема лекарственных препаратов или не ранее, чем через 10–14 дней после их отмены. Для оценки контроля эффективности лечения любыми препаратами нужно проводить исследование спустя 7–14 дней после последнего приема препарата.

Если Вы принимаете лекарства, обязательно предупредите об этом лечащего врача.

Витамины группы Д появляются в организме человека при воздействии на кожные покровы ультрафиолетовых лучей. Его нехватку обычно восполняют корректировкой рациона питания, приемом витаминных комплексов. Анализ на витамин Д – процедура, не носящая обязательный характер. Существуют определенные показания к его назначению, от которых отталкиваются специалисты, проводящие диагностическое обследование пациента. Сдавать анализ необходимо для того, чтобы подтвердить или опровергнуть информацию о нехватке, избытке вещества в организме.

Когда назначают анализ?

Анализ на выявление дефицита или избытка витаминного элемента назначается в определенных ситуациях. К ним могут относиться проблемы со здоровьем, как взрослых, так и детей. Основными показаниями, указывающими на нехватку витамина Д в крови человека, выступают:

  • рахит;
  • отсутствие или резкое снижение аппетита;
  • болезненные ощущения в тазовой области;
  • повышенная усталость;
  • частые переломы конечностей;
  • миалгия, носящая диффузный характер;
  • остеопороз;
  • нарушения сна.
  • мышечные боли;
  • диспепсические расстройства;
  • увеличение количества мочи при мочеиспускании;
  • боль в области глаз;
  • резкое уменьшение массы тела, приводящее к состоянию анорексии;
  • кожный зуд;
  • гиперкальциемия.

Кому назначается анализ?

Не только определенные симптомы могут стать причиной выяснения количества витамина Д в крови. Он показан людям, страдающим такими заболеваниями, как:

  • болезнь Крона;
  • панкреатит в хронической стадии;
  • гастрит в хронической стадии;
  • заболевание Уиппла;
  • гипокальциемия;
  • остеодистрофия почечной системы;
  • гиперпаратиреоз;
  • рахит, сопровождающийся сниженным мышечным тонусом, повышенным потоотделением.

Известно, что проверять уровень указанного элемента важно людям, принадлежащим к возрастной группе, старше шестидесяти пяти лет, темнокожим. Необходимо его контролировать у младенцев, находящихся только на грудном вскармливании, у пациентов с диагнозом «ожирение». Людям, принимающим препараты против судорог, глюкокортикостероидные вещества, также стоит контролировать данные о содержании витаминного вещества в организме.

Нередки случаи, когда человек страдает остеопорозом, ему также приходится проходить процедуру указанного анализа. Такие пациенты часто принимают лекарственные средства, в составе которых находятся витамины группы D, кальций. Чтобы правильно определить дозировку, подобрать препарат специалисту нужны точные показатели, иначе можно нанести непоправимый вред здоровью пациента.

Причины повышения показателей

Если результаты анализа показывают, что в крови содержится слишком много витаминного вещества, причиной этому могут стать:

  • бесконтрольный прием препаратов, содержащих кальций, витамин Д3, например;
  • длительное пребывание под солнцем, особенно в тот момент, когда его лучи небезопасны;
  • очень светлая кожа, быстро «сгорающая» под солнечными лучами.

Иногда достаточно обратиться к специалисту, чтобы избавиться от причины повышения уровня ценного элемента. Именно поэтому важно консультироваться с врачом перед началом приема каких-либо витаминных комплексов. Наличие повышенного количества вещества также может наблюдаться и при определенных разновидностях лимфом, саркоидозе, недостаточном употреблении продуктов, включающих фосфор, кальций.

Причины снижения показателей

Дефицит витамина Д может наблюдаться по следующим причинам:

  • редкое пребывание на солнце;
  • недостаточное функционирование почечной и печеночной систем;
  • наличие лишнего веса;
  • ожирение;
  • нехватка витаминных веществ группы Е;
  • неправильно организованный рацион питания;
  • использование медикаментозных средств, принадлежащих к определенным фармакологическим группам.

Только результаты анализа могут помочь специалисту понять, как избавиться от недостаточного количества витамина в организме пациента. Иногда достаточно добавить в рацион питания определенные продукты, чтобы восполнить его количество, а иногда приходится начинать принимать витаминизированные комплексы.

Как проводится анализ?

Выявить показатель, отражающий статус вещества в организме, можно посредством ряда действий, позволяющих увидеть количество основного метаболита витамина Д, а именно, - 25-ОН. Он имеет две формы – холекальциферол (Д3), эргокальциферол (Д2). Измерение количества клеток каждой формы производится эквимолярным путем в несколько этапов:

  1. Подготавливается специальная вакуумная система, позволяющая безболезненно проводить забор крови.
  2. Генетический материал набирается из вены.
  3. Производится расшифровка результатов.

Если анализ измеряется в нг/моль, то норма варьируется от тридцати до ста нг/моль. Если же используются другие величины для измерения, такие, как нмоль/л, то норма варьируется от семидесяти пяти до двухсот пятидесяти. Для того, чтобы суммарные показатели на момент расшифровки были верными, важно соблюдать ряд правил, а точнее – подготовиться к сдаче анализа.

Как подготовиться к процедуре?

Подготовка к проведению процедуры забора генетического материала заключается в соблюдении простых правил. Они подходят не только взрослому, но и ребенку, тем более грудничку. Основными из них являются:

  • проведение процедуры натощак (последний прием пищи должен быть не позже восьми часов до забора генетического материала);
  • отказ от кофе, сока, чая в день забора крови;
  • отказ от алкоголя за неделю до проведения процедуры;
  • отказ от рыбы и жирной пищи за несколько дней до анализа.

Многие интересуются, зачем нужна подготовка к проведению забора крови. Соблюдение простых правил позволит специалистам правильно определить уровень витамина Д и выдать результаты через несколько дней.

Где проводится анализ?

Получив направление на подобную процедур, естественно, человек задается вопросом, где ее делают. Учитывая тот факт, что рекомендует ее эндокринолог, детский или взрослый, проверить уровень содержания витамина Д можно в специализированных эндокринологических центрах, клиниках. Как показывает практика, положительными моментами в обращении в подобные заведения являются:

  • быстрая выдача результатов – в течение нескольких суток;
  • отсутствие необходимости забирать расшифровку самостоятельно, так как ее высылают на e-mail;
  • комфорт в момент проведения процедуры;
  • оснащенность новейшим техническим оборудованием, как развлекательного, так и специализированного характера;
  • возможность самостоятельно выбрать время, подходящее для проведения процедуры.

После того, как пациент сделал анализ, он может проконсультироваться со специалистом по своей проблеме на месте.

Цена вопроса

Стоимость забора генетического материала для проведения исследования зависит от нескольких факторов. К ним относятся:

  • регион местонахождения клиники;
  • степень точности работы оборудования, используемого специалистами.

Средняя цена за взятие генетического материала – 140 р, а за проведение исследовательских работ – 1600-3200 р. Цифры приведены ориентировочные, а потому лучше всего отыскать названия эндокринологических клиник или медицинских центров, делающих такую процедуру, в сети самостоятельно, опираясь на свой регион проживания.

Меры профилактики по предупреждению нехватки витамина Д

Для того, чтобы не столкнуться с проблемой дефицита витамина Д, лучше всего позаботиться об обогащении своего организма следующими продуктами питания:

  • кисломолочными, молочными;
  • мясными;
  • рыбными;
  • яичными;
  • сырными и прочими.

