Биотрансформация большинства лекарственных веществ происходит в. Биотрансформация лекарственных средств в организме. Факторы, определяющие действие ЛС


Биотрансформация (метаболизм) - изменение химической структуры лекарственных веществ и их физико-химических свойств под действием ферментов организма. Основной направленностью этого процесса является превращение липофильных веществ, которые легко реабсорбируются в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах). В процессе биотрансформации, как правило, происходит снижение активности (токсичности) исходных веществ.
Биотрансформация липофильных ЛВ в основном происходит под влиянием ферментов печени, локализованных в мембране эндоплазматического ретикулума гепатоцитов. Эти ферменты называются микросомальными, потому что

они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматического ретикулума (микросомами), которые образуются при гомогенизации печеночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаются в так называемой «микросомальной» фракции).
В плазме крови, а также в печени, кишечнике, легких, коже, слизистых оболочках и других тканях имеются немикросомальные ферменты, локализованные в цитозоле или митохондриях. Эти ферменты могут участвовать в метаболизме гидрофильных веществ.
Различают два основных вида метаболизма лекарственных веществ: несинтетические реакции (метаболическая трансформация); синтетические реакции (конъюгация).
Лекарственные вещества могут подвергаться или метаболической биотрансформации (при этом образуются вещества, называемые метаболитами), или конъюгации (образуются конъюгаты). Но большинство Л В сначала метаболизируется при участии несинтетических реакций с образованием реакционноспособных метаболитов, которые затем вступают в реакции конъюгации.
Кметаболической трансформации относятся следующие реакции: окисление, восстановление, гидролиз. Многие липофильные соединения подвергаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р-450-редуктаза и цитохром Р-450 - гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (лекарственному веществу) с образованием гидроксильной группы (реакция гидро- ксилирования).
RH + 02 + НАДФН + Н+ -> ROH + Н20 + НАДФ+,
где RH - лекарственное вещество, a ROH - метаболит.
Оксидазы смешанных функций обладают низкой субстратной специфичностью. Известно много изоформ цитохрома Р-450 (Cytochrome Р-450, CYP), каждая из которых может метаболизировать несколько лекарственных веществ. Так, изоформа CYP2C9 участвует в метаболизме варфарина, фенитоина, ибупрофена, CYP2D6 метаболизирует имипрамин, галоперидол, пропранолол, a CYP3A4 - карбамазепин, циклоспорин, эритромицин, нифедипин, верапамил и некоторые другие вещества. Окисление некоторых лекарственных веществ происходит под влиянием немикросомальных ферментов, которые локализованы в цитозоле или митохондриях. Для этих ферментов характерна субстратная специфичность, например, моноаминоксидаза А метаболизирует норадреналин, адреналин, серотонин, алкогольдегидрогеназа метаболизирует этиловый спирт до ацетальдегида.
Восстановление лекарственных веществ может происходить при участии мик- росомальных (хлорамфеникол) и немикросомальных ферментов (хлоралгидрат, налоксон).
Гидролиз лекарственных веществ осуществляется в основном немикросомаль- ными ферментами (эстеразами, амидазами, фосфатазами) в плазме крови и тканях. При этом вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах лекарственных веществ. Гидролизу подвергаются сложные эфиры - ацетилхолин, суксаметоний (гидролизуются при участии холинэстераз), амиды (прокаинамид), ацетилсалициловая кислота (см. табл. 1.1).
Таблица 1.1. Основные пути метаболизма (биотрансформации) лекарственных веществ

Процессы биотрансформации. Ферменты Химические
реакции
Лекарственные
вещества
Метаболические реакции
Окисление
Гидроксилазы
Гидроксилирование Фенобарбитал, кодеин, циклоспорин, фенитоин, пропранолол, варфарин.
Деметилазы Дезаминирование Диазепам, амфетамин, эфедрин.
N-оксидазы N-окисление Морфин, хинидин, ацетаминофен.
S-оксидазы S-окисление Фенотиазины, омепразол, циметидин
Восстановление

Редуктазы Восстановление Хлоралгидрат, метронидазол, нитро- фураны
Гидролиз
Эстеразы
Гидролиз сложных эфиров Прокаин, ацетилсалициловая кислота, эналаприл, кокаин.
Амидазы Гидролиз амидов Новокаинамид, лидокаин, индомета-


цин

Биосинтетические реакции

Конъюгация с Остатка
Сулъфотрансферазы
эм серной кислоты
Образование сульфатов
Ацетаминофен, стероиды, метилдофа, эстрон
Конъюгация с остатка
Глюкуронилтрансфе- раза
эм глюкуроновой кислоты
Образование эфиров, тио- эфиров или амидов глюкуроновой кислоты
Ацетаминофен, хлорамфеникол, диазепам, морфин, дигоксин
Конъюгация с остатками а-ами- нокислот (глицином, глутамином) Амидирование Никотиновая кислота, салициловая кислота
Метилирование
Метилтрансферазы
Присоединение метальной группы Допамин, эпинефрин, гистамин
Ацетилирование
N-ацетилтрансфе-
разы
Образование амидов уксусной кислоты н
Сульфаниламиды, изониазид

