Внутренняя слизистая оболочка дыхательных путей выстлана эпителием. Эпителий воздухоносных путей. Развитие дыхательной системы

ЛОР врачу в своей практике часто приходится сталкиваться с такой проблемой как слизь в горле. Достаточно большое количество пациентов, основная жалоба у которых именно на слизь. Так откуда она образуется и постоянно мешает в горле? Давайте разберемся. Верхние дыхательные пути человека выстланы слизистой оболочкой. Если развернуть всю слизистую оболочку верхних дыхательных путей (глотка, полость носа, околоносовые пазухи) в один «ковёр», то получится достаточно приличная площадь около 25 кв.м. Такая анатомия верхнего этажа органов дыхания, такая большая площадь слизистой оболочки имеет важный биологический смысл.

Дело в том, что мы вынуждены получать кислород из воздуха, а воздух не стерильный, при дыхании человек вместе с воздухом вдыхает огромное количество микробов, поэтому органы дыхания, как никакая другая система человека испытывает колоссальную биологическую нагрузку. Но природа когда нас создавала, всё это учитывала, поэтому верхние дыхательные пути и имеют такое строение как совершенный продукт длительного эволюционного процесса.

Основная функция слизистой оболочки выстилающей верхние дыхательные пути защитная, это сложный многокомпонентный «фильтр». Если этот «фильтр» правильно работает то микробы, которые мы постоянно вдыхаем, нас не беспокоят.

Причины слизи в горле

Все проблемы начинаются, когда это сложная многокомпонентная защитная система даёт сбой. Причиной такого сбоя чаще всего бывает ОРВИ, но это может быть так же и травма, резкая смена климата, ослабление иммунитета у женщины при беременности и ряд других причин. Образно говоря вследствие поломки, поднимается «шлагбаум» и микробы внедряются более глубоко в слизистую оболочку и запускают в ней дегенеративный процесс.

На самом деле суть всех воспалительных ЛОР заболеваний, таких как , и есть этот дегенеративный процесс в слизистой вследствие ослабления защитных свойств слизистой оболочки. Одной из основ этих дегенеративных изменений является нарушение регенерации слизистой оболочки.

Дело в том что все ткани нашего организма в течение жизни обновляются, верхний слой кожи полностью обновляется где то в течение пяти дней, верхние слои слизистой оболочки органов дыхания обновляются где то за неделю. В результате патологических механизмов на фоне ослабления защитных свойств слизистой регенерация начинает протекать неправильно и на слизистой оболочке образуются микроэрозии, которые являются «входными воротами» для микробов, то есть слизистая оболочка становится как «сито». Микробы вновь и вновь попадают через это «сито» в слизистую, дегенеративный процесс поддерживается, защитные свойства ещё более приходят в негодность, так же раздражаются вегетативные нервные окончания, которых огромное количество в толще слизистой оболочки, что приводит к патологической импульсации нервных окончаний бокаловидных клеток.

При заболеваниях по причине ослаблении защитных свойств слизь непрерывно стекает в глотку, скапливается в горле, больному приходится постоянно отхаркиваться, плеваться.

На всей площади слизистой оболочки огромное количество бокаловидных клеток, это высокоспециализированные клетки, основная функция которых выработка слизи, благодаря наличию этих клеток слизистая и называется слизистой, так как некоторое количество слизи необходимо для нормального её функционирования. Вследствие патологической импульсации вегетативных нервных окончаний бокаловидных клеток как результата дегенеративного процесса они начинают неправильно работать и избыточно вырабатывать слизь. Эта слизь непрерывно стекает в глотку, скапливается в горле, больному приходится постоянно отхаркиваться, плеваться, что доставляет неописуемый дискомфорт.

Лечение слизи в горле

Несмотря на частоту встречаемости такой проблемы как слизь в горле, эффективных методов лечения этого недуга очень мало. Часто ЛОР врачи вообще не берутся за лечение больных со слизью в горле, говорят им, что они здоровы и отправляют домой. Нередко после безрезультатного лечения, включающего так же и огромное количество антибиотиков, таких больных направляют к психиатру. В совсем вопиющих случаях таких пациентов даже оперируют, что конечно не приносит хороших результатов.

Загвоздка в том, чтобы лечение слизи в горле было эффективным, нужно воздействовать на все важные звенья патогенеза дегенеративного процесса, а именно нужно просанировать всю площадь слизистой оболочки верхних дыхательных путей, восстановить её и стабилизировать местный иммунитет. К сожалению это не удаётся с помощью современных лекарственных средств и хирургического лечения.

С помощью оригинального метода лечения, который я применяю удаётся всего этого добиться и избавить от такой, казалось бы, нерешаемой проблемы как слизь в горле. Метод настолько эффективен, что уменьшение слизи уже отмечается после одного, двух сеансов лечения. Лечение безопасно и не имеет побочных эффектов.


Дыхательная система закладывается на 3 неделе эмбриогенеза из вентральной стенки передней кишки; эпителий воздухоносных путей и легких имеет эктодермальное происхождение.

Функции дыхательной системы можно разделить на дыхательные и недыхательные. К дыхательным функциям относится проведение воздуха и газообмен, а к недыхательным - защитная, иммунобиологическая. всасывательная, выделительная, секреторная (до 1 литра слизи), метаболическая и депонирующая (до 1 литра крови в легких).

Дыхательная система делится на воздухоносные пути и респираторные отделы. К воздухоносным путям относятся носовая полость, носоглотка, гортань, трахея и бронхи. К респираторным отделам относится система ацинусов легкого.

Воздухоносные пути проводят воздух, очищают его, нагревают или охлаждают, увлажняют.

Полость носа начинается с преддверия полости носа, которая выстлана тонкой кожей. Эпителий однослойный многорядный мерцательный. Здесь есть потовые и сальные железы, щетинистые волоски, которые задерживают частицы пыли, собственная слизь на поверхности ресничного эпителия. В собственной пластинке слизистой есть густая капиллярная сеть – венозное сплетение и лимфатические узелки, образующие около слуховой трубы скопления – парную трубную миндалину. В верхней части полости носа эпителий обонятельный, а в нижней части – дыхательный.

Гортань

Ее стенка представлена 3 оболочками.

1) Слизистая оболочка покрыта многорядным реснитчатым эпителием, под которым находится собственная пластинка слизистой. В собственной пластинке слизистой находятся капилляры, белково-слизистые железы и лимфатические узелки, скопления которых образуют гортанную миндалину. Слизистая оболочка образует парные поперечные складки – это ложные и истинные голосовые связки. Складки выстланы многослойным неороговевающим эпителием; в основе истинных голосовых складок – поперечно-полосатая мышечная ткань.

2) Волокнисто-хрящевая оболочка содержит гиалиновые и эластические волокнистые хрящи.

3) Адвентициалъная оболочка образована рыхлой соединительной тканью, которая соединяет гортань с соседними органами. Здесь содержатся крупные сосуды и нервы.


Фото: GreenFlames09

Трахея

Ее стенка образована 4 оболочками.

1) Слизистая оболочка выстлана многорядным реснитчатым эпителием, в котором содержатся реснитчатые, бокаловидные, вставочные и эндокринные клетки. Собственная пластинка слизистой находится под эпителием, содержит капиллярную сеть и большое количество эластических волокон, идущих вдоль трахеи. Складчатость не выражена. На поверхности эпителия обнаруживаются макрофаги и лимфоциты (в основном Т-хелперы).

2) Подслизистая основа образована рыхлой соединительной тканью, содержит белково-слизистые железы, которые, как и бокаловидные клетки эпителия, выделяют секрет на поверхность эпителия. При этом реснички эпителия оказываются полностью погруженными в слизистую пленку. Мерцание ресничек вызывает перемещение слизи к внешней среде, и вместе со слизью из воздухоносных путей удаляются частички пыли и микроорганизмы.

3) Фиброзно-хрящевая оболочка состоит из 16-20 незамкнутых колен гиалинового хряща, их свободные (задние) концы соединяются пучками гладкомышечных клеток. Сзади к трахее прилегает пищевод; благодаря этому пища, проходящая по пищеводу, не встречает сопротивления со стороны стенки трахеи.

4) Адвентициальная оболочка образована рыхлой соединительной тканью, которая соединяет трахею с окружающими органами средостения.