Периодически важно пропивать курсы витаминизированных комплексов, содержащих холекальциферол и эргокальциферол, или их аналогов среди прочих препаратов. Как показывает практика, лучше предупредить проблему, чем впоследствии заниматься ее решением. После консультации со специалистом при необходимости можно принимать поливитамины, улучшающие общее состояние человека. Как они называются, подскажет врач.

Витамин D - 25(ОН)D-гидроксикальциферол (антирахитический витамин) в крови - биологически активное вещество, отражающее содержание витамина D у человека. Основные показания к определению: выявление дефицита витамина D, признаки нарушения обмена кальция, остеопороз.

25-гидроксикальциферол – промежуточный продукт превращения витамина D. Основными формами 25(ОН)D-гидроксикальциферола являются витамины D2 и D3. В данном методе определения, фактически, происходит измерение концентраций этих двух форм (их сумма). Накопление витамина D происходит в печени, его запасов хватает на предупреждение развития дефицита в организме на срок 3-4 месяца. Одной из основных его функций является участие в регуляции обмена кальция и его абсорбции в кишечнике.
Обычно под названием "витамин D" подразумевают существование нескольких жирорастворимых форм витамина - холекальциферол (D3), эргокальциферол (D2) и наиболее активную форму 1,25(ОН)2D3. Эти соединения различаются как по химическому строению, так и биологической активности. После ряда преобразований витамин D в печени под действием 25-гидроксилазы преобразуется в форму 25(ОН)D, представляющей главный циркулирующий метаболит витамина D. Поэтому по концентрации 25(ОН)D судят о содержании в организме всех форм витамина D. Для человека и животных активными считаются витамины D 2 и D 3 . Витамин D2 образуется в организме человека из эргостерина под действием ультрафиолетовых лучей и получил название эргокальциферол. Активная форма витамина D была выделен впервые из рыбьего жира и получила название витамин D3 (холекальциферол). Предшественником в его синтезе является не эргостерин, а холестерин. Было также показано, что синтез витамина D3 под действием ультрафиолетовых лучей возможен в коже человека благодаря наличию холестерина и 7-дегидрохолестерина (при облучении 7-дегидрохолестерина, присутствующего в коже, образуется витамин D3). При физиологических условиях кальциферолы функционально инертны. В печени и почках витамин D в процессе реакций превращается в конечный активный метаболит - 1,25-дигидроксихолекальциферол. Таким образом, витамин D выполняет свои биологические функции в организме в форме образующихся из него активных метаболитов, в частности 1,25-дигидроксихолекальциферола (1,25 (ОН) 2 D 3).

Активация холекальциферола (витамина D3) начинается в печени путем его превращения в 25-гидроксихолекальциферол. При этом нет связи от количества самого образовавшегося витамина D3 и скоростью его превращения в 25-гидроксихолекальциферол. При большом содержании витамина D3 содержание 25-гидроксихолекальциферола может оставаться на прежнем уровне. Такая регуляция позволяет делать организмом запасы витамина D3 в печени на несколько месяцев, тогда как 25-гидроксикальциферол может присутствовать лишь несколько недель.

Далее в почках происходит превращение 25-гидроксикальциферола в наиболее активную форму витамина D - 1,25-дигидроксикальциферол. Это объясняет факт, что при отсутствии почек витамин D утрачивает свое влияние.

К основным действиям витамина D можно отнести следующие: 1. Обеспечение всасывания кальция из кишечника; 2. Обеспечение всасывания фосфатов в кишечнике; 3. Уменьшение экскреции кальция и фосфатов в почках, путем увеличения всасывания фосфатов и кальция в почечных канальцах, приводя к снижению их выделения с мочой; 4. В физиологических количествах обеспечивает кальцификацию кости.

Витамин D (форма 1,25(ОН)2 регулирует обмен фосфора (Р) и кальция (Са) в костях. Он участвует в регуляции процессов всасывания кальция и фосфора в кишечнике, резорбции костной ткани и реабсорбции Ca и Р в почечных канальцах. Форма 24,25(ОН)2D3 регулирует процессы остеогенеза и ремоделирования костной ткани.

Недостаток витамина D приводит у детей к развитию рахита, у взрослых к снижению минерализации кости (остеомаляции). Наибольшее количество витамина D содержится в продуктах животного происхождения: сливочном масле, печени и жирах, в рыбьем жире, подсолнечном и оливковом маслах, в дрожжах. Избыточное употребление препаратов витамина D приводит к отрицательным результатам: изменение функции почек, нарушение обмена кальция, задержка роста и развития.

Следует учитывать, что определение активного витамина D - 1,25(ОН)2 является не слишком пригодным показателем для оценки общего содержания витамина D. Лучшим показателем статуса витамина D является определение другой формы, обладающей меньшей биологической активностью - 25(ОН)кальциферол. Эта форма представляет собой основную циркулирующую форму витамина D и отражает содержание в организме витамина D2 - эргокальциферола и витамина D3 - холекальциферола.


Для цитирования: Шварц Г.Я. Дефицит витамина D и его фармакологическая коррекция // РМЖ. 2009. №7. С. 477

Нарушение образования гормонов и их дефицит являются важными причинами многих заболеваний человека. Дефицит одного из них – D–гормона (чаще обозначаемый, как дефицит витамина D), обладающего широким спектром биологических свойств и участвующего в регуляции многих важных физиологических функций, также имеет негативные последствия и лежит в основе ряда видов патологических состояний и заболеваний . Ниже рассматриваются как характеристика витамина D, его дефицита, роль последнего в возникновении и развитии ряда распространенных заболеваний, так и современные возможности фармакологической коррекции D–дефицитных состояний.

Характеристика витамина D, D–гормона и D–эндокринной системы

Термином «витамин D» объединяют группу сходных по химическому строению (секостероиды) и существующих в природе нескольких форм витамина D:

– Витамин D1 (так было названо открытое в 1913 г. E.V. McCollum в жире из печени трески вещество, представляющее собой соединение эргокальциферола и люмистерола в соотношении 1:1);

– Витамин D2 – эргокальциферол, образующийся из эргостерола под действием солнечного света главным образом в растениях; представляет собой наряду с витамином D3, одну из двух наиболее распространенных природных форм витамина D;

– Витамин D3 – холекальциферол, образующийся в организме животных и человека под действием солнечного света из 7–дегидрохолестерина; именно его рассматривают, как «истинный» витамин D, тогда как другие представители этой группы считают модифицированными производными витамина D;

– Витамин D4 – дигидротахистерол или 22,23–ди­гид­роэргокальциферол;

– Витамин D5 – ситокальциферол (образуется из 7–дегидроситостерола).

Витамин D традиционно относят к группе жирорастворимых витаминов. Однако в отличие от всех других витаминов витамин D не является собственно витамином в классическом смысле этого термина, так как он: а) биологически не активен; б) за счет двухступенчатой метаболизации в организме превращается в активную – гормональную форму и в) оказывает многообразные биологические эффекты за счет взаимодействия со специфическими рецепторами, локализованными в ядрах клеток многих тканей и органов. В этом отношении активный метаболит витамина D ведет себя, как истинный гормон, в связи с чем и получил название D–гормон. При этом, следуя исторической традиции, в научной литературе его называют витамином D.

