Как найти формулу линейной функции. Линейная функция, её свойства и график

Понятие числовой функции. Способы задания функции. Свойства функций.

Числовая функция - функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество).

Три главных способа задания функции: аналитический, табличный и графический.

1. Аналитический.

Способ задания функции при помощи формулы называется аналитическим. Этот способ является основным в мат. анализе, но на практике не удобен.

2. Табличный способ задания функции.

Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

3. Графический способ задания функции.

Функция у=f(х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями.

Свойства функции, которые необходимо учитывать при построении её графика:

1)Область определения функции.

Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

2) Промежутки возрастания и убывания функции.

Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

3) Нули функции.

Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

4)Чётность и нечётность функции.

Функция называется чётной, если для всех значений аргумента из области определения



у(-х) = у(х).

График чётной функции симметричен относительно оси ординат.

Функция называется нечётной , если для всех значений аргумента из области определения

у(-х) = -у(х).

График чётной функции симметричен относительно начала координат.

Многие функции не являются ни чётными, ни нечётными.

5)Периодичность функции.

Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

у(х + Р) = у(х).


Линейная функция, её свойства и график.

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел.

k – угловой коэффициент (действительное число)

b – свободный член (действительное число)

x – независимая переменная.

· В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

· Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

o Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

o Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось.

Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

Замечание. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞),

y = kx + b – отрицательна при x из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k),

y = kx + b – отрицательна при x из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

11. Функция у = ах 2 + bх + с, её свойства и график.

Функция у = ах 2 + bх + с (а, b, с - постоянные величины, а ≠ 0) называется квадратичной. В простейшем случае у = ах 2 (b = с = 0) график есть кривая линия, проходящая через начало координат. Кривая, служащая графиком функции у = ах 2 , есть парабола. Каждая парабола имеет ось симметрии, называемую осью параболы. Точка О пересечения параболы с ее осью называется вершиной параболы .
График можно строить по следующей схеме: 1) Находим координаты вершины параболы х 0 = -b/2a; у 0 = у(х 0). 2) Строим еще несколько точек, которые принадлежат параболе, при построении можно использовать симметрии параболы относительно прямой х = -b/2a. 3) Соединяем обозначены точки плавной линией. Пример. Построить график функции в = х 2 + 2х - 3. Решения. Графиком функции является парабола, ветви которой направлены вверх. Абсцисса вершины параболы х 0 = 2/(2 ∙1) = -1, ее ординаты y(-1) = (1) 2 + 2(-1) - 3 = -4. Итак, вершина параболы - точка (-1; -4). Составим таблицу значений для нескольких точек, которые размещены справа от оси симметрии параболы - прямой х = -1.

Свойства функции.

Линейная функция – это функция вида

x-аргумент (независимая переменная),

y- функция (зависимая переменная),

k и b- некоторые постоянные числа

Графиком линейной функции является прямая .

Для построения графика достаточно двух точек, т.к. через две точки можно провести прямую и притом только одну.

Если k˃0, то график расположен в 1-й и 3-й координатных четвертях. Если k˂0, то график расположен в 2-й и 4-й координатных четвертях.

Число k называют угловым коэффициентом прямой графика функции y(x)=kx+b. Если k˃0, то угол наклона прямой y(x)= kx+b к положительному направлению Ох - острый; если k˂0, то этот угол- тупой.

Коэффициент b показывает точку пересечения графика с осью ОУ (0; b).

y(x)=k∙x-- частный случай типичной функции носит название прямая пропорциональность. Графиком является прямая, проходящая через начало координат, поэтому для построения этого графика достаточно одной точки.

График линейной функции

Где коэффициент k = 3, следовательно

График функции будет возрастать и иметь острый угол с осью Ох т.к. коэффициент k имеет знак плюс.

ООФ линейной функции

ОЗФ линейной функции

Кроме случая, где

Так же линейная функция вида

Является функцией общего вида.

Б) Если k=0; b≠0,

В этом случае графиком является прямая параллельная оси Ох и проходящая через точку (0;b).

В) Если k≠0; b≠0, то линейная функция имеет вид y(x)=k∙x+b.

Пример 1 . Построить график функции y(x)= -2x+5

Пример 2 . Найдём нули функции у=3х+1, у=0;

– нули функции.