Фото: BANAMINE

Бронхиальное дерево

Трахея разветвляется на главные бронхи, которые делятся на крупные, средние и малые. Крупные бронхи имеют диаметр 10-15 мм, к ним относятся долевые, зональные и сегментарные бронхи. Средние диаметром от 2 до 5 мм, они все внутрилегочные. Малые бронхи имеют диаметр 1-2 мм, терминальные бронхи (бронхиолы) – 0,5 мм.

В стенке крупных бронхов имеется 4 оболочки.

1. Слизистая, она образует продольные складки, состоящие из многорядного реснитчатого эпителия, собственной пластинки слизистой и мышечной пластинки слизистой, которая содержит пучки гладкомышечных клеток, расположенных по спирали.

2. Подслизистая основа. Здесь в рыхлой соединительной ткани есть много белково-слизистых желез.

3. Волокнисто-хрящевая – содержит пластинки гиалинового хряща.

4. Адвентициальная образована рыхлой соединительной тканью

По мере уменьшения диаметра бронхов уменьшаются размеры хрящевых пластинок, вплоть до их полного исчезновения. Также происходит уменьшение количества желез в подслизистой основе вплоть до их полного исчезновения.

В бронхах среднего калибра оболочки истончаются, уменьшается высота реснитчатого эпителия, уменьшается количество содержащихся в нем бокаловидных клеток, следовательно, вырабатывается меньше слизи. Но также происходит относительное увеличение толщины мышечной пластинки слизистой. В подслизистой основе уменьшается количество желез. В волокнисто-хрящевой оболочке хрящевые пластинки превращаются в мелкие хрящевые островки. В них гиалиновый хрящ заменяется эластическим. Наружная оболочка адвентициальная, содержит крупные кровеносные сосуды (разветвления бронхиальных ветвей).

Стенка малых (мелких) бронхов состоит из 2 оболочек. Поскольку хрящевые островки полностью исчезают и железы в подслизистой основе также исчезают. Т.о. остается внутренняя – слизистая оболочка и наружная – адвентициальная. Реснитчатый эпителий становится двурядным, затем однослойным кубическим: исчезают бокаловидные клетки, уменьшается высота и количество реснитчатых клеток. Появляются безреснитчатые клетки, а также секреторные, имеющие куполообразную форму и вырабатывающие фермент, разрушающий сурфактант.

В эпителии появляются клетки, выполняющие хеморецепторную функцию, анализирующие химический состав вдыхаемого воздуха. На их поверхности располагаются короткие ворсинки.

Мышечная пластинка в малых бронхах развита хорошо. Гладкие миоциты идут спиралевидно, при их сокращении уменьшается просвет бронха и бронх укорачивается. Бронхи играют главную роль в выдохе воздуха. Малые бронхи регулируют объем вдыхаемого и выдыхаемого воздуха. При сильном тоническом сокращении мышечной пластинки слизистой может наступить спазм.

Конечные бронхиолы (терминальные). Их стенка тонкая, выстлана кубическим эпителием, содержит пучки гладкомышечных клеток, снаружи от которых расположена прослойка рыхлой соединительной ткани, которая переходит в ткань межальвеолярных перегородок. Терминальные бронхиолы дихотомически ветвятся 2-3 раза, образуя респираторные альвеолы, с которых начинается респираторный отдел легких (в нем происходит газообмен).

Респираторный отдел. Его структурно-функциональная единица – ацинус, 12-18 ацинусов образуют легочную дольку. Ацинус начинается в респираторной бронхиоле 1 порядка. В ее стенке впервые появляются альвеолы. Респираторные бронхиолы I порядка подразделяется на бронхиолы II порядка, а затем III порядка. Респираторные бронхиолы 3 порядка продолжаются в альвеолярные ходы, которые также дихотомически делятся 2-3 раза и заканчиваются альвеолярными мешочками – это слепое расширение в конце ацинусов, в которых имеются несколько альвеол.

Альвеолы являются основной структурной единицей ацинуса. Альвеола представляет собой пузырек, стенка которого образована базальной мембраной, на которой располагаются клетки альвеолярного эпителия. Имеются 2 разновидности альвеолоцитов: респираторные и секреторные.

Респираторные альвеолоциты – уплощенные клетки со слабо развитыми органеллами, расположенными около ядра. Клетки распластаны на базальной мембране. Через их цитоплазму осуществляется газообмен.

Секреторные альвеолоциты – более крупные клетки, расположенные преимущественно в устье альвеолы, в них хорошо развиты органеллы, они вырабатывают сурфактант – это пленка с типичным строением клеточной мембраны Она выстилает всю внутреннюю поверхность альвеолы. Сурфактант препятствует слипанию стенок альвеол, способствует их расправлению во время вдоха, выполняет защитную функцию – не пропускает микробы, антигены. Поддерживает определенную влажность внутри альвеолы. Сурфактант может быстро разрушаться, но он и относительно быстро восстанавливается – за 3-3,5 часов. При разрушении сурфактанта развиваются воспалительные процессы в легких. Сурфактант в эмбриогенезе формируется в конце 7 месяца.

Снаружи к альвеоле прилежит кровеносный капилляр. Его базальная мембрана соединяется с базальной мембраной альвеолы. Структуры, отделяющие просвет альвеолы от просвета капилляров образуют аэрогематический барьер (воздушно-кровяной барьер). В его состав входят: сурфактант, респираторный альвеоцит, базальная мембрана альвеолы и базальная мембрана капилляра и эндотелиоцит капилляра. Этот барьер тонкий – 0,5 мкм, через него проникают газы. Это достигается тем, что напротив тонкого участка респираторного альвеолоцита располагается неядросодержащая часть эндотелиоцита. В межальвеолярных перегородках содержатся тонкие эластиновые волокна, редко (в старости больше) коллагеновые, большое количество капилляров, а в устье альвеолы могут быть 1-2 гладких миоцита (выталкивают воздух из альвеолы). Макрофаги и Т-лимфоииты могут выходить из капилляра в просвет альвеол и выполнять защитную иммунобиологическую функцию. Альвеолярные макрофаги являются первыми иммунологически активными клетками, фагоцитируюшими бактериальные и небактериальные антигены. Выполняя функцию вспомогательных иммунных клеток, они осуществляют презентацию антигена Т-лимфоцитом и обеспечивают тем самым образование антител В-лимфоцитов.

Регенерация. В основе воздухоносных путей лежит хорошо регенерирующая слизистая. Способность к регенерации выше в отделах, расположенных ближе к внешней среде. Респираторные отделы регенерируют хуже. Происходит гипертрофия сохранившихся альвеол, а новые альвеолы у взрослых людей не образуются. После резекции легкого образуется соединительнотканный рубец.

Снаружи легкое покрыто висцеральной плеврой (соеденительно-тканная пластинка, отграниченная мезотелием). На ее поверхности располагаются плевральные макрофаги. Сам мезотелий покрыт тонким слоем секрета, благодаря чему легкое может скользить.



Дыхательная система состоит из двух частей: дыхательных путей и дыхательных органов.

Основная функция дыхательных пу­ тей - проведение воздуха в легкие и из легких наружу. Поэтому дыхательные пути представляют собой тру­бки. Просвет этих трубок сохраняется постоянно. Это обусловлено тем, что в стенках дыхательных путей имеется костный или хрящевой скелет.

Внутренняя поверх­ность дыхательных путей покрыта сли­ зистой оболочкой , которая содержит значительное количество желез, выде­ляющих слизь. Прохо­дя через дыхательные пути, воздух очищается, согревается и увлажняется.

Дыхательные пути подразделяются на верхний и нижний отделы. К верхним дыхатель­ ным путям относятся:

    полость носа ,

    носовая часть глотки ,

    ротовая часть глотки ,

к нижним дыхательным пу­ тям:

    гортань,

    трахея,

    бронхи .

По дыхательным путям воздух попадает в легкие . Легкие являются главными дыхательными органами. В них проис­ходит газообмен между воздухом и кровью путем диффузии газов (кисло­рода-углекислоты) через стенки ле­гочных альвеол и прилежащих к ним кровеносных капилляров.

У наружного носа, выделяют корень, спинку, верхушку и крылья носа . Ко­ рень носа , расположен в верхней части лица и отделен от лба выемкой, носящей название переносья . Крылья носа своими нижними краями ограничивают ноздри , служащие для прохождения воздуха в полость носа и из нее. По средин­ной линии ноздри отделяются друг от друга подвижной частью перегородки носа . Наружный нос имеет костный и хрящевой скелет. Корень носа, верхняя часть спинки и боковых сторон наружного носа имеют костный скелет. Костный скелет носа образован носовыми костями и лоб­ными отростками верхних челюстей. Средняя и нижняя части спинки и боковых сторон носа имеют хрящевой скелет.