В организм человека витамин D2 поступает в относительно небольших количествах – не более 20–30% от потребности. Основными его поставщиками являются продукты из злаковых растений, рыбий жир, сливочное масло, маргарин, молоко, яичный желток и др. (табл. 1). Витамин D2 метаболизируется с образованием производных, обладающих сходным с метаболитами витамина D3 действием.

Вторая природная форма витамина D – витамин D3, или холекальциферол, является малозависящим от поступления извне ближайшим аналогом витамина D2. Холекальциферол образуется в организме позвоночных животных, в том числе амфибий, рептилий, птиц и млекопитающих, в связи с чем играет значительно большую роль в процессах жизнедеятельности человека, чем поступающий в небольших количествах с пищей витамин D2. В организме витамин D3 образуется из находящегося в дермальном слое кожи предшественника – провитамина D3 (7–дегидрохолестерина) под влиянием коротковолнового ультрафиолетового облучения спектра В (УФ–В/солнечного света, длина волны 290–315 нм) при температуре тела в результате фотохимической реакции раскрытия В кольца стероидного ядра и термоизомеризации, характерной для секостероидов.

Витамин D (поступающий с пищей или образующийся в организме в процессе эндогенного синтеза) в результате двух последовательных реакций гидроксилирования биологически малоактивных прегормональных форм подвергается превращению в активные гормональные формы: наиболее важную, качественно и количественно значимую – 1a,25–дигидроксивитамин D3 (1a,25(ОН)2D3; называемый также D–гормоном, кальцитриолом) и минорную – 24,25(ОН)2D3 (рис. 1).

Уровень образования D–гормона в организме взрослого здорового человека составляет около 0,3–1,0 мкг/сут. Первая реакция гидроксилирования осуществляется преимущественно в печени (до 90%) и около 10% – внепеченочно при участии микросомального фермента 25–гидроксилазы с образованием промежуточной биологически малоактивной транспортной формы – 25(ОН)D (кальцидол).

Гидроксилирование витамина D3 в печени не является объектом каких–либо внепеченочных регулирующих влияний и представляет собой полностью субстратзависимый процесс. Реакция 25–гидроксилирования протекает весьма быстро и ведет к повышению уровня 25(ОН)D в сыворотке крови. Уровень этого вещества отражает как образование витамина D в коже, так и его поступление с пищей, в связи с чем может использоваться как маркер статуса витамина D. Частично транспортная форма 25(ОН)D поступает в жировую и мышечную ткани, где может создавать тканевые депо с неопределенным сроком существования. Последующая реакция 1a–гидроксилирования 25(ОН)D протекает в основном в клетках проксимальных отделов канальцев коры почек при участии фермента 1a–гидроксилазы (25–гидроксивитамин D–1–a–гидроксилаза, CYP27В1). В меньшем, чем в почках, объеме 1a–гидро­ксили­ро­вание осуществляется и клетками лимфогемопоэтической системы, в костной ткани и, как установлено в последнее время, клетками некоторых других тканей, содержащими как 25(ОН)D, так и 1a–гидроксилазу. Как 25–гидроксилаза (СYP27В1 и ее другие изоформы), так и 1a–гидроксилаза представляют собой классические митохондриальные и микросомальные оксидазы со смешанными функциями и участвуют в переносе электронов от НАДФ через флавопротеины и ферродоксин в цитохром Р450 . Образование в почках 1,25–дигидроксивитамина D3 строго регулируется рядом эндогенных и экзогенных факторов.

В частности, регуляция синтеза 1a,25(ОН)2D3 в почках является непосредственной функцией паратиреоидного гормона (ПТГ), на концентрацию которого в крови, в свою очередь, по механизму обратной связи оказывают влияние как уровень самого активного метаболита витамина D3, так и концентрация кальция и фосфора в плазме крови. Кроме того, активирующее влияние на 1a–гидро­ксилазу и процесс 1a–гидрокси­ли­ро­вания оказывают и другие факторы, к числу которых относятся половые гормоны (эстрогены и андрогены), кальцитонин, пролактин, гормон роста (через ИПФР–1) и др.; ингибиторами 1a–гидроксилазы являются 1a,25(ОН)2D3 и ряд его синтетических аналогов, глюкокортикостероидные (ГКС) гормоны и др. Фактор роста из фибробластов (FGF23), секретируемый в клетках кости, вызывает образование натрий–фос­фат–ко­тран­спортера, который действует в клетках почек и тонкого кишечника, оказывает тормозящее влияние на синтез 1,25–дигидроксивитамина D3. На метаболизм ви­тамина D оказывают влияние и некоторые лекарственные средства (ЛС, например, противоэпилептические средства).

1α,25–дигидроксивитамин D3 повышает экспрессию 25–гидроксивитамин D–24–гидроксилазы (24–ОНазы) – фермента, катализирующего его дальнейший метаболизм, что приводит к образованию водорастворимой биологически неактивной кальцитроевой кислоты, которая выделяется с желчью.

Все перечисленные компоненты метаболизма витамина D, а также тканевые ядерные рецепторы к 1α,25–дигидроксивитамин D3 (D–гормону), получившие название рецепторы к витамину D (РВD), объединяют в эндокринную систему витамина D, функции которой состоят в способности генерировать биологические реакции более чем в 40 тканях–мишенях за счет регуляции РВD’ми транскрипции генов (геномный механизм) и быстрых внегеномных реакций, осуществляемых при взаимодействии с РВD, локализованными на поверхности ряда клеток. За счет геномных и внегеномных механизмов D–эндокринная система осуществляет реакции поддержания минерального гомеостаза (прежде всего в рамках кальций–фосфорного обмена), концентрации электролитов и обмена энергии. Кроме того, она принимает участие в поддержании адекватной минеральной плотности костей, метаболизме липидов, регуляции уровня АД, роста волос, стимуляции дифференцировки клеток, ингибировании клеточной пролиферации, реализации иммунологических реакций (иммунодепрессивное действие).

При этом лишь сам D–гормон и гидроксилирующие ферменты являются активными компонентами D–эндо­кринной системы (табл. 2).

Важнейшими реакциями, в которых 1α,25(ОН)2D3 участвует как кальцемический гормон, являются абсорбция кальция в ЖКТ и его реабсорбция в почках. D–гормон усиливает кишечную абсорбцию кальция в тонком кишечнике за счет взаимодействия со специфическими РВD – представляющими собой Х–рецеп­торный комплекс ретиноевой кислоты (РВD–ХРК), ведущего к экспрессии в кишечном эпителии кальциевых каналов . Эти временные (т.е. существующие непостоянно) потенциал–зависимые катионные каналы относятся к 6–му члену подсемейства V (TRPV6). В кишечных энтероцитах активация РВД сопровождается анаболическим эффектом – повышением синтеза кальбидина 9К – кальций–связывающего белка (СаСБ), который выходит в просвет кишечника, связывает Са2+ и транспортирует их через кишечную стенку в лимфатические сосуды и затем в сосудистую систему. Об эффективности данного механизма свидетельствует тот факт, что без участия витамина D лишь 10–15% пищевого кальция и 60% фосфора абсорбируются в кишечнике. Взаимо­действие между 1α,25–дигидроксивитамином D3 и РВD повышает эффективность кишечной абсорбции Са2+ до 30–40%, т.е. в 2–4 раза, а фосфора – до 80%. Сходные механизмы действия D–гормона лежат в основе осуществляемой под его влиянием реабсорбции Са2+ в почках.

