Что такое pi в физике. Что такое число пи и какова его история

Недавно на Хабре в одной статье упомянули про вопрос «Что было бы с миром, если бы число Пи равнялось 4?» Я решил слегка поразмышлять на эту тему, используя некоторые (пусть и не самые обширные) знания в соответствующих областях математики. Кому интересно – прошу под кат.

Чтобы представить такой мир, нужно математически реализовать пространство с иным соотношением длины окружности к ее диаметру. Это я и попытался сделать.

Попытка №1.
Оговорим сразу, что рассматривать я буду только двумерные пространства. Почему? Потому что окружность, собственно, определена в двумерном пространстве (если рассмотреть размерность n>2, то отношение меры (n-1)-мерной окружности к ее радиусу даже не будет константой).
Так что для начала я попытался придумать хоть какое-то пространство, где Пи не равно 3.1415… Для этого я взял метрическое пространство с метрикой, в которой расстояние между двумя точками равно максимуму среди модулей разности координат (т.е. расстояние Чебышева).

Какой же вид будет иметь единичная окружность в этом пространстве? Возьмем точку с координатами (0,0) за центр этой окружности. Тогда множество точек, расстояние (в смысле заданной метрики) от которых до центра равно 1, есть 4 отрезка, параллельных осям координат, образующих квадрат со стороной 2 и с центром в нуле.

Да, в некоторой метрике это - окружность!

Посчитаем здесь Пи. Радиус равен 1, тогда диаметр, соответственно, равен 2. Можно также рассмотреть определение диаметра как наибольшего расстояния между двумя точками, но даже так оно равно 2. Осталось найти длину нашей «окружности» в данной метрике. Это сумма длин всех четырех отрезков, которые в данной метрике имеют длину max(0,2)=2. Значит, длина окружности равна 4*2=8. Ну а тогда Пи здесь равно 8/2=4. Получилось! Но нужно ли сильно радоваться? Результат этот практически бесполезен, ведь рассматриваемое пространство абсолютно абстрактно, в нем даже не определены углы и повороты. Вы можете представить себе мир, где по факту не определен поворот, и где окружностью является квадрат? Я пытался, честно, но у меня не хватило воображения.

Радиус равен 1, а вот с нахождением длины этой «окружности» есть некоторые сложности. После некоторых поисков информации в интернете, я пришел к выводу, что в псевдоевклидовом пространстве такое понятие как «число Пи» вообще не может быть определено, что, безусловно, плохо.

Если кто-нибудь в комментариях расскажет мне, как формально считать длину кривой в псевдоевклидовом пространстве, я буду очень рад, ибо моих познаний в дифференциальной геометрии, топологии (а также усердного гугления) для этого не хватило.

Выводы:
Не знаю, можно ли писать о выводах после таких не сильно продолжительных исследований, но кое-что сказать можно. Во-первых, попытавшись представить пространство с иным числом Пи, я понял, что оно будет слишком абстрактно, чтобы быть моделью реального мира. Во-вторых, когда если попытаться придумать более удачную модель (похожую на наш, реальный мир), выходит, что число Пи останется неизменным. Если принять за данность возможность отрицательного квадрата расстояния (что для обычного человека - просто абсурд), то Пи не будет определено вовсе! Все это и наводит на мысль, что, возможно, мира с другим числом Пи и вовсе быть не могло? Ведь не зря же Вселенная именно такая, какая она есть. А может быть, это и реально, только обычной математики, физики и человеческого воображения для этого недостаточно. А вы как считаете?

Upd. Узнал точно. Длина кривой в псевдоевклидовом пространстве может быть определена только на каком-либо его евклидовом подпространстве. То есть, в частности, для получившейся в попытке N3 «окружности» вовсе не определено такое понятие как «длина». Соответственно, Пи там тоже посчитать нельзя.

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια — окружность, периферия и περιµετρoς — периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} — arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 — 4(\frac{1}{3} + \frac{1}{5} — \frac{1}{7} + \frac{1}{9} — \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 — \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} — \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли — Боруэйна — Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} — \frac{2}{8k+4} — \frac{1}{8k+5} — \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n — 1} — \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} — 1} — \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

Одним из самых загадочных чисел, известных человечеству, безусловно, является число Π (читается - пи). В алгебре это число отражает величину соотношения длины окружности и ее диаметра. Ранее эту величину называли лудольфовым числом. Как и откуда взялось число Пи доподлинно не известно, но математики делят на 3 этапа всю историю числа Π, на древний, классический и эру цифровых компьютеров.