Полость носа

Полость носа , разделяет­ся перегородкой носа на две симметричные части, которые спереди открываются на лице ноздрями а сза­ди через хоаны сообщаются с носовой частью глотки. Перегородка носа , спереди перепонча­тая, и хрящевая, а сзади - костная. Перепончатая и хрящевая части вместе образуют подвижную часть перегородки носа. Между перегородкой носа и медиальными поверхностями носовых раковин расположен общий носовой ход , имеющий вид узкой вертикальной щели.


В каждой половине полости, носа выделяют преддверие , которое сверху ограничено небольшим возвышением - порогом полости носа. Этот порог не позволяет пальцу пройти дальше преддверия. Преддверие покрыто изнутри кожей. Кожа преддверия содержит сальные, потовые желе­зы и жесткие волосы - вибриссы.

По бокам от общего носового хода в полости носа расположены верхний, средний и нижний носовые ходы . Каждый из них располагается под соответ­ствующей носовой раковиной (рис. 52,53).

В полость носа открываются придаточные полости. В верхний носовой ход открываются задние ячейки решетчатой кости. Лобная пазуха, верхнечелюстная пазуха открываются в средний носовой ход. В нижний носовой ход ведет ниж­нее отверстие носослезного протока.

Слизистая оболочка носа , продолжается в слизистую оболочку околоносовых пазух, слезного мешка (через носослезный проток), носовой части глотки и мягкого неба (через хоаны). Она плотно сращена с надкостницей и надхрящницей стенок полости носа. В соответствии со строе­нием и функцией в слизистой оболочке полости носа выделяют обонятельную область и дыхатель­ную область .

К обо­нятельной области относится верхняя часть слизистой оболочки носа, содержащий чувствительные обоня­тельные клетки. Ос­тальная часть слизистой оболочки носа относится к дыхательной области . Сли­зистая оболочка дыхательной области покрыта мерцательным эпителием, в ней содержатся слизистые и серозные железы. В области нижней раковины слизистая оболочка и подслизистая основа богаты венозными сосудами, которые образуют пещеристые веноз­ ные сплетения раковин , наличие которых способствует согреванию вдыхаемого воздуха.

Тема 22. ДЫХАТЕЛЬНАЯ СИСТЕМА

В состав дыхательной системы входят различные органы, выполняющие воздухопроводящую и дыхательную (газообменную) функции: полость носа, носоглотка, гортань, трахея, внелегочные бронхи и легкие.

Основной функцией дыхательной системы является внешнее дыхание, т. е. поглощение из вдыхаемого воздуха кислорода и снабжение им крови, а также удаление из организма углекислого газа (газообмен осуществляется легкими, их ацинусами). Внутреннее, тканевое дыхание происходит в виде окислительных процессов в клетках органов при участии крови. Наряду с этим органы дыхания выполняют ряд других важных негазообменных функций: терморегуляцию и увлажнение вдыхаемого воздуха, очищение его от пыли и микроорганизмов, депонирование крови в обильно развитой сосудистой системе, участие в поддержании свертываемости крови благодаря выработке тромбопластина и его антагониста (гепарина), участие в синтезе некоторых гормонов и в водно-солевом, липидном обмене веществ, а также в голосообразовании, обонянии и иммунологической защите.

Развитие

На 22 – 26-й день внутриутробного развития на вентральной стенке передней кишки появляется респираторный дивертикул – зачаток органов дыхания. Он отделяется от передней кишки двумя продольными эзофаготрахеальными (трахеопищеводными) бороздами, вдающимися в просвет передней кишки в виде гребней. Эти гребни, сближаясь, сливаются, и формируется эзофаготрахеальная перегородка. В результате передняя кишка разделяется на дорсальную часть (пищевод) и вентральную часть (трахею и легочные почки). По мере отделения от передней кишки респираторный дивертикул, удлиняясь в каудальном направлении, формирует структуру, лежащую по средней линии, – будущую трахею; она заканчивается двумя мешковидными выпячиваниями. Это легочные почки, наиболее дистальные части которых составляют респираторный зачаток. Таким образом, эпителий, выстилающий зачаток трахеи и легочные почки, имеет энтодермальное происхождение. Слизистые железы воздухоносных путей, являющиеся производными эпителия, также развиваются из энтодермы. Хрящевые клетки, фибробласты и ГМК происходят из спланхической мезодермы, окружающей переднюю кишку. Правая легочная почка делится на три, а левая – на два главных бронха, предопределяя присутствие трех долей легкого справа и двух слева. Под индуктивным воздействием окружающей мезодермы ветвление продолжается, в итоге формируется бронхиальное дерево легких. К концу 6-го месяца насчитывают 17 ветвлений. Позднее происходит еще 6 дополнительных ветвлений, процесс ветвления заканчивается после рождения. К рождению легкие содержат около 60 млн первичных альвеол, их количество интенсивно увеличивается в первые 2 года жизни. Затем скорость роста замедляется, и к 8 – 12 годам количество альвеол достигает приблизительно 375 млн, что равно количеству альвеол у взрослых.

Стадии развития . Дифференцировка легких проходит следующие стадии – железистую, канальцевую и альвеолярную.

Железистая стадия (5 – 15 недель) характеризуется дальнейшим ветвлением воздухоносных путей (легкие приобретают вид железы), развитием хрящей трахеи и бронхов, появлением бронхиальных артерий. Эпителий, выстилающий респираторный зачаток, состоит из цилиндрических клеток. На 10-й неделе из клеток цилиндрического эпителия воздухоносных путей появляются бокаловидные клетки. К 15-й неделе формируются первые капилляры будущего респираторного отдела.

Канальцевая стадия (16 – 25 недель) характеризуется появлением выстланных кубическим эпителием респираторных и терминальных бронхиол, а также канальцев (прообразов альвеолярных мешочков) и подрастанием к ним капилляров.

Альвеолярная (или стадия терминальных мешочков (26 – 40 недель)) характеризуется массовым преобразованием канальцев в мешочки (первичные альвеолы), увеличением числа альвеолярных мешочков, дифференцировкой альвеолоцитов типов I и II и появлением сурфактанта. К концу 7-го месяца значительная часть клеток кубического эпителия респираторных бронхиол дифференцируется в плоские клетки (альвеолоциты типа I), тесно связанных кровеносными и лимфатическими капиллярами, и становится возможным газообмен. Остальные клетки сохраняют кубическую форму (альвеолоциты типа II) и начинают вырабатывать сурфактант. В течение последних 2 месяцев пренатальной и нескольких лет постнатальной жизни число терминальных мешочков постоянно увеличивается. Зрелые альвеолы до рождения отсутствуют.

Легочная жидкость

К рождению легкие заполнены жидкостью, в большом количестве содержащей хлориды, белок, некоторое количество слизи, поступающей из бронхиальных желез, и сурфактант.

После рождения легочная жидкость быстро резорбируется кровеносными и лимфатическими капиллярами, а небольшое ее количество удаляется через бронхи и трахею. Сурфактант остается в виде тонкой пленки на поверхности альвеолярного эпителия.

Пороки развития

Трахеопищеводный свищ возникает в результате неполного расщепления первичной кишки на пищевод и трахею.

Принципы организации дыхательной системы

Просвет воздухоносных путей и альвеол легкого – внешняя среда . В воздухоносных путях и на поверхности альвеол – расположен пласт эпителия. Эпителий воздухоносных путей осуществляет защитную функцию, которая выполняется, с одной стороны, самим фактом присутствия пласта, а с другой стороны, за счет секреции защитного материала – слизи. Ее продуцирует присутствующие в составе эпителия бокаловидные клетки. Кроме того, под эпителием находятся железы, также секретирующие слизь, выводные протоки этих желез открываются на поверхность эпителия.

Воздухоносные пути функционируют как установка юнирования воздуха . Характеристики внешнего воздуха (температура, влажность, загрязненность частицами разного сорта, наличие микроорганизмов) варьируются весьма значительно. Но в респираторный отдел должен поступать воздух, отвечающий определенным требованиям. Функцию доведения воздуха до необходимых кондиций играют воздухоносные пути.