В костях 1α,25(ОН)2D3 связывается с рецепторами на кость–формирующих клетках – остеобластах (ОБ), вызывая повышение экспрессии ими лиганда рецептора активатора ядерного фактора кВ (RANKL) . Рецеп­тор активатор ядерного фактора кВ (RANK), являющийся рецептором для RANKL, локализованным на преостеокластах (преОК), связывает RANKL, что вызывает быстрое созревание преОК и их превращение в зрелые ОК. В процессах костного ремоделирования зрелые ОК резорбируют кость, что сопровождается выделением кальция и фосфора из минерального компонента (гидроксиапатита) и обеспечивает поддержание уровня кальция и фосфора в крови. В свою очередь, адекватный уровень кальция (Са2+) и фосфора (в виде фосфата (НРО42–) необходим для нормальной минерализации скелета.

D–дефицит

В физиологических условиях потребность в витамине D варьирует от 200 МЕ (у взрослых) до 400 МЕ (у детей) в сутки. Считается, что кратковременное (в течение 10–30 мин.) солнечное облучение лица и открытых рук эквивалентно приему примерно 200 МЕ витамина D, тогда как повторное пребывание на солнце в обнаженном виде с появлением умеренной кожной эритемы вызывает повышение уровня 25(ОН)D, выше наблюдаемого при многократном его введении в дозе 10 000 МЕ (250 мкг) в день .

Хотя консенсус относительно оптимального уровня 25(ОН)D, измеряемого в сыворотке крови, и отсутствует, дефицит витамина D (ДВD), по мнению большинства экспертов, имеет место тогда, когда 25(ОН)D ниже 20 нг/мл (т.е. ниже 50 нмол/л). Уровень 25(ОН)D обратно пропорционален уровню ПТГ в пределах, когда уровень последнего (ПТГ) достигает интервала между 30 и 40 нг/мл (т.е. от 75 до 100 нмол/л), при указанных значениях которого концентрация ПТГ начинает снижаться (от максимальной). Более того, кишечный транспорт Са2+ повышался до 45–65% у женщин, когда уровень 25(ОН)D увеличивался в среднем от 20 до 32 нг/мл (от 50 до 80 нмол/л). На основании этих данных уровень 25(ОН)D от 21 до 29 нг/мл (т.е. 52 до 72 нмол/л) может рассматриваться, как индикатор относительной недостаточности витамина D, а уровень 30 нг/мл и выше – как достаточный (т.е. близкий к нормальному). Инто­кси­кация витамином D наблюдается, когда уровень 25(ОН)D выше, чем 150 нг/мл (374 нмол/л).

С использованием полученных в многочисленных исследованиях результатов определения 25(ОН)D и их экстраполяцией можно говорить о том, что согласно имеющимся рассчетам около 1 млрд. жителей Земли имеют ДВD или недостаточность витамина D, что отражает как демографические (постарение населения), так и экологические (изменения климата, снижение инсоляции) изменения, происходящие на планете в последние годы. По данным нескольких исследований, от 40 до 100% пожилых людей в США и Европе, живущих в обычных условиях (не в домах престарелых), имеют ДВD. Более 50% постменопаузальных женщин, принимающих препараты для лечения ОП, имеют субоптимальный (недостаточный) уровень 25(ОН)D, т.е. ниже 30 нг/мл (75 нмол/л).

У значительного числа детей и молодых взрослых также имеется потенциальный риск ДВD. Например, 52% латиноамериканских и негритянских (афро–амери­канских) подростков в проведенном в Бостоне (США) исследовании и 48% белых девочек младшего подросткового возраста в исследовании, проведенном в Майне (США), имели уровень 25(ОН)D ниже 20 нг/мл. В других исследованиях, выполненных в конце зимы, 42% живущих на территории США негритянских девочек и женщин в возрасте от 15 до 49 лет имели уровень 25(ОН)D ниже 20 нг/мл, а у 32% здоровых студентов и врачей в Бостонском госпитале был выявлен ДВD, несмотря на ежедневное потребление ими 1 стакана молока и препаратов мультивитаминов, а также включение в пищу лосося не менее 1 раза в неделю.

В Европе, где очень редкие виды пищевых продуктов искусственно обогащаются витамином D, дети и взрослые подвержены особенно высокому риску ДВD. Люди, живущие в экваториальной области с высоким уровнем природной инсоляции, имеют близкий к нормальному уровень 25(ОН)D – выше 30 нг/мл. Однако в наиболее солнечных регионах Земли ДВD нередок из–за ношения полностью закрывающей тело одежды. В исследованиях, проведенных в Саудовской Аравии, ОАЭ, Австралии, Турции, Индии и Ливане от 30 до 50% детей и взрослых имеют уровень 25(ОН)D ниже 20 нг/мл. В таблице 3 суммированы основные причины и последствия ДВD.

Дефицит D–гормона (чаще представленный D–ги­по­витаминозом либо D–витаминной недостаточностью, т.к. в отличие от драматического снижения уровня эстрогенов в постменопаузе этим термином обозначают преимущественно снижение уровня образования в организме 25(ОН)D и 1a,25(ОН)2D3), а также нарушения его рецепции играют существенную роль в патогенезе не только заболеваний скелета (рахит, остеомаляция, остеопороз), но и значительного числа распространенных внескелетных заболеваний (сердечно–сосудистая патология, опухоли, аутоиммунные заболевания и др.).

Различают два основных типа дефицита D–гормона , иногда называемого также «синдромом D–не­до­статочности». Первый из них обусловлен дефицитом/недостаточностью витамина D3 – природной прогормональной формы, из которой образуется активный(е) метаболит(ы) . Этот тип дефицита витамина D связывают с недостаточным пребыванием на солнце, а также с недостаточным поступлением этого витамина с пищей, постоянным ношением закрывающей тело одежды, что снижает образование природного витамина в коже и ведет к снижению уровня 25(ОН)D в сыворотке крови. Подобная ситуация наблюдалась ранее, главным образом у детей, и являлась, по сути, синонимом рахита. В настоящее время в большинстве индустриальных стран мира благодаря искусственному обогащению продуктов детского питания витамином D его дефицит/недостаточность у детей наблюдается относительно редко. Однако из–за изменившейся во второй половине ХХ века демографической ситуации дефицит витамина D нередко имеет место у лиц пожилого возраста, особенно проживающих в странах и на территориях с низкой естественной инсоляцией (севернее или южнее 40° долготы в Северном и Южном полушариях соответственно), имеющих неполноценный или несбалансированный пищевой рацион и с низкой физической активностью. Показано, что у людей в возрасте 65 лет и старше наблюдается 4–кратное снижение способности образовывать витамин D в коже. В связи с тем, что 25(ОН)D является субстратом для фермента 1a–гидроксилазы, а скорость его превращения в активный метаболит пропорциональна уровню субстрата в сыворотке крови, снижение этого показателя <30 нг/мл нарушает образование адекватных количеств 1a,25(ОН)2D3. Именно такой уровень снижения 25(ОН)D в сыворотке крови был выявлен у 36% мужчин и 47% женщин пожилого возраста в ходе исследования (Euronut Seneca Program), проведенного в 11 странах Западной Европы. И хотя нижний предел концентрации 25(ОН)D в сыворотке крови, необходимый для поддержания нормального уровня образования 1a,25(ОН)2D3, неизвестен, его пороговые значения, по–видимому, составляют от 12 до 15 нг/мл (30–35 нмол/л).