Число П - иррационально, то есть его нельзя представить в виде простой дроби, где числитель и знаменатель целые числа. Поэтому, такое число не имеет окончания и является периодическим. Впервые иррациональность П доказал И. Ламберт в 1761 году.

Кроме этого свойства, число П не может являться еще и корнем какого-нибудь многочлена, а потому является числом свойство, когда было доказано в 1882 году, положило конец почти сакральному спору математиков «о квадратуре круга», который продолжался на протяжении 2 500 лет.

Известно, что первым ввел обозначение этого числа британец Джонс в 1706 году. После того как появились труды Эйлера, использование такого обозначения стало общепринятым.

Чтобы детально разобраться, что такое число Пи, следует сказать, что его использование настолько широко, что трудно даже назвать область науки, в которой бы без него обходятся. Одно из самых простых и знакомых еще из школьной программы значений - это обозначение геометрического периода. Отношение длины круга к длине его диаметра является постоянной и равно 3, 14. Это значение было известно еще древнейшим математикам в Индии, Греции, Вавилоне, Египте. Наиболее ранний вариант вычисления соотношения относится к 1900 году до н. э. Более приближенное к современному значение П вычислил китайский ученый Лю Хуэй, кроме того, он изобрел и быстрый способ такого вычисления. Его величина оставалась общепринятой на протяжении почти 900 лет.

Классический период развития математики ознаменовался тем, что чтобы установить точно, что такое число Пи, ученые стали использовать методы математического анализа. В 1400-х годах индийский математик Мадхава использовал для вычисления теорию рядов и определил период числа П с точностью до 11 цифр после запятой. Первым европейцем, после Архимеда, который исследовал число П и внес значительный вклад в его обоснование, стал голландец Людольф ван Цейлен, который определил уже 15 цифр после запятой, а в завещании написал весьма занимательные слова: «…кому интересно - пусть идет дальше». Именно в честь этого ученого, число П и получило свое первое и единственное за всю историю именное название.

Эпоха компьютерных вычислений привнесла новые детали в понимание сущности числа П. Так, чтобы выяснить, что такое число Пи, в 1949 году впервые была использована вычислительная машина ЭНИАК, одним из разработчиков которой был будущий «отец» теории современных компьютеров Дж. Первое измерение велось на протяжении 70 часов и дало 2037 цифр после запятой в периоде числа П. Отметка в миллион знаков была достигнута в 1973 году. Кроме того, в этот период были установлены и другие формулы, отражающие число П. Так, братья Чудновские смогли найти такую, которая позволила вычислить 1 011 196 691 цифр периода.

Вообще следует отметить, что чтобы ответить на вопрос: "Что такое число Пи?", многие исследования стали напоминать соревнования. Сегодня уже суперкомпьютеры занимаются вопросом, какое же оно на самом деле, число Пи. интересные факты, связанные с этими исследованиями, пронизывают практически всю историю математики.

Сегодня, например, проводятся мировые чемпионаты по запоминанию числа П и фиксируются мировые рекорды, последний принадлежит китайцу Лю Чао, за сутки с небольшим, назвал 67 890 знаков. В мире есть даже праздник числа П, который отмечается как «День числа Пи».

По данным на 2011 год уже установлено 10 триллионов цифр периода числа.

14 мар 2012

14 марта математики отмечают один из самых необычных праздников - Международный день числа «Пи». Эта дата выбрана неслучайно: числовое выражение π (Пи) - 3,14 (3 месяц (март) 14 число).

Впервые с этим необычным числом школьники сталкиваются уже в младших классах при изучении круга и окружности. Число π - математическая константа, которая выражает отношение длины окружности к длине ее диаметра. Т.е если взять окружность с диаметром равным единице, то длина окружности и будет равна числу «Пи». Число π имеет бесконечную математическую продолжительность, но в повседневных вычислениях используют упрощенное написание числа, оставляя только два знака после запятой, - 3,14.

В 1987 году этот день отмечался впервые. Физик Ларри Шоу из Сан-Франциско заметил, что в американской системе записи дат (месяц / число) дата 14 марта - 3/14 совпадает с числом π (π = 3,1415926…). Обычно празднования начинаются в 1:59:26 дня (π = 3,1415926 …).