Посторонние частицы осаждаются в находящейся на поверхности эпителия слизистой пленке. Далее загрязненная слизь удаляется из воздухоносных путей при ее постоянном перемещении по направлению к выходу из дыхательной системы с последующим откашливанием. Такое постоянное движение слизистой пленки обеспечивается за счет направленных к выходу из воздухоносных путей синхронных и волнообразных колебаний ресничек, находящих на поверхности эпителиальных клеток. Кроме того, перемещением слизи к выходу предупреждается ее попадание на поверхность альвеолярных клеток, через которые происходит диффузия газов.

Кондиционирование температуры и влажности вдыхаемого воздуха осуществляется при помощи крови, находящейся в сосудистом русле стенки воздухоносных путей. Этот процесс происходит главным образом в начальных отделах, а именно в носовых ходах.

Слизистая оболочка воздухоносных путей участвует в защитных реакциях . В составе эпителия слизистой оболочки присутствуют клетки Лангерханса, тогда как собственный слой содержит значительное количество различных иммунокомпетентных клеток (Т– и В-лимфоциты, плазматические клетки, синтезирующие и секретирующие IgG, IgA, IgE, макрофаги, дендритные клетки).

Тучные клетки весьма многочисленны в собственном слое слизистой оболочки. Гистамин тучных клеток вызывает бронхоспазм, вазодилатацию, гиперсекрецию слизи из желез и отек слизистой оболочки (как результат вазодилатации и увеличения проницаемости стенки посткапиллярных венул). Кроме гистамина, тучные клетки наряду с эозинофилами и другими клетками выделяют ряд медиаторов, действие которых приводит к воспалению слизистой оболочки, повреждению эпителия, сокращению ГМК и сужению просвета воздухоносных путей. Все вышеперечисленные эффекты характерны для бронхиальной астмы.

Воздухоносные пути не спадаются . Просвет постоянно изменяется и регулируется в связи с ситуацией. Спадение просвета воздухоносных путей предотвращает присутствие в их стенке плотных структур, образованных в начальных отделах костной, а далее – хрящевой тканью. Изменение величины просвета воздухоносных путей обеспечивают складки слизистой оболочки, активность гладких мышечных клеток и структуры стенки.

Регуляция тонуса ГМК. Тонус ГМК воздухоносных путей регулируют нейромедиаторы, гормоны, метаболиты арахидоновой кислоты. Эффект зависит от присутствия соответствующих рецепторов в ГМК. ГМК стенки воздухоносных путей имеют М-холинорецепторы, рецепторы гистамина. Нейромедиаторы секретируются из терминалей нервных окончаний вегетативного отдела нервной системы (для блуждающего нерва – ацетилхолин, для нейронов симпатического ствола – норадреналин). Бронхоконстрикцию вызывают холин, вещество Р, нейрокинин А, гистамин, тромбоксан ТХА2, лейкотриены LTC4, LTD4, LTE4. Бронходилатацию вызывают VIP, адреналин, брадикинин, простагландин PGE2. Сокращение ГМК (вазоконстрикцию) вызывают адреналин, лейкотриены, ангиотензин-II. Расслабляющий эффект на ГМК сосудов оказывают гистамин, брадикинин, VIP, простагландин PG.

Поступающий в дыхательные пути воздух подвергается химической экспертизе . Ее осуществляют обонятельный эпителий и хеморецепторы в стенке воздухоносных путей. К таким хеморецепторам относятся чувствительные окончания и специализированные хемочувствительные клетки слизистой оболочки.

Воздухоносные пути

К воздухоносным путям дыхательной системы относят носовую полость, носоглотку, гортань, трахею и бронхи. При продвижении воздуха происходит его очищение, увлажнение, приближение температуры вдыхаемого воздуха к температуре тела, рецепция газовых, температурных и механических раздражителей, а также регуляция объема вдыхаемого воздуха.

Кроме этого, гортань принимает участие в звукообразовании.

Полость носа

Она делится на преддверие и собственно носовую полость, состоящую из дыхательной и обонятельной областей.

Преддверие образовано полостью, находится под хрящевой частью носа, покрыто многослойным плоским эпителием.

Под эпителием в соединительно-тканном слое имеются сальные железы и корни щетинковых волос. Щетинковые волосы выполняют очень важную функцию: они задерживают пылевые частицы из вдыхаемого воздуха в носовой полости.

Внутренняя поверхность собственно носовой полости в дыхательной части выстлана слизистой оболочкой, состоящей из многорядного призматического реснитчатого эпителия и соединительно-тканной собственной пластинки.

Эпителий состоит из несколько видов клеток: реснитчатых, микроворсинчатых, базальных и бокаловидных. Между реснитчатыми клетками располагаются вставочные клетки. Бокаловидные клетки являются одноклеточными слизистыми железами, выделяющими свой секрет на поверхность мерцательного эпителия.

Собственная пластинка слизистой оболочки образована рыхлой волокнистой неоформленной соединительной тканью, содержащей большое количество эластических волокон. В ней залегают концевые отделы слизистых желез, выводные протоки которых открываются на поверхности эпителия. Секрет этих желез, как и секрет бокаловидных клеток, увлажняет слизистую оболочку.

Слизистая оболочка носовой полости очень хорошо кровоснабжается, что способствует согреванию вдыхаемого воздуха в холодное время года.

Лимфатические сосуды образуют густую сеть. Они связаны с субарахноидальным пространством и периваскулярными влагалищами различных частей мозга, а также с лимфатическими сосудами больших слюнных желез.

Слизистая оболочка носовой полости имеет обильную иннервацию, многочисленные свободные и инкапсулированные нервные окончания (механо-, термо– и ангиорецепторы). Чувствительные нервные волокна берут начало из полулунного узла тройничного нерва.

В области верхней носовой раковины слизистая оболочка покрыта особым обонятельным эпителием, содержащим рецепторные (обонятельные) клетки. Слизистая оболочка околоносовых пазух, в том числе лобных и верхнечелюстных, имеет ту же структуру, что и слизистая оболочка дыхательной части носовой полости, с той лишь разницей, что собственная соединительно-тканная пластинка в них значительно тоньше.

Гортань

Сложный по строению орган воздухоносного отдела дыхательной системы, участвующий не только воздухопроведении, но и в звукопроизведении. Гортань в своей структуре имеет три оболочки – слизистую, фиброзно-хрящевую и адвентициальную.

Слизистая оболочка гортани человека, кроме голосовых связок, выстлана многорядным реснитчатым эпителием. Собственная пластинка слизистой оболочки, образованная рыхлой волокнистой неоформленной соединительной тканью, содержит многочисленные эластические волокна, не имеющие определенной ориентировки.

В глубоких слоях слизистой оболочки эластические волокна постепенно переходят в надхрящницу, а в средней части гортани проникают между поперечно-полосатыми мышцами голосовых связок.

В средней части гортани имеются складки слизистой оболочки, образующие так называемые истинные и ложные голосовые связки. Складки покрывает многослойный плоский эпителий. В слизистой оболочке залегают смешанные железы. Благодаря сокращению поперечно-полосатых мышц, заложенных в толще голосовых складок, происходит изменение величины щели между ними, что влияет на высоту звука, производимого воздухом, проходящим через гортань.

Фиброзно-хрящевая оболочка состоит из гиалиновых и эластических хрящей, окруженных плотной волокнистой соединительной тканью. Эта оболочка является своеобразным каркасом гортани.

Адвентициальная оболочка состоит из волокнистой соединительной ткани.

Гортань отделена от глотки надгортанником, основу которого составляет эластический хрящ. В области надгортанника происходит переход слизистой оболочки глотки в слизистую оболочку гортани. На обеих поверхностях надгортанника слизистая оболочка покрыта многослойным плоским эпителием.

Трахея

Это воздухопроводящий орган дыхательной системы, представляющий собой полую трубку, состоящую из слизистой оболочки, подслизистой основы, волокнисто-хрящевой и адвентициальной оболочек.

Слизистая оболочка при помощи тонкой подслизистой основы связана с подлежащими плотными частями трахеи и благодаря этому не образует складок. Она выстлана многорядным призматическим реснитчатым эпителием, в котором различают реснитчатые, бокаловидные, эндокринные и базальные клетки.

Реснитчатые клетки призматической формы мерцают в направлении, противоположном вдыхаемому воздуху, наиболее интенсивно при оптимальной температуре (18 – 33 °С) и в слабощелочной среде.