Ответ: или (;0)

Пример 3 . Определить значение функции y=-x+3 для x=1 и x=-1

y(-1)=-(-1)+3=1+3=4

Ответ: y_1=2; y_2=4.

Пример 4 . Определить координаты их точки пересечения или доказать, что графики не пересекаются. Пусть даны функции y 1 =10∙x-8 и y 2 =-3∙x+5.

Если графики функций пересекаются, то значение функций в этой точке равны

Подставим х=1, то y 1 (1)=10∙1-8=2.

Замечание. Подставить полученное значение аргумента можно и в функцию y 2 =-3∙x+5, тогда получим тот же самый ответ y 2 (1)=-3∙1+5=2.

y=2- ордината точки пересечения.

(1;2)- точка пересечения графиков функций у=10х-8 и у=-3х+5.

Ответ: (1;2)

Пример 5 .

Построить графики функций y 1 (x)= x+3 и y 2 (x)= x-1.

Можно заметить, что коэффициент k=1 для обеих функций.

Из выше сказанного следует, что если коэффициенты линейной функции равны, то их графики в системе координат расположены параллельно.

Пример 6 .

Построим два графика функции.

Первый график имеет формулу

Второй график имеет формулу

В данном случае перед нами график двух прямых, пересекающихся в точке (0;4). Это значит, что коэффициент b, отвечающий за высоту подъёма графика над осью Ох, если х=0. Значит мы может полагать, что коэффициент bу обоих графиков равен 4.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

Инструкция

Существует несколько способов решения линейных функций. Приведем наиболее из них. Чаще всего используется пошаговый метод подстановки. В одном из уравнений необходимо выразить одну переменную через другую, и подставить в другое уравнение. И так до тех пор, пока в одном из уравнений не останется лишь одна переменная. Чтобы решить его необходимо с одной стороны знака равенства оставить переменную (она может быть с коэффициентом), а на другую сторону знака равенства все числовые данные, не забыв при переносе поменять знак числа на противоположный. Вычислив одну переменную, подставьте ее в другие выражения, продолжите вычисления по такому же алгоритму.

Для примера возьмем систему линейной функции , состоящую из двух уравнений:
2х+у-7=0;
х-у-2=0.
Из второго уравнения удобно выразить х:
х=у+2.
Как видите, при переносе из одной части равенства в другую, у и переменных поменялся знак, как и было описано выше.
Подставляем полученное выражение в первое уравнение, таким образом исключая из него переменную х:
2*(у+2)+у-7=0.
Раскрываем скобки:
2у+4+у-7=0.
Компонуем переменные и числа, складываем их:
3у-3=0.
Переносим в правую часть уравнения, меняем знак:
3у=3.
Делим на общий коэффициент, получаем:
у=1.
Подставляем полученное значение в первое выражение:
х=у+2.
Получаем х=3.

Еще один способ решения подобных - это почленное двух уравнений для получения нового с одной переменной. Уравнение можно умножить на определенный коэффициент, главное при этом умножить каждый член уравнения и не забыть , а затем сложить или вычесть одно уравнение из . Этот метод очень экономит при нахождении линейной функции .

Возьмем уже знакомую нам систему уравнений с двумя переменными:
2х+у-7=0;
х-у-2=0.
Легко заметить что коэффициент при переменной у идентичен в первом и втором уравнении и отличается лишь знаком. Значит, при почленном сложении двух этих уравнений мы получим новое, но уже с одной переменной.
2х+х+у-у-7-2=0;
3х-9=0.
Переносим числовые данные на правую сторону уравнения, меняя при этом знак:
3х=9.
Находим общий множитель, равный коэффициенту, стоящему при х и дели обе части уравнения на него:
х=3.
Полученный можно подставить в любое из уравнений системы, чтобы вычислить у:
х-у-2=0;
3-у-2=0;
-у+1=0;
-у=-1;
у=1.

Также вы можете вычислять данные, построив точный график. Для этого необходимо найти нули функции . Если одна из переменных равняется нулю, то такая функция называется однородной. Решив такие уравнения, вы получите две точки, необходимые и достаточные для построения прямой - одна из них будет располагаться на оси х, другая на оси у.