История числа «Пи»

Предполагается, что история числа π начинается в Древнем Египте. Египетские математики определяли площадь круга диаметром Dкак (D-D/9) 2 . Из данной записи видно, что в то время число π приравнивали к дроби (16/9) 2 , или 256/81, т.е. π 3,160...

В VI в. до н.э. в Индии в религиозной книге джайнизма есть записи, свидетельствующие о том, что число π в то время принимали равным квадратному корню из 10, что даёт дробь 3,162...
В III в. до н.э.Архимед в своей небольшой работе "Измерение круга" обосновал три положения:

  1. Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;
  2. Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14;
  3. Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71.

Последнее положение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10 / 71и 3*1/7, а это означает, что число «пи» равно 3,1419... Истинное значение этого отношения 3,1415922653...
В V в. до н.э. китайский математик Цзу Чунчжи нашёл более точное значение этого числа: 3,1415927...
Впервой половине XV в. астроном и математикал-Каши вычислил π с 16 десятичными знаками.

Спустя полтора столетия в Европе Ф.Виетнашёл число π только с 9 правильными десятичными знаками: он сделал 16 удвоений числа сторон многоугольников. Ф.Виетпервым заметил, что π можно отыскать, используя пределы некоторых рядов. Это открытие имело большое значение, оно позволило вычислить π с какой угодно точностью.

В 1706 г английский математик У.Джонсон ввёл обозначение отношения длины окружности к диаметру и обозначил его современным символом π первой буквой греческого слова periferia-окружность.

На протяжении длительного периода времени учёные всего мира пытались разгадать тайну этого загадочного числа.

В чем же сложность вычисления значения π ?

Число π является иррациональным: его невозможно выразить в виде дроби p/q, где p и q целые числа, данное число не может быть корнем алгебраического уравнения. Нельзя указать алгебраическое или дифференциальное уравнение, корнем которого будет π, поэтому данное число называется трансцендентным и вычисляется путём рассмотрения какого-либо процесса и уточняется за счет увеличения шагов рассматриваемого процесса. Множественные попытки просчитать максимальное количество знаков числа π привели к тому, что сегодня, благодаря современной вычислительной технике, можно рассчитать последовательность с точностью в 10 триллионов цифр после запятой.

Цифры десятичного представления числа π достаточно случайны. В десятичном разложении числа можно найти любую последовательность цифр. Предполагают, что в данном числе в зашифрованном виде есть все написанные и ненаписанные книги, любая информация, которую только можно представить, находится в числе π.

Можете сами попробовать разгадать тайну этого числа самостоятельно. Записать число «Пи» полностью, конечно не получится. Но самым любопытным предлагаю рассмотреть первые 1000 знаковчисла π = 3,
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Запоминаем число «Пи»

В настоящее время с помощью вычислительной техники вычислено в десять триллионов знаков числа «Пи». Максимальное число цифр, которое смог запомнить человек составляет сто тысяч.

Чтобы запомнить максимальное количество знаков числа «Пи», используют различные стихотворные «запоминалки», в которых слова с определённым количеством букв располагаются в такой же последовательности, как цифры в числе «Пи»: 3,1415926535897932384626433832795…. Для восстановления числа необходимо подсчитать число символов в каждом из слов и записать по порядку.

Вот и знаю я число, именуемое "Пи". Молодец! (7 цифр)

Вот и Миша и Анюта прибежали
Пи узнать число они желали. (11 цифр)

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду. (21 цифра)

Раз у Коли и Арины
Распороли мы перины.
Белый пух летал, кружился,
Куражился, замирал,
Ублажился,
Нам же дал
Головную боль старух.
Ух, опасен пуха дух! (25 знаков)

Можно использовать рифмованные строки, которые помогают запомнить нужное число.

Чтобы нам не ошибиться,
Нужно правильно прочесть:
Девяносто два и шесть

Если очень постараться,
Можно сразу пи прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.

Три, четырнадцать, пятнадцать,
Девять, два, шесть, пять, три, пять.
Чтоб наукой заниматься,
Это каждый должен знать.

Можно просто постараться
И почаще повторять:
«Три, четырнадцать, пятнадцать,
Девять, двадцать шесть и пять».

Остались вопросы? Хотите знать больше о числе "Пи"?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!