Бокаловидные клетки – одноклеточные эндоэпителиальные железы, выделяют слизистый секрет, который увлажняет эпителий и создает условия для прилипания попадающих с воздухом пылевых частиц, удаляемых при откашливании.

В слизи содержится иммуноглобулины, выделяемые иммунокомпетентными клетками слизистой оболочки, которые обезвреживают многие микроорганизмы, попадаемые с воздухом.

Эндокринные клетки имеют пирамидальную форму, округлое ядро и секреторные гранулы. Они встречаются как в трахее, так и в бронхах. Эти клетки выделяют пептидные гормоны и биогенные амины (норадреналин, серотонин, дофамин) и регулируют сокращение мышечных клеток воздухоносных путей.

Базальные клетки – камбиальные клетки, имеющие овальную или треугольную форму.

Подслизистая основа трахеи состоит из рыхлой волокнистой неоформленной соединительной ткани, без резкой границы переходящей в плотную волокнистую соединительную ткань надхрящницы незамкнутых хрящевых полуколец. В подслизистой основе располагаются смешанные белково-слизистые железы, выводные протоки которых, образуя на своем пути колбообразные расширения, открываются на поверхности слизистой оболочки.

Волокнисто-хрящевая оболочка трахеи состоит из 16 – 20 гиалиновых хрящевых колец, не замкнутых на задней стенке трахеи. Свободные концы этих хрящей соединены пучками гладких мышечных клеток, прикрепляющихся к наружной поверхности хряща. Благодаря такому строению задняя поверхность трахеи оказывается мягкой, податливой. Эта свойство задней стенки трахеи имеет большое значение: при глотании пищевые комки, проходящие по пищеводу, расположенному непосредственно позади трахеи, не встречают препятствия со стороны ее хрящевого скелета.

Адвентициальная оболочка трахеи состоит из рыхлой волокнистой неоформленной соединительной ткани, которая соединяет этот орган с прилежащими частями средостения.

Кровеносные сосуды трахеи так же, как в гортани, образуют в ее слизистой оболочке несколько параллельно расположенных сплетений, а под эпителием – густую капиллярную сеть. Лимфатические сосуды также формируют сплетения, из которых поверхностное находится непосредственно под сетью кровеносных капилляров.

Нервы, подходящие к трахее, содержат спинномозговые (цереброспинальные) и вегетативные волокна и образуют два сплетения, ветви которых заканчиваются в ее слизистой оболочке нервными окончаниями. Мышцы задней стенки трахеи иннервируются из ганглиев вегетативной нервной системы.

Легкие

Легкие представляют собой парные органы, занимающие большую часть грудной клетки и постоянно изменяющие свою форму в зависимости от фазы дыхания. Поверхность легкого покрыта серозной оболочкой (висцеральной плеврой).

Строение . Легкое состоит из разветвлений бронхов, входящих в состав воздухоносных путей (бронхиального дерева), и системы легочных пузырьков (альвеол), выполняющих роль респираторных отделов дыхательной системы.

В состав бронхиального дерева легкого входят главные бронхи (правое и левое), которые делятся на внелегочные долевые бронхи (крупные бронхи I порядка), а затем на крупные зональные внелегочные (по 4 в каждом легком) бронхи (бронхи II порядка). Внутрилегочные бронхи сегментарные (по 10 в каждом легком) подразделяются на бронхи III – V порядков (субсегментарные), которые по своему диаметру относятся к средним (2 – 5 мм). Средние бронхи подразделяются на мелкие (1 – 2 мм в диаметре) бронхи и конечные бронхиолы. За ними начинаются респираторные отделы легкого, выполняющие газообменную функцию.

Строение бронхов (хотя и неодинаково на протяжении бронхиального дерева) имеет общие черты. Внутренняя оболочка бронхов – слизистая – выстлана подобно трахее реснитчатым эпителием, толщина которого постепенно уменьшается за счет изменения формы клеток от высоких призматических до низких кубических. Среди эпителиальных клеток, помимо реснитчатых, бокаловидных, эндокринных и базальных, в дистальных отделах бронхиального дерева встречаются у человека и животных секреторные клетки (клетки Клара), каемчатые (щеточные), а также безреснитчатые клетки.

Секреторные клетки характеризуются куполообразной верхушкой, лишенной ресничек и микроворсинок и заполненной секреторными гранулами. Они содержат округлое ядро, хорошо развитую эндоплазматическую сеть агранулярного типа, пластинчатый комплекс. Эти клетки вырабатывают ферменты, расщепляющие сурфактант, покрывающий респираторные отделы.

Безреснитчатые клетки встречаются в бронхиолах. Они имеют призматическую форму. Их апикальный конец несколько возвышается над уровнем смежных реснитчатых клеток.

В апикальной части содержатся скопления гранул гликогена, митохондрии и секретоподобные гранулы. Функция их не ясна.

Каемчатые клетки отличаются овоидной формой и наличием на апикальной поверхности коротких и тупых микроворсинок. Эти клетки встречаются редко. Полагают, что они выполняют функцию хеморецепторов.

Собственная пластинка слизистой оболочки бронхов богата продольно направленными эластическими волокнами, которые обеспечивают растяжение бронхов при вдохе и возвращение их в исходное положение при выдохе. Слизистая оболочка бронхов имеет продольные складки, обусловленные сокращением косоциркулярных пучков гладких мышечных клеток, отделяющих слизистую оболочку от подслизистой соединительно-тканной основы. Чем меньше диаметр бронха, тем относительно толще оказывается мышечная пластинка слизистой. В слизистой оболочке бронхов, особенно крупных, встречаются лимфатические фолликулы.

В подслизистой соединительной основе залегают концевые отделы смешанных слизисто-белковых желез. Они располагаются группами, особенно в местах, которые лишены хряща, а выводные протоки проникают в слизистую оболочку и открываются на поверхности эпителия. Их секрет увлажняет слизистую оболочку и способствует прилипанию, обволакиванию пылевых и других частиц, которые впоследствии выделяются наружу. Слизь обладает бактериостатическими и бактерицидными свойствами. В бронхах малого калибра (диаметром 1 – 2 мм) железы отсутствуют.

Фиброзно-хрящевая оболочка по мере уменьшения калибра бронха характеризуется постепенной сменой незамкнутых хрящевых колец у главных бронхов хрящевыми пластинками (долевыми, зональными, сегментарными, субсегментарными бронхами) и островки хрящевой ткани (в бронхах среднего калибра). В бронхах среднего калибра гиалиновая хрящевая ткань сменяется эластической хрящевой тканью. В бронхах малого калибра фиброзно-хрящевая оболочка отсутствует.

Наружная адвентициальная оболочка построена из волокнистой соединительной ткани, переходящей в междолевую и междольковую соединительную ткань паренхимы легкого. Среди соединительно-тканных клеток обнаруживаются тканевые базофилы, принимающие участие в регуляции состава межклеточного вещества и свертываемости крови.

Конечные (терминальные) бронхиолы имеют диаметр около 0,5 мм. Слизистая оболочка их выстлана однослойным кубическим реснитчатым эпителием, в котором встречаются щеточные клетки и секреторные клетки Клара. В собственной пластинке слизистой оболочки этих бронхиол расположены продольно идущие эластические волокна, между которыми залегают отдельные пучки гладких мышечных клеток. Вследствие этого бронхиолы легко растяжимы при вдохе и возвращаются в исходное положение при выдохе.

Респираторный отдел . Структурно-функциональной единицей респираторного отдела легкого является ацинус. Он представляет собой систему альвеол, расположенных в стенке респираторной бронхиолы, альвеолярных ходов и мешочков, которые осуществляют газообмен между кровью и воздухом альвеол. Ацинус начинается респираторной бронхиолой I порядка, которая дихотомически делится на респираторные бронхиолы II, а затем III порядка. В просвет бронхиол открываются альвеолы, которые в связи с этим носят название альвеолярных. Каждая респираторная бронхиола III порядка, в свою очередь, подразделяется на альвеолярные ходы, а каждый альвеолярный ход заканчивается двумя альвеолярными мешочками. В устье альвеол альвеолярных ходов имеются небольшие пучки гладких мышечных клеток, которые на поперечных срезах видны в виде пуговчатых утолщений. Ацинусы отделены друг от друга тонкими соединительно-тканными прослойками, 12 – 18 ацинусов образуют легочную дольку. Респираторные бронхиолы выстланы однослойным кубическим эпителием. Мышечная пластинка истончается и распадается на отдельные, циркулярно направленные пучки гладких мышечных клеток.