Наряду с приведенными выше данными, в последние годы появились и более четкие количественные критерии D–дефицита. Со­глас­но авторам гиповитаминоз D определяется при уровне 25(ОН)D в сыворотке крови 100 нмол/л (40 нг/мл), D–витаминная недостаточность – при 50 нмол/л, а D–дефицит – при <25 нмол/л (10 нг/мл). Послед­стви­ем этого типа дефицита витамина D являются снижение абсорбции и уровня Са2+, а также повышение уровня ПТГ в сыворотке крови (вторичный гиперпаратиреоидизм), нарушение процессов ремоделирования и минерализации костной ткани. Дефицит 25(ОН)D рассматривают в тесной связи с нарушениями функций почек и возрастом, в том числе с количеством лет, прожитых после наступления менопаузы. При этом отмечены как географические и возрастные различия в уровне этого показателя, так и его зависимость от времени года, т.е. от уровня солнечной инсоляции/количества солнечных дней (УФ), что необходимо принимать во внимание при проведении соответствующих исследований и анализе полученных данных.

Дефицит 25(ОН)D выявлен также и при синдроме мальабсорбции, болезни Крона, состояниях после субтотальной гастрэктомии или при обходных операциях на кишечнике, недостаточной секреции панкреатического сока, циррозе печени, врожденной атрезии желчного протока, длительном применении противосудорожных (антиэпилептических) ЛС, нефрозах.

Другой тип дефицита витамина D не всегда определяется снижением продукции D–гормона в почках (при этом типе дефицита может наблюдаться либо нормальный, либо слегка повышенный его уровень в сыворотке крови), но характеризуется снижением его рецепции в тканях (резистентность к гормону), что рассматривается как функция возраста. Тем не менее снижение уровня 1a,25(ОН)2D3 в плазме крови при старении, особенно в возрастной группе старше 65 лет, отмечается многими авторами. Снижение почечной продукции 1a,25(ОН)2D3 нередко наблюдается при ОП, заболеваниях почек (ХПН и др.), у лиц пожилого возраста (>65 лет), при дефиците половых гормонов, гипофосфатемической остеомаляции опухолевого генеза, при ПТГ–дефицитном и ПТГ–ре­зистентном гипопаратиреозе, сахарном диабете, под влиянием применения препаратов ГКС и др. Развитие резистентности к 1a,25(ОН)2D3 обусловлено, как полагают, снижением числа РВD в тканях–мишенях, и прежде всего в кишечнике, почках и скелетных мышцах. Оба варианта дефицита витамина D являются существенными звеньями патогенеза ОП, падений и переломов.

Проведенные в последние годы масштабные исследования позволили выявить статистически значимую корреляцию между ДВD и распространенностью ряда заболеваний. При этом важная информация, в частности, была получена при исследовании связей между ДВD и сердечно–сосудистыми и онкологическими заболеваниями.

Два проспективных когортных исследования вклю­чали 613 мужчин из Health Professionals Follow–Up Study и 1198 женщин из Nurses Health Study с измеренным уровнем 25(ОН)D и последующим наблюдением в течение от 4 до 8 лет. Кроме того, 2 проспективных когортных исследования включали 38 338 мужчин и 77 531 женщину с предсказанным уровнем 25(ОН)D в течение периода от 16 до 18 лет. Во время 4 лет последующего наблюдения мультивариантный относительный риск случаев артериальной гипертензии среди мужчин, у которых измеряемый уровень 25(ОН)D составлял <15 нг/мл (т.е. состояние D–дефицита), в сравнении с теми, у кого этот уровень составлял ³30 нг/мл был определен в 6,13 (!) (95% ДИ 1,00 до 37,8). Среди женщин такое же сравнение выявило показатель относительного риска, равный 2,67 (95% ДИ от 1,05 до 6,79). Группировка данных, касающихся общего относительного риска у мужчин и у женщин, у которых был измерен уровень 25(ОН)D, проведенная с использованием модели дисперсии случайных процессов, позволила получить значение этого риска, близкое к 3,18 (95% ДИ от 1,39 до 7,29). Используя данные об уровне 25(ОН)D в больших когортах, многовариантный и относительные риски сравнивали по наиболее низким и наиболее высоким децилям среди мужчин, где он составил 2,31 (95% ДИ от 2,03 до 2,63) и среди женщин – 1,57 (95% ДИ 1,44 до 1,72). Таким ообразом, уровень 25(ОН)D в плазме крови обратно пропорционален риску развития артериальной гипертензии.

Описано 16 различных видов злокачественных опухолей, развитие которых коррелирует с низкой инсоляцией/УФ–облучением, а их распространенность повышается при D–дефиците/недостаточности . Среди них: рак молочной железы, толстой и прямой кишки, матки, пищевода, яичников, ходжкинская и неходжкинская лимфома, рак мочевого пузыря, желчного пузыря, желудка, поджелудочной и предстательной желез, почек, яичек и влагалища. Данные, касающиеся связи между D–дефици­том/недостаточностью и отдельными видами онкологической патологии, получены в ряде когортных исследований или с использованием методологии случай–контроль.

Эти исследования подтвердили наличие корреляции между распространенностью и смертностью от злокачественных опухолей молочной железы, толстой кишки, яичников и предстательной железы и интенсивностью солнечной радиации в месте постоянного проживания пациентов, продолжительностью их пребывания на солнце и уровнем витамина D в сыворотке крови .

В проведенном в США исследовании определяли уровень 25(ОН)D в плазме у 1095 мужчин в рамках участия в «Health Professionals Follow–Up Study» и использовали модель линейной регрессии для оценки 6 индивидуальных характеристик (поступление витамина D с пищей и содержащими его добавками, раса, индекс массы тела, место географического проживания, физическая активность) в качестве предикторов уровня 25(ОН)D в плазме крови. При анализе результатов использовали компьютерную статистическую модель, с расчетом уровня 25(ОН)D у 47 800 мужчин в когорте и его связь с риском рака любой локализации. Согласно полученным данным повышение или увеличение на 25 нмол/л (10 нг/мл) в рассчитанном уровне 25(ОН)D связано с 17% снижением общего числа случаев рака (ОР=0,83, 95% ДИ =0,73 до 0,94) и на 29% снижением общей смертности, обусловленной злокачественными опухолями (ОР=0,71, 95%ДИ 0,60 до 0,83) с преобладающим влиянием на случаи рака органов ЖКТ. Сходные данные были получены и в ряде других исследований, установивших наличие корреляции между ДВD и риском развития сахарного диабета I типа, другими аутоиммунными заболеваниями (рассеянный склероз, ревматоидный артрит), смертностью при ХПН и др., болезнями ЦНС (эпилепсия, болезнь Паркинсона, болезнь Альцгеймера и др.), туберкулезе.

Все эти данные как специалисты, так и органы здравоохранения США и стран Западной Европы рассматривают, как «эпидемию ДВD», имеющую серьезные медицинские и медико–социальные последствия.

Фармакологическая коррекция D–дефицита

Как показано выше, ДВD является одним из существенных факторов риска ряда хронических заболеваний человека. Восполнение этого дефицита за счет адекватного пребывания на солнце либо при искусственном УФ–облучении является важным элементом профилактики этих заболеваний. Использование препаратов витамина D, особенно его активных метаболи­тов – перспективное направление в лечении распространенных видов патологии: наряду с традиционными методами терапии они открывают новые возможности для практической медицины .