Берем любое уравнение системы и подставляем туда значение х=0:
2*0+у-7=0;
Получаем у=7. Таким образом первая точка, назовем ее А, будет иметь координаты А(0;7).
Для того чтобы вычислить точку, лежащую на оси х, удобно подставить значение у=0 во второе уравнение системы:
х-0-2=0;
х=2.
Вторая точка (В) будет иметь координаты В (2;0).
На координатной сетке отмечаем полученные точки и поводим через них прямую. Если вы построите ее довольно точно, другие значения х и у можно будет вычислять прямо по ней.

Рассмотрим задачу. Мотоциклист, выехавший из города А, в настоящий момент находится в 20 км от него. На каком расстоянии s (км) от А будет находиться мотоциклист через t часов, если он будет двигаться со скоростью 40 км/ч?

Очевидно, что за t часов мотоциклист проедет 50t км. Следовательно, через t часов он будет находиться от А на расстоянии (20 + 50t) км, т.е. s = 50t + 20, где t ≥ 0.

Каждому значению t соответствует единственное значение s.

Формулой s = 50t + 20, где t ≥ 0, задается функция.

Рассмотрим еще одну задачу. За отправление телеграммы взимается плата 3 копейки за каждое слово и дополнительно 10 копеек. Сколько копеек (u) следует уплатить за отправление телеграммы, содержащей n слов?

Так как за n слов отправитель должен уплатить 3n копеек, то стоимость отправления телеграммы в n слов может быть найдена по формуле u = 3n + 10, где n – любое натуральное число.

В обеих рассмотренных задачах мы столкнулись с функциями, которые заданы формулами вида у = kx + l, где k и l – это некоторые числа, а х и у – это переменные.

Функция, которую можно задать формулой вида у = kx + l, где k и l – некоторые числа, называется линейной.

Так как выражение kx + l имеет смысл при любых х, то областью определения линейной функции может служить множество всех чисел или любое его подмножество.

Частным случаем линейной функции является рассмотренная ранее прямая пропорциональность. Вспомним, при l = 0 и k ≠ 0 формула у = kx + l принимает вид у = kx, а этой формулой, как известно, при k ≠ 0 задается прямая пропорциональность.

Пусть нам нужно построить график линейной функции f, заданной формулой
у = 0,5х + 2.

Получим несколько соответственных значений переменной у для некоторых значений х:

х -6 -4 -2 0 2 4 6 8
y -1 0 1 2 3 4 5 6

Отметим точки с полученными нами координатами: (-6; -1), (-4; 0); (-2; 1), (0; 2), (2; 3), (4; 4); (6; 5), (8; 6).

Очевидно, что построенные точки лежат на некоторой прямой. Из этого еще не следует, что графиком данной функции является прямая линия.

Чтобы выяснить, какой вид имеет график рассматриваемой функции f, сравним его со знакомым нам графиком прямой пропорциональности х – у, где х = 0,5.

Для любого х значение выражение 0,5х + 2 больше соответствующего значения выражения 0,5х на 2 единицы. Поэтому ордината каждой точки графика функции f больше соответствующей ординаты графика прямой пропорциональности на 2 единицы.

Следовательно, график рассматриваемой функции f может быть получен из графика прямой пропорциональности путем параллельного переноса на 2 единицы в направлении оси ординат.

Так как график прямой пропорциональности – это прямая линия, то и график рассматриваемой линейной функции f также прямая линия.

Вообще, график функции, заданной формулой вида у = kx + l, есть прямая линия.

Мы знаем, что для построения прямой линии достаточно определить положение двух ее точек.

Пусть, например, нужно построить график функции, которая задана формулой
у = 1,5х – 3.

Возьмем два произвольных значения х, например, х 1 = 0 и х 2 = 4. Вычислим соответствующие значения функции у 1 = -3, у 2 = 3, построим в координатной плоскости точки А (-3; 0) и В (4; 3) и проведем через эти точки прямую. Эта прямая и есть искомый график.

Если область определения линейной функции представлена не всеми числами, то ее графиком будет подмножество точек прямой (например, луч, отрезок, множество отдельных точек).

От значений l и k зависит расположение графика функции, заданной формулой у = kx + l. В частности, от коэффициента k зависит величина угла наклона графика линейной функции к оси х. Если k – положительное число, то этот угол острый; если k – отрицательное число, то угол – тупой. Число k называют угловым коэффициентом прямой.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.