На стенках альвеолярных ходов и альвеолярных мешочков располагается несколько десятков альвеол. Общее количество их у взрослых людей достигает в среднем 300 – 400 млн. Поверхность всех альвеол при максимальном вдохе у взрослого человека может достигать 100 м 2 , а при выдохе она уменьшается в 2 – 2,5 раза. Между альвеолами лежат тонкие соединительно-тканные перегородки, по которым проходят кровеносные капилляры.

Между альвеолами существуют сообщения в виде отверстий диаметром около 10 – 15 мкм (альвеолярные поры).

Альвеолы имеют вид открытого пузырька. Внутренняя поверхность выстлана двумя основными видами клеток: респираторными альвеолярными клетками (альвеолоцитами I типа) и большими альвеолярными клетками (альвеолоцитами II типа). Кроме того, у животных существуют в альвеолах клетки III типа – каемчатые.

Альвеолоциты I типа имеют неправильную, уплощенную, вытянутую форму. На свободной поверхности цитоплазмы этих клеток имеются очень короткие цитоплазматические выросты, обращенные в полость альвеол, что значительно увеличивает общую площадь соприкосновения воздуха с поверхностью эпителия. В их цитоплазме обнаруживаются мелкие митохондрии и пиноцитозные пузырьки.

Важным компонентом аэрогематического барьера является сурфактантный альвеолярный комплекс. Он играет важную роль в предотвращении спадения альвеол на выдохе, а также в предохранении их от проникновения через стенку альвеол микроорганизмов из вдыхаемого воздуха и транссудации жидкости из капилляров межальвеолярных перегородок в альвеолы. Сурфактант состоит из двух фаз: мембранной и жидкой (гипофазы). Биохимический анализ сурфактанта показал, что в его состав входят фосфолипиды, белки и гликопротеиды.

Альвеолоциты II типа несколько крупнее по высоте, чем клетки I типа, но цитоплазматические отростки их, наоборот, короткие. В цитоплазме выявляются более крупные митохондрии, пластинчатый комплекс, осмиофильные тельца и эндоплазматическая сеть. Эти клетки называются также секреторными из-за их способности выделять липопротеидные вещества.

В стенке альвеол также обнаруживаются щеточные клетки и макрофаги, содержащие захваченные инородные частицы, избыток сурфактанта. В цитоплазме макрофагов всегда находится значительное количество липидных капель и лизосом. Окисление липидов в макрофагах сопровождается выделением тепла, которое обогревает вдыхаемый воздух.

Сурфактант

Общее количество сурфактанта в легких крайне невелико. На 1 м 2 альвеолярной поверхности приходится около 50 мм 3 сурфактанта. Толщина его пленки составляет 3% общей толщины аэрогематического барьера. Компоненты сурфактанта поступают в альвеолоциты II типа из крови.

Возможен также их синтез и хранение в пластинчатых тельцах этих клеток. 85% компонентов сурфактанта используется повторно, и только небольшое количество синтезируется вновь. Удаление сурфактанта из альвеол происходит несколькими путями: через бронхиальную систему, через лимфатическую систему и при помощи альвеолярных макрофагов. Основное количество сурфактанта вырабатывается после 32-й недели беременности, достигая максимального количества к 35-й неделе. До рождения образуется избыток сурфактанта. После рождения этот избыток удаляется альвеолярными макрофагами.

Респираторный дистресс-синдром новорожденных развивается у недоношенных детей вследствие незрелости альвеолоцитов типа II. Из-за недостаточного количества сурфактанта, выделяемого этими клетками на поверхность альвеол, последние оказываются нерасправленными (ателектаз). В результате развивается дыхательная недостаточность. Из-за ателектаза альвеол газообмен осуществляется через эпителий альвеолярных ходов и респираторных бронхиол, что приводит к их повреждению.

Состав . Легочный сурфактант – эмульсия фосфолипидов, белков и углеводов, 80% составляют глицерофосфолипиды, 10% – холестерол и 10% – белки. Эмульсия образует на поверхности альвеол мономолекулярный слой. Главный поверхностно активный компонент – дипальмитоилфосфатидилхолин, ненасыщенный фосфолипид, составляющий более 50% фосфолипидов сурфактанта. Сурфактант содержит ряд уникальных белков, способствующих адсорбции дипальмитоилфосфатидилхолина на границе двух фаз. Среди белков сурфактанта выделяют SP-A, SP-D. Белки SP-B, SP-C и глицерофосфолипиды сурфактанта ответственны за уменьшение поверхностного натяжения на границе воздух – жидкость, а белки SP-A и SP-D участвуют в местных иммунных реакциях, опосредуя фагоцитоз.

Рецепторы SP-A имеются в альвеолоцитах типа II и в макрофагах.

Регуляция выработки . Образованию компонентов сурфактанта у плода способствуют глюкокортикостероиды, пролактин, гормоны щитовидной железы, эстрогены, андрогены, факторы роста, инсулин, цАМФ. Глюкокортикоиды усиливают синтез SP-A, SP-B и SP-C в легких плода. У взрослых продукцию сурфактанта регулируют ацетилхолин и простагландины.

Сурфактант – компонент защитной системы легких. Сурфактант предотвращает непосредственный контакт альвеолоцитов с вредными частицами и инфекционными агентами, попадающими в альвеолы с вдыхаемым воздухом. Циклические изменения поверхностного натяжения, происходящие при вдохе и выдохе, обеспечивают зависимый от дыхания механизм очистки. Обволакиваемые сурфактантом пылевые частицы транспортируются из альвеол в бронхиальную систему, из которой они удаляются со слизью.

Сурфактант регулирует количество макрофагов, мигрирующих в альвеолы из межальвеолярных перегородок, стимулируя активность этих клеток. Бактерии, проникающие в альвеолы с воздухом, опсонизируются сурфактантом, что облегчает их фагоцитоз альвеолярными макрофагами.

Сурфактант присутствует в бронхиальном секрете, покрывая реснитчатые клетки, и имеет тот же химический состав, что и сурфактант легких. Очевидно, сурфактант необходим для стабилизации дистальных воздухоносных путей.

Иммунная защита

Макрофаги

Макрофаги составляют 10 – 15% всех клеток в альвеолярных перегородках. На поверхности макрофагов присутствует множество микроскладок. Клетки формируют довольно длинные цитоплазматические отростки, которые позволяют макрофагам мигрировать через межальвеолярные поры. Находясь внутри альвеолы, макрофаг с помощью отростков может прикрепляться к поверхности альвеолы и захватывать частицы. Альвеолярные макрофаги секретируют?1-антитрипсин – гликопротеин из семейства сериновых протеаз, защищающий эластин альвеол от: расщепления эластазой лейкоцитов. Мутация гена?1-антитрипсина приводит к врожденной эмфиземы легких (поражению эластического каркаса альвеол).

Пути миграции . Нагруженные фагоцитированным материалом клетки могут мигрировать в различных направлениях: вверх по отделам ацинуса и в бронхиолы, где макрофаги попадают в слизистую пленку, постоянно смещающуюся по поверхности эпителия по направлению к выходу из воздухоносных путей; внутрь – во внутреннюю среду организма, т. е. в межальвеолярные перегородки.

Функция . Макрофаги фагоцитируют микроорганизмы и пылевые частицы, попадающие с вдыхаемым воздухом, обладают антимикробной и противоспалительной активностью, опосредованной кислородными радикалами, протеазами и цитокинами. У макрофагов легких антигенпредставляющая функция выражена слабо. Более того, эти клетки вырабатывают факторы, ингибирующие функцию Т-лимфоцитов, что снижает иммунный ответ.

Антигенпредставляющие клетки

Дендритные клетки и клетки Лангерганса относятся к системе мононуклеарных фагоцитов, именно они являются главными антигенпредставляющими клетками легкого. Дендритные клетки и клетки Лангерганса многочисленны в верхних дыхательных путях и трахее. С уменьшением калибра бронхов число этих клеток уменьшается. Как антигенпредставляющие легочные клетки Лангерганса и дендритные клетки экспрессируют молекулы МНС класса 1. Эти клетки имеют рецепторы Fc-фрагмента IgG, фрагмента С3b-компонента комплемента, ИЛ-2, синтезируют ряд цитокинов, включая ИЛ-1, ИЛ-6, фактор некроза опухоли, стимулируют Т-лимфоциты, проявляя повышенную активность в отношении антигена, впервые оказавшегося в организме.