По фармакологической активности препараты витамина D разделяют на две группы. В первую из них объе­динены обладающие умеренной активностью нативные витамины D2 (эргокальциферол) и D3 (холекальциферол), а также структурный аналог витамина D3 – ди­гидротахистерол. Витамин D2 наиболее часто используется в составе поливитаминных препаратов для детей и взрослых. По активности 1 мг витамина D2 эквивалентен 40 000 МЕ витамина D. Обычно витамин D2 выпускают в капсулах или таблетках по 50 000 МЕ (1,25 мг) или в масляном растворе для инъекций по 500 000 МЕ/мл (12,5 мг) в ампулах. Безре­цептурные препараты для приема внутрь (растворы) содержат 8000 МЕ/мл (0,2 мг) витамина D2. В соответствии с содержанием действующих веществ препараты этой группы относят к микронутриентам (пищевым добавкам).

Во вторую группу входят активный метаболит витамина D3 и его аналоги: кальцитриол, альфакальцидол и др. .

Механизм действия препаратов обеих групп аналогичен таковому природного витамина D и заключается в связывании с РВD в органах–мишенях и обусловленными их активацией фармакологическими эффектами (усиление всасывания кальция в кишечнике и др.). Различия в действии отдельных препаратов носят в основном количественный характер и определяются особенностями их фармакокинетики и метаболизма. Так, препараты нативных витаминов D2 и D3 подвергаются в печени 25–гидроксилированию с последующим превращением в почках в активные метаболиты, оказывающие соответствующие фармакологические эффекты. В этой связи и в соответствии с указанными выше причинами процессы метаболизации этих препаратов, как правило, снижаются у лиц пожилого возраста, при разных типах и формах первичного и вторичного ОП, у пациентов, страдающих заболеваниями ЖКТ, печени, поджелудочной железы и почек (ХПН), а также на фоне приема, например, противосудорожных и других ЛС, усиливающих метаболизм 25(ОН)D до неактивных производных. Кроме того, дозы витаминов D2 и D3 и их аналогов в лекарственных формах (как правило, близкие к физиологическим потребностям в витамине D – 200–800 МЕ/сут.) способны в физиологических условиях усиливать абсорбцию кальция в кишечнике, но не позволяют преодолеть его мальабсорбцию при разных формах ОП, вызывающих подавление секреции ПТГ, и не оказывают отчетливого положительного влияния на костную ткань .

Этих недостатков лишены препараты, содержащие активные метаболиты витамина D3 (в последние годы их применяют с лечебными целями значительно шире, чем препараты нативного витамина): 1a,25(ОН)2D3 (МНН – кальцитриол; химически идентичен собственно D–гормону) и его синтетическое 1a–производное – 1a(ОН)D3 (МНН – альфакальцидол). Оба препарата сходны по спектру фармакологических свойств и механизму действия, но различаются по фармакокинетическим параметрам, переносимости и некоторым другим характеристикам .

В фармакокинетике препаратов на основе нативных форм витамина D, их активных метаболитов и производных имеются существенные различия, во многом определяющие их практическое использование. Нативные витамины D2 и D3 всасываются в верхнем отделе тонкого кишечника, поступая в составе хиломикронов в его лимфатическую систему, печень и далее в кровеносное русло. Их максимальная концентрация в сыворотке крови наблюдается в среднем через 12 ч после приема однократной дозы и возвращается к исходному уровню через 72 ч. На фоне длительного применения этих препаратов (особенно в больших дозах) их выведение из циркуляции значительно замедляется и может достигать месяцев, что связывают с возможностью депонирования витаминов D2 и D3 в жировой и мышечной тканях .

Витамин D экскретируется с желчью в виде более полярных метаболитов. Подробно изучена фармакокинетика активного метаболита витамина D – кальцитриола . После приема внутрь он быстро всасывается в тонком кишечнике. Максимальная концентрация кальцитриола в сыворотке крови достигается через 2–6 ч и существенно снижается через 4–8 ч. Период полувыведения составляет 3–6 ч. При повторном приеме равновесные концентрации достигаются в пределах 7 сут. В отличие от природного витамина D3, кальцитриол, не требующий дальнейшей метаболизации для превращения в активную форму, после приема внутрь в дозах 0,25–0,5 мкг благодаря взаимодействию с внеядерными рецепторами энтероцитов слизистой оболочки кишечника вызывает уже через 2–6 ч повышение кишечной абсорбции кальция. Предполагают, что экзогенный кальцитриол проникает из крови матери в кровоток плода, выделяется с грудным молоком. Выводится с желчью и подвергается энтерогепатической циркуляции. Идентифицировано несколько метаболитов кальцитриола, которые обладают в разной степени выраженными свойствами витамина D; к их числу относятся 1a,25–дигидрокси–24–ок­со­холе­кальци­фе­рол, 1a,23,25–тригидрокси–24–оксо­хо­ле­каль­цифе­рол и др.

При значительном сходстве в свойствах и механизмах действия между препаратами активных метаболитов витамина D существуют и заметные различия. Особенностью альфакальцидола как пролекарства является то, что он, как уже отмечалось, превращается в активную форму, метаболизируясь в печени до 1a,25(ОН)2D3, и в отличие от препаратов нативного витамина D не нуждается в почечном гидроксилировании, что позволяет использовать его у пациентов с заболеваниями почек, а также у лиц пожилого возраста со сниженной почечной функцией. Вместе с тем установлено, что действие кальцитриола развивается быстрее и сопровождается более выраженным гиперкальциемическим эффектом, чем у альфакальцидола (наиболее широко применяемым в России препаратом альфакальцидола является «Альфа Д3–Тева»), тогда как последний оказывает лучший эффект на костную ткань. Особенности фармакокинетики и фармакодинамики этих препаратов определяют режим их дозирования и кратность назначения. Так, поскольку период полувыведения кальцитриола относительно короток, то для поддержания стабильной терапевтической концентрации его следует назначать не менее 2–3 раз в сутки. Действие альфакальцидола развивается медленнее, однако после однократного введения оно более продолжительно, что определяет его назначение в дозах 0,25–1 мкг 1–2 раза в сутки .

Препараты нативных витаминов D2 и D3, а также их активных метаболитов относятся к числу наиболее хорошо переносимых и безопасных ЛС, применяемых для профилактики и лечения ОП. Данное положение имеет большое практическое значение в связи с тем, что их применение обычно достаточно продолжительно (в течение многих месяцев и даже лет). Клинические наблюдения свидетельствуют о том, что при индивидуальном подборе доз препаратов витамина D на основе оценки уровня кальция в плазме крови риск развития побочных эффектов минимален . Связано это с присущей этим препаратам большой широтой терапевтического действия. Тем не менее при применении активных метаболитов витамина D примерно у 2–4% пациентов возможно развитие ряда побочных эффектов, наиболее частыми из которых являются гиперкальциемия и гиперфосфатемия, что связано с одним из основных механизмов их действия – усилением кишечной абсорбции кальция и фосфора. Оба эти эффекта могут проявляться недомоганием, слабостью, сонливостью, головными болями, тошнотой, сухостью во рту, запором или поносом, дискомфортом в эпигастральной области, болями в мышцах и суставах, кожным зудом, сердцебиениями. При индивидуально подобранной дозе указанные побочные эффекты наблюдаются достаточно редко.