Дендритные клетки

Дендритные клетки находятся в плевре, межальвеолярных перегородках, перибронхиальной соединительной ткани, в лимфоидной ткани бронхов. Дендритные клетки, дифференцируясь из моноцитов, довольно подвижны и могут мигрировать в межклеточном веществе соединительной ткани. В легких они появляются перед рождением. Важное свойство дендритных клеток – их способность стимулировать пролиферацию лимфоцитов. Дендритные клетки имеют удлиненную форму и многочисленные длинные отростки, неправильной формы ядро и в изобилии типичные клеточные органеллы. Фагосомы отсутствуют, поскольку клетки практически не обладают фагоцитарной активностью.

Клетки Лангерганса

Клетки Лангерганса присутствуют только в эпителии воздухоносных путей и отсутствуют в альвеолярном эпителии. Клетки Лангерганса дифференцируются из дендритных клеток, причем такая дифференцировка возможна только в присутствии эпителиальных клеток. Соединяясь с цитоплазматическими отростками, проникающими между эпителиоцитами, клетки Лангерганса образуют развитую внутриэпителиальную сеть. Клетки Лангерганса морфологически сходны с дендритными клетками. Характерной чертой клеток Лангерганса является наличие в цитоплазме специфических электроноплотных гранул, имеющих пластинчатую структуру.

Метаболическая функция легких

В легких метаболизирует ряд биологически активных веществ.

Ангиотензины . Активация известна только в отношении ангиотензина I, который конвертируется в ангиотензин-II. Конверсию катализирует ангиотензинконвертирующий фермент, локализованный в эндотелиальных клетках капилляров альвеол.

Инактивация . Многие биологически активные вещества частично или полностью инактивируются в легких. Так, брадикинин инактивируется на 80% (при помощи ангиотензинконвертирующего фермента). В легких инактивируется серотонин, но не с участием ферментов, а путем выведения из крови, часть серотонина поступает в тромбоциты. С помощью соответствующих ферментов в легких инактивируются простагландины PGE, PGE2, PGE2a и норадреналин.

Плевра

Легкие снаружи покрыты плеврой, называемой легочной (или висцеральной). Висцеральная плевра плотно срастается с легкими, эластические и коллагеновые волокна ее переходят в интерстициальную ткань, поэтому изолировать плевру, не травмируя легкие, трудно. В висцеральной плевре встречаются гладкие мышечные клетки. В париетальной плевре, выстилающей наружную стенку плевральной полости, эластических элементов меньше, гладкие мышечные клетки встречаются редко.

Кровоснабжение в легком осуществляется по двум системам сосудов. С одной стороны, легкие получают артериальную кровь из большого круга кровообращения по бронхиальным артериям, а с другой – в них поступает венозная кровь для газового обмена из легочных артерий, т. е. из малого круга кровообращения. Ветви легочной артерии, сопровождая бронхиальное дерево, доходят до основания альвеол, где они образуют капиллярную сеть альвеол. Через альвеолярные капилляры, диаметр которых колеблется в пределах 5 – 7 мкм, эритроциты проходят в 1 ряд, что создает оптимальное условие для осуществления газового обмена между гемоглобином эритроцитов и альвеолярным воздухом. Альвеолярные капилляры собираются в посткапиллярные венулы, которые, сливаясь, образуют легочные вены.

Бронхиальные артерии отходят непосредственно от аорты, питают бронхи и легочную паренхиму артериальной кровью. Проникая в стенку бронхов, они разветвляются и образуют артериальные сплетения в их подслизистой основе и слизистой оболочке. В слизистой оболочке бронхов происходит сообщение сосудов большого и малого круга путем анастомозирования разветвлений бронхиальных и легочных артерий.

Лимфатическая система легкого состоит из поверхностной и глубокой сетей лимфатических капилляров и сосудов. Поверхностная сеть располагается в висцеральной плевре. Глубокая сеть находится внутри легочных долек, в междольковых перегородках, залегая вокруг кровеносных сосудов и бронхов легкого.

Иннервация осуществляется симпатическими и парасимпатическими нервами и небольшим количеством волокон, идущих от спинномозговых нервов. Симпатические нервы проводят импульсы, вызывающие расширение бронхов и сужение кровеносных сосудов, парасимпатические – импульсы, обусловливающие, наоборот, сужение бронхов и расширение кровеносных сосудов. Разветвления этих нервов образуют в соединительнотканных прослойках легкого нервное сплетение, расположенное по ходу бронхиального дерева и кровеносных сосудов. В нервных сплетениях легкого встречаются крупные и мелкие ганглии, от которых отходят нервные ветви, иннервирующие, по всей вероятности, гладкую мышечную ткань бронхов. Нервные окончания выявлены по ходу альвеолярных ходов и альвеол.

Из книги 100 китайских исцеляющих упражнений. Вылечи себя сам! автора Син Су

Из книги Лучшее для здоровья от Брэгга до Болотова. Большой справочник современного оздоровления автора Андрей Моховой

Из книги Как оставаться молодым и жить долго автора Юрий Викторович Щербатых

Из книги Здоровый мужчина в вашем доме автора Елена Юрьевна Зигалова

Из книги Баня и сауна для здоровья и красоты автора Вера Андреевна Соловьева

Из книги Скандинавская ходьба. Секреты известного тренера автора Анастасия Полетаева

Заболевания дыхательных путей, в том числе и профессиональные, одна из серьезных проблем нашего времени.

Широко известные болезни органов дыхания — пневмония , бронхит , бронхиальная астма, ателектаз (спадение легочной ткани и развитие воспалительных процессов в невентилируемых ее участках), эмфизема легких, бронхоэктазия, абсцесс легких и многие другие — нередко начинаются с нарушений в работе клеток эпителия (покровной ткани), которым выстланы дыхательные пути. И клетки и эпителий называются мерцательными.

Но прежде чем рассказывать о них, несколько слов об органах дыхания человека . Этот совершенный аппарат газообмена согревает поступающий в организм воздух до температуры тела, увлажняет его и отфильтровывает микроорганизмы, пыль, копоть и другие биологические и механические примеси. Воздух через нос, носоглотку и гортань, минуя широко раскрытые связки, направляется в трахею, а затем по крупным и средним бронхам достигает бронхиол и альвеол. Бронхи очень подвижны: на вдохе они расширяются и удлиняются, на выдохе сужаются и сокращаются. Эти ритмичные движения способствуют выведению слизи из глубоких отделов наружу.

За время вдоха холодный воздух проходит довольно короткий участок дыхательных путей (причем с немалой скоростью — 150—180 сантиметров в секунду), но и этого оказывается достаточно, чтобы кровеносные сосуды слизистой оболочки дыхательных путей, главным образом носа, согрели его. Если же, напротив, температура атмосферного воздуха выше требуемой, то слизистая оболочка, обильно испаряя влагу со своей поверхности, снижает ее.

Вдыхаемый воздух должен быть хорошо увлажнен. Эту работу выполняют многочисленные железки и бокаловидные клетки слизистой оболочки. На каждый квадратный сантиметр слизистой носа приходится до 100 слизистых желез. Взрослый человек выделяет через легкие примерно пол-литра жидкости в сутки.

Еще один важный аспект деятельности дыхательных путей . В воздухе постоянно циркулируют газообразные, твердые или жидкие примеси. Особенно, в воздухе городов. Городской воздух — это практически аэрозоль, концентрация пылинок в котором достигает более 10 тысяч частиц в одном кубическом сантиметре. В накуренном помещении в кубометре воздуха содержится до 100 мг дыма. По последним данным, в США выделяется в атмосферу от сжигания нефти в год: углекислого газа — 2,7 биллиона, окиси углерода — 15 миллионов и окисла серы — 19 миллионов тонн. А отходы промышленности и сжигаемый уголь составляют примерно 7 и 5 миллионов тонн в год соответственно пыли и частиц золы (пепла).

Легкие «перелопачивают» в среднем 10—12 тысяч литров воздуха в сутки. Дыхательные пути фильтруют его, отделяя твердые и жидкие примеси. Грубые частички улавливаются уже в носу. Частички диаметром до 5 микрон (тысячных долей миллиметра) проникают с потоком воздуха глубже и оседают в бронхиальном дереве, а еще меньшие частицы — в легочных альвеолах. И если бы дыхательные пути не обладали способностью самоочищаться, выводить пыль обратно, то за несколько дней они были бы полностью закупорены и человек погиб бы от удушья.