Международный и отечественный опыт применения препаратов активного метаболита витамина D – кальцитриола и альфакальцидола для профилактики и лечения разных типов и форм ОП, а также профилактики падений и переломов суммирован в Клинических рекомендациях «Остеопороз. Диагностика, профилактика и лечение» 2008 г., подготовленных Российской ассоциацией по остеопорозу . Заключение и рекомендации, касающиеся использования лекарственных препаратов на основе активных метаболитов витамина D при лечении остеопороза, содержащиеся в указанном документе, представлены в таблицах 4 и 5.

Таким образом, препараты витамина D представляют собой группу эффективных и безопасных ЛС, применяемых главным образом при заболеваниях, в патогенезе которых ведущую роль играет D–дефи­цит/не­достаточность и связанные с ним нарушения минерального обмена. Препараты нативного витамина D, особенно в физиологических дозах, за счет коррекции эндогенного D–дефицита/недостаточности оказывают профилактическое действие при рахите, а также в отношении остеопоретического процесса, могут снижать его интенсивность и предупреждать развитие переломов. Применение препаратов нативного витамина D целесообразно главным образом при 1–м типе D–дефицита, обусловленном недостатком инсоляции и поступления витамина D с пищей. Препараты активных метаболитов витамина D (альфакальцидол и кальцитриол) показаны как при 1–м, так и 2–м типе D–дефицита. За счет значительно более высокой, чем у препаратов нативного витамина D, фармакологической активности, они способны преодолевать резистентность тканевых РВD к агонисту, не нуждаются для превращения в активную форму в метаболизации в почках. Препараты активных метаболитов витамина D оказывают профилактический и лечебный эффекты при разных типах и формах ОП, снижают риск падений; они могут применяться как в монотерапии, так и в комбинации с другими антиостеопоретическими средствами (например, с бисфосфонатами, средствами ЗГТ) и солями кальция. Индиви­ду­альный подбор дозировок кальцитриола и альфакальцидола позволяет свести к минимуму риск развития побочных эффектов, что вместе с предупреждением возникновения новых переломов, устранением болевого синдрома и улучшением двигательной активности способствует повышению качества жизни пациентов, прежде всего пожилого и старческого возраста.

Высокий уровень D–дефицита в популяции и установление его ассоциации с рядом распространенных внескелетных заболеваний (сердечно–сосудистых, онкологических, неврологических и др.) обусловливает целесообразность дальнейших исследований по установлению возможностей их лечения с помощью лекарственных средств из группы активного метаболита витамина D.

Литература

1. Дамбахер М.А., Шахт Е. Остеопороз и активные метаболиты витамина Д: мысли, которые приходят в голову. Eular Publishers, Basel, 1996 – 139 p.
2. Марова Е.И., Родионова С.С., Рожинская Л.Я., Шварц Г.Я. Альфакальцидол (Альфа–Д3) в профилактике и лечении остеопороза. Метод. рекомендации. М., 1998. – 35 с.
3. Рожинская Л.Я. Системный остеопороз. Практическое руководство. 2–е изд. М.: Издатель Мокеев, 2000, –196 с.
4. Насонов Е.Л., Скрипникова И.А., Насонова В.А. Проблема остеопороза в ревматологии, М.: Стин, 1997. – 429 с.
5. Остеопороз. /Под ред. О.М.Лесняк, Л.И.Беневоленской – 2–е изд., перераб. и доп. – М.:ГЭОТАР–Медиа, 2009. – 272 с. (Серия «Клинические рекомендации»).
6. Шварц Г.Я. Витамин Д, Д–гормон и альфакальцидол:молекулярно–биологические и фармакологические аспекты.//Остеопороз и остеопатии, 1998, – №3, – С.2–7.
7. Шварц Г.Я. Фармакотерапия остеопороза. М.: Медицинское информационное агентство, 2002. – 368 с.
8. Шварц Г.Я. Витамин Д и Д–гормон. М.:Анахарсис, 2005. – 152 с.
9. Шварц Г.Я. Остеопороз, падения и переломы в пожилом возрасте: роль Д–эндокринной системы. //РМЖ, 2008 – т.17, №10. – С. 660–669.
10. Autier P., Gaudini S. Vitamin D supplementation and total mortality. //Arch Intern Med, 2007, 167 (16): 1730–1737.
11. Holik M.F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. //Am J Clin Nutr., 2004; 79 (3): 362–371.
12. Holik M.F. Vitamin D deficiency. // New Engl J Med., 2007; 357: 266–281.
13. Forman J.P., Giovannucci E., Holmes M.D. et al. Plasma 25–hydroxyvitamin D level and risk of incidents hypertension. //Hypertension, 2007; 49:1063–1069.
14. Vervloet M.G., Twisk J.W.R. Mortality reduction by vitamin D receptor activation in end–stage renal disease: a commentary on the robustness of current data. //Nephrol Dial Transplant. 2009; 24:703–706.


Кальцидиол, 25-гидроксихолекальциферол, 25-OH vitamin D, 25 (OH) D, Calcidiol, 25-hydroxycholecalciferol, витамин д, витамин d, D3, Д3, Д 3, D 3, кальциферол, гидрокси, 25он, он, витаминд, витаминd

Заказать

Цена: 3 180 1 590 ₽ RU-MOW

1 750 р. RU-SPE 1 125 р. RU-NIZ 1 250 р. RU-ASTR 1 038 р. RU-BEL 1 430 р. RU-VLA 1 450 р. RU-VOL 1 430 р. RU-VOR 1 430 р. RU-IVA 1 038 р. RU-ME 1 125 р. RU-KAZ 1 430 р. RU-KLU 1 430 р. RU-KOS 950 р. RU-KDA 1 430 р. RU-KUR 1 430 р. RU-ORL 1 590 р. RU-PEN 1 125 р. RU-PRI 1 395 р. RU-ROS 1 430 р. RU-RYA 1 500 р. RU-SAM 1 125 р. RU-TVE 1 430 р. RU-TUL 1 125 р. RU-UFA 1 430 р. RU-YAR

  • Описание
  • Расшифровка
  • Почему в Lab4U?
Срок исполнения

Анализ будет готов в течение 1 дня, исключая субботу и воскресенье (кроме дня взятия биоматериала). Вы получите результаты на эл. почту сразу по готовности.

Срок исполнения: 1 день, исключая субботу и воскресенье (кроме дня взятия биоматериала)
Подготовка к анализу

24 часа ограничьте жирную и жареную пищу, исключите алкоголь и тяжёлые физические нагрузки, а также рентгенографию, флюорографию, УЗИ и физиопроцедуры.

От 8 до 14 часов до сдачи крови не принимайте пищу, пейте только чистую воду.

Обсудите с врачом принимаемые препараты и необходимость их отмены.

Информация об анализе

Показатель:

25-OH витамин D является предшественником активной формы витамина D, который вырабатывается в организме под воздействием ультрафиолетового излучения. Основной функцией витамина D является обеспечение нормального развития и роста костей, предупреждение остеопороза и рахита.

Целесообразна также оценка параметров фосфорно-кальциевого обмена исходно и после коррекции его уровня в крови: кальций общий, кальций ионизированный, фосфор, креатин. Входит в состав комплекса

Назначения:

Анализ проводится для выявления недостаточности или дефицита витамина D.
Специалист:
Назначается терапевтом, эндокринологом

Метод исследования — Xемилюминесцентный иммунный анализ.
Материал для исследования — Сыворотка крови.