Каким же образом выводится пыль? Эту работу выполняет мерцательный эпителий, покрывающий слизистую оболочку дыхательных путей от носа до мельчайших бронхиол. Мерцательные клетки — настоящие «дворники» органов дыхания. Без устали, днем и ночью, всю жизнь «выметают» они посторонние примеси, освобождая дорогу воздуху в самые дальние альвеолы.

Каждая клетка эпителия мерцает с частотой 100 и более ударов в минуту. На мерцательной клетке, на ее свободной поверхности, как бы растут мерцательные волоски-реснички. Это тонкие нитевидные образования длиной до 10 микрон. У каждой клетки десятки ресничек. Оболочка реснички — это, по сути, продолжение оболочки клетки. Движение реснички заложено в самой биологической сущности клеток, в их обменных процессах. Большое значение имеет эластичность реснички и поверхностное ее натяжение. С физической точки зрения ресничку можно представить себе как некую жидкость, стремящуюся принять форму шара. Однако этому противодействует скелет реснички, ее плотная осевая часть.

Какова же ультраструктура реснички? Предполагают, что она образована из девяти периферийных фибрилл — соединительнотканных образований. Жесткость реснички в движении приписывают двум центральным фибриллам, хотя нельзя исключить и тургор — внутреннее давление, действующее на ее оболочку.

Реснички на мерцательных клетках дыхательных путей тесно сцеплены наподобие ворса в ковре, поэтому детально изучить их движение в отдельности чрезвычайно трудно. Для них типично колебание в одной плоскости. Движение ресничек отдельной клетки и всего эпителиального пласта строго координировано: каждая предыдущая ресничка в фазах своего движения опережает на определенное время последующую. Поэтому поверхность мерцательного эпителия ходит волнами, мерцает (отсюда и название), напоминая хлебное поле, волнуемое ветром. Отдельные клетки, выделенные из мерцательного пласта, в подходящих условиях движутся также вполне координирование. Каждая из них представляет собой автономную единицу, работа которой строго согласована с работой всех других клеток мерцательного поля. В свою очередь (и одновременно), сама клетка координирует автоматические движения ресничек.

Нервная система организма, конечно, оказывает свое влияние и на функции ресничек, и на согласованность работы мерцательного ноля. Но и изолированная от нее мерцательная клетка действует автоматически. Мерцательный эпителий долго может жить после смерти организма. Полиостью изолированный кусочек мерцательного эпителия сохраняет моторную, двигательную функцию до нескольких суток. Этим лишний раз демонстрируется автоматизм работы клеток.

Как и угловая скорость верхушки реснички, движение, вызванное деятельностью мерцательного поля, довольно замедлено — от 0,5 до 3 сантиметров в минуту. Несмотря на свою ничтожную величину, мерцательные волоски могут передвигать сравнительно крупные частицы, заметные даже для невооруженного глаза. Так, мерцательный эпителий пищевода лягушки, растянутый горизонтально, легко перемещает пятиграммовый груз, медленнее — десятиграммовый, а уже 15 граммов движутся едва заметно.

При нарушениях функции мерцательного эпителия в участках угнетения его активности (пылью, газами, аллергенами, бактериями или вирусами), особенно в местах перерождения клеток, слизистая оболочка перестает удалять инородные частицы и продукты секреции, резко снижается ее устойчивость к инфекции, слизь застаивается, создаются благоприятные условия для заболеваний. Слизь, подсыхая, образует плотные пробки, закупоривающие просветы бронхов. Воздух в глубины легких не проходит. А оставшийся там рассасывается. Это и приводит к ателектазу.

Здоровый же мерцательный эпителий активно препятствует развитию инфекционного воспалительного процесса. Прежде всего на это направлена очищающая функция эпителиального покрова. Попадающие на поверхность слизистой оболочки носа частицы движутся по ней, как по эскалатору, со средней скоростью 10 эпителиальных клеток в секунду. Болезнетворный агент соприкасается с одной клеткой, таким образом, не долее 0,1 секунды, а этого времени ему, по расчетам, слишком мало, чтобы успеть повредить здоровую клетку.

Как же помочь слизистой оболочке выполнять свою сложную, многогранную функцию? Особенно это важно для профилактики и лечения профессиональных заболеваний. Ведь на производствах, где много пыли, нагрузка на мерцательный эпителий слишком велика. А угольная пыль, если не принять мер, может вызвать, скажем, пневмокониоз. Защитные рефлексы слизистой оболочки гортани надежно перекрывают доступ в дыхательные пути воде в ее обычном состоянии, лекарственным растворам, эмульсиям. Любые частицы, жидкие или твердые, размером более 50 микрон заставляют голосовые связки смыкаться, вызывают сильный кашель.

Как же в таком случае произвести лечебное или профилактическое промывание дыхательных путей? Для этого успешно используются аэрозоли минеральной, морской или простой воды. Мельчайшие ее капельки в виде тумана проходят вместе с воздухом через барьеры рефлексов гортани во все участки дыхательных путей, оседают на слизистой оболочке. Аэрозоли водных растворов растворяют густую слизь и корочки, освобождают замурованные в них мерцательные реснички, увлажняют вдыхаемый воздух, нейтрализуют вредные химические вещества, проникшие и осевшие в дыхательных путях. Так как слизь в основном белковой природы, то к аэрозолям добавляются протеолитические (растворяющие белки) ферменты: трипсин, хемопсин, лидаза, ацетилцистеин и другие. Ферменты расщепляют белок на легко растворимые в воде аминокислоты, и мерцательный эпителий легко выводит их из дыхательных путей. Больной с упорным сухим кашлем, возникающим на почве закупорки дыхательных путей слизью, пробками, корочками, после курса ингаляций такими аэрозолями испытывает огромное облегчение: прекращается кашель, дыхание становится глубоким и свободным.

Для активного воздействия на инфекцию, бактериальную или вирусную, применяют аэрозоли антибиотиков, сульфаниламидов, нитрофуранов, антисептиков, интерферона. При этом в органах дыхания создаются высокие концентрации препарата, подавляющие рост бактерий и развитие вирусов. Токсическое действие инфекции на мерцательные клетки ликвидируется, и они выводят из органов дыхания убитые или подавленные микроорганизмы и вирусы. Лекарственный аэрозоль действует на очаг поражения эффективнее и экономнее, чем лекарство, принятое внутрь, или инъекции.

Использование аэрозолей особенно эффективно для профилактики и лечения профессиональных заболеваний. Многие шахты и другие подобные им крупные предприятия располагают хорошо оснащенными профилакториями и санаториями, в которых медики зорко следят за здоровьем рабочих и инженерно-технических работников.

Ученые установили: если шахтеры за 5—10 минут до и после работы в шахте получают ингаляции соляно-щелочных и йодистых растворов, то профессиональная заболеваемость резко снижается, усиливается функция мерцательного эпителия, меньше оседает пыли в дыхательных путях и легких, предупреждается кашель . Такая профилактика экономит производству рабочие ресурсы.

Эпителий состоит из мерцательных клеток, имеющих на поверхности 20 — 30 постоянно колеблющихся ресничек.

Ресничка состоит из двух осевых стержней и девяти опорных фибрилл: вверху — под электронным микроскопом, внизу — схематический разрез одной реснички (1 — фибриллы, 2 — осевая часть).

Расстояние между ресничками (в микрометрах) 1,5, толщина реснички — 0,3, высота — 10 (слева).
Основной физиологический элемент, очищающий дыхательные пути от попавших в них с воздухом примесей,— мерцательный эпителий. Им покрыта вся поверхность внутренней стенки дыхательных путей (справа).

Две фазы движения реснички: активного удара и возврата в исходное положение.

Огромное количество бокаловидных клеток и слизистых желез выделяет до 500 мл жидкости, стимулирующей мерцательную функцию и удаление инородных примесей из дыхательных путей (на фотографии одна из них).

При ингаляции лечебных аэрозолей частицы в зависимости от своих размеров могут проникать в более глубокие отделы дыхательных путей (справа) или оседать в верхних отделах (слева).

Доктор медицинских наук С. Эйдельштейн, кандидат медицинских наук Е. Цивинский.