25-OH Витамин Д (Кальцидиол, vitamin D, Calcidiol, 25-hydroxycholecalciferol)

Узнайте больше о популярных анализах:


25-OH витамин D (Кальцидиол, 25- гидроксихолекальциферол, 25-OH vitamin D (Д), 25(OH)D, Calcidiol; 25-hydroxycholecalciferol) – транспортная форма витамина D, образуется в печени из вырабатываемого в коже и поступающего с пищей витамина D, используется как маркёр содержания (статуса) витамина D в организме. Витамин D является жирорастворимым стероидным прогормоном. Биологически важными являются две формы витамина D: витамин D2 (эргокальциферол), имеет искусственное происхождение, и витамин D3 (холекальциферол), вырабатывается главным образом в коже из 7-дигидрохолестерина, под действием ультрафиолета.Как витамин D3, так и витамин D2 могут усваиваться из пищи, но только около 10-20% суточной потребности в витамине D восполняется за счёт поступающего витамина с пищей. Витамин D содержится в рыбьем жире, во всех видах морских рыб, особенно много его в лососе, молодой сельди, в печени трески и икре. В небольшом количестве он содержится в молочных продуктах, а также в картофеле, петрушке и крапиве. Витамины D3 и D2 входят в витаминные добавки.

Витамин D в печени подвергается гидроксилированию c образованием биологически малоактивной транспортной формы - 25-OH витамина D (кальцидиол). Частично 25-ОН витамин D поступает в жировую и мышечную ткани, где может создавать тканевые депо. Далее 25-ОН витамин D гидроксилируется, в основном в клетках проксимальных отделов канальцев почек, в меньшем объеме в клетках кроветворения, в костной ткани и некоторых других тканях, в активную гормональную форму – 1,25 дигидроксивитамин D (кальцитриол). В организме основной функцией витамина D (Д) является обеспечение нормального развития и роста костей, предупреждение остеопороза и рахита. Витамин D способствует отложению кальция в дентине и костной ткани, а также регулирует минеральный обмен, препятствуя, таким образом, размягчению (остеомаляции) костей. Метаболизм кальция и фосфора находится под влиянием Витамина D при общем обмене веществ. Он стимулирует, прежде всего, всасывание из кишечника фосфатов, кальция и магния.

Витамин D воздействует на организм и как витамин, и как гормон. Как витамин он повышает всасывание кальция в тонкой кишке и поддерживает уровень кальция и неорганического фосфора в крови выше порогового значения. Активный метаболит витамина D - 1,25-дигидроксивитамин D действует в качестве гормона, он оказывает влияние на клетки почек, кишечника и мышц. Под его воздействием в кишечнике происходит выработка белка-носителя, необходимого для транспорта кальция, а в мышцах и почках усиливает активное поглощение кальция. Витамин D стимулирует транскрипцию РНК и ДНК, а также влияет на ядра клеток-мишеней, что сопровождается усилением синтеза специфических протеидов. Однако защита костей – это не единственная роль витамина D, от него зависит восприимчивость организма к болезням сердца, кожным заболеваниям и раку. В географических областях, где наблюдается нехватка витамина D в пище, повышена заболеваемость диабетом (особенно юношеским), атеросклерозом, артритами.

Витамин D (Д) необходим для нормальной свертываемости крови и функционирования щитовидной железы. И, конечно же, не стоит забывать, что Витамин D повышает иммунитет. Основной формой аккумулирования витамина D в организме является 25-OH витамин D, концентрация которого в крови в 1000 раз выше концентрации активного 1,25-дигидроксивитамина D. Период полувыведения 25-OH витамина D составляет 2-3 недели, а 1,25-дигидроксивитамина D - 4 часа. Поэтому статус витамина D в организме предпочтительнее определять по 25-OH витамину D. Проведенные эпидемиологические исследования показали широкую распространённость в мире недостаточности и дефицита витамина D. Дефицит витамина D является причиной вторичного гиперпаратиреоза и заболеваний, приводящих к нарушению метаболизма костной ткани (таких, как рахит, остеопороз, остеомаляция). Пониженные концентрации 25-OH витамина D в крови (недостаточность витамина D) связывают с повышенным риском многих хронических заболеваний, включая онкологические заболевания, сердечно-сосудистые заболевания, аутоиммунные и инфекционные заболевания. Анализ крови на содержание 25-OH витамина D (определение статуса витамина D в организме) даёт возможность проведения профилактических и лечебных мероприятий.


Интерпретация результатов исследования "25-OH Витамин Д (Кальцидиол, vitamin D, Calcidiol, 25-hydroxycholecalciferol)"

Внимание! Интерпретация результатов анализов носит информационный характер, не является диагнозом и не заменяет консультации врача. Референсные значения могут отличаться от указанных в зависимости от используемого оборудования, актуальные значения будут указаны на бланке результатов.

Концентрация 25-OH витамина D:

  • < 10 нг/мл – дефицит витамина D
  • 10 - 30 нг/мл – недостаточность витамина D
  • 30 - 80 нг/мл – оптимальный уровень витамина D
  • > 100 нг/мл – возможен токсический эффект

Единица измерения: нг/мл

Референсные значения: 30 - 100 нг/мл

Повышение:

  • Гипофосфатемия.
  • Гиперкальциемия.
  • Передозировка препаратов витамина D.

Снижение:

  • Гипопаратиреоидизм.
  • Псевдогипопаратиреоидизм.
  • Витамин D-зависимый рахит.
  • Витамин D резистентный рахит (семейная гипофосфатемия).
  • Постменопаузальный остеопороз.
  • Остеомаляция.
  • Рахит.
  • Нарушения питания, мальабсорбция.
  • Воспалительные заболевания кишечника, резекция кишечника.
  • Цирроз печени.
  • Тиреотоксикоз.
  • Панкреатическая недостаточность.
  • Целиакия.
  • Хроническая почечная недостаточность.

Lab4U - медицинская онлайн-лаборатория, цель которой сделать анализы удобными и доступными, чтобы Вы могли заботиться о своем здоровье. Для этого мы исключили все затраты на кассиров, администраторов, аренду и прочее, направив деньги на использование современного оборудования и реактивов от лучших мировых производителей. В лаборатории внедрена система TrakCare LAB, которая автоматизирует лабораторные исследования и сводит к минимуму влияние человеческого фактора

Итак, почему без сомнений Lab4U?

  • Вам удобно выбрать назначенные анализы из каталога, либо в строке сквозного поиска, у Вас всегда под рукой точное и понятное описание подготовки к анализу и интерпретация результатов
  • Lab4U моментально формирует для Вас список подходящих медцентров, остается выбрать день и время, рядом с домом, офисом, детским садом или по пути
  • Вы можете заказать анализы для любого члена семьи в несколько кликов, один раз внеся их в свой личный кабинет, быстро и удобно получив результат на почту
  • Анализы выгоднее средней рыночной цены до 50%, так Вы можете направить сэкономленный бюджет на дополнительные регулярные исследования или другие важные траты
  • Lab4U всегда онлайн работает с каждым клиентом 7 дней в неделю, это значит что каждый Ваш вопрос и обращение видят руководители, именно за счет этого Lab4U постоянно улучшает сервис
  • В личном кабинете удобно хранится архив ранее полученных результатов, вы легко сравните динамику
  • Для продвинутых пользователей мы сделали и постоянно совершенствуем мобильное приложение

Мы работаем с 2012 года в 24 городах России и выполнили уже более 400 000 анализов (данные на август 2017 года).

Команда Lab4U делает все, чтобы малоприятная процедура стала простой, удобной, доступной и понятной Сделайте Lab4U своей постоянной лабораторией