Метаболиты, которые образуются в результате несинтетических реакций, могут в отдельных случаях обладать более высокой активностью, чем исходные соединения. Примером повышения активности лекарственных веществ в процессе метаболизма является использование предшественников лекарств (пролекарства). Пролекарства фармакологически неактивны, но в организме они превращаются в активные вещества. Например, препарат для лечения неспецифического язвенного колита салазопиридазин под действием фермента азоредуктазы кишечника превращается в сульфапиридазин и 5-аминосалициловую кислоту, обладающие антибактериальным и противовоспалительным действием. Многие антигипертензивные средства, например ингибиторы ангиотензин-пре- вращающего фермента (эналаприл), гидролизуются в организме с образованием активных соединений. Пролекарства обладают рядом преимуществ. Очень часто с их помощью решаются проблемы с доставкой лекарственного вещества к месту его действия. Например, леводопа является предшественником дофамина, но в отличие от дофамина она проникает через гематоэнцефалический барьер в ЦНС, где под действием ДОФА-декарбоксилазы превращается в активное вещество - дофамин.
Иногда продукты метаболической трансформации оказываются более токсичными, чем исходные соединения. Так, токсические эффекты препаратов, содержащих нитрогруппы (метронидазол, нитрофурантоин), определяются промежуточными продуктами метаболического восстановления N02-rpynn.
В процессе биосинтетических реакций (конъюгация) к функциональным группировкам молекул лекарственных веществ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой кислоты, глутатиона, глицина, сульфаты и др.) или высокополярные химические группы (ацетильные, метальные группы). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легкие, почки). Локализуются ферменты в микросомах или в цитозольной фракции (см. табл. 1.1).
Наиболее общей реакцией является конъюгация с глюкуроновой кислотой. Присоединение остатков глюкуроновой кислоты (образование глюкуронидов) происходит при участии микросомального фермента UDP-глюкуронилтрансфе- разы, обладающей низкой субстратной специфичностью, вследствие чего очень многие лекарственные вещества (а также некоторые экзогенные соединения, такие как кортикостероиды и билирубин) вступают в реакцию конъюгации с глюкуроновой кислотой. В процессе конъюгации образуются высокополярные гидрофильные соединения, которые быстро выводятся почками (многие метаболиты также подвергаются конъюгаций). Конъюгаты, как правило, менее активны и токсичны, чем исходные лекарственные вещества.
Скорость биотрансформации лекарственных веществ зависит от многих факторов. В частности, активность ферментов, метаболизирующих лекарственные вещества, зависит от пола, возраста, состояния организма, одновременного назначения других лекарственных средств. У мужчин активность микросомальных ферментов выше, чем у женщин, так как синтез этих ферментов стимулируется мужскими половыми гормонами. Поэтому некоторые вещества метаболизируются быстрее у мужчин, чем у женщин.
В эмбриональном периоде отсутствует большинство ферментов метаболизма лекарственных веществ, у новорожденных в первый месяц жизни активность этих ферментов снижена и достигает достаточного уровня лишь через 1-6 мес. Поэтому в первые недели жизни не рекомендуется назначать такие лекарственные вещества, как хлорамфеникол (вследствие недостаточной активности ферментов замедлены процессы его конъюгации и проявляются токсические эффекты).
Активность ферментов печени снижается в старческом возрасте, вследствие чего уменьшается скорость метаболизма многих лекарственных веществ (лицам старше 60 лет такие препараты назначают в меньших дозах). При заболеваниях печени снижается активность микросомальных ферментов, замедляется биотрансформация некоторых лекарственных веществ и происходит усиление и удлинение их действия. У утомленных и ослабленных больных обезвреживание лекарственных веществ происходит медленнее.

Под действием некоторых лекарственных веществ (фенобарбитал, рифампи- цин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).
Некоторые лекарственные вещества (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может повысить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких лекарственных веществ, как циклоспорин, мидазолам, алпразолам и, следовательно, усиливают их действие. При одновременном применении лекарственных веществ с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.
Скорость метаболизма некоторых лекарственных веществ определяется генетическими факторами. Появился раздел фармакологии - фармакогенетика, одной из задач которого является изучение патологии ферментов лекарственного метаболизма. Изменение активности ферментов часто является следствием мутации гена, контролирующего синтез данного фермента. Нарушение структуры и функции фермента называют энзимопатией (ферментопатией). При энзимопатиях активность фермента может быть повышена, и в этом случае процесс метаболизма лекарственных веществ ускоряется и их действие снижается. И наоборот, активность ферментов может быть снижена, вследствие чего разрушение лекарственных веществ будет происходить медленнее и действие их будет усиливаться вплоть до появления токсических эффектов. Особенности действия лекарственных веществ у лиц с генетически измененной активностью ферментов приведены в табл. Ь2.
Таблица 1.2. Особые реакции организма на лекарственные вещества при генетической недостаточности некоторых ферментов

Недостаточность
фермента
Особые
реакции
Лекарственные
вещества
Распространение среди населения^
Глюкозо-6-фосфатде- гидрогеназа эритроцитов Гемолиз эритроцитов вследствие образования хинона. Гемолитическая анемия Хинин, хинидин, сульфаниламиды, ацетилсалициловая кислота, хлорамфеникол Тропические и субтропические страны; до 100 млн человек
N-ацетилтрансфераза
печени
Более частые побочные реакции из-за медленного ацетилирования веществ Изониазид, сульфаниламиды, прокаинамид Европеоиды (до 50%)
Каталаза Отсутствие эффекта из-за медленного образования атомарного кислорода Перекись водорода В Японии, Швейцарии (до 1%)
Псевдохолинэстераза плазмы крови Длительная релаксация скелетных мышц (6-8 ч вместо 5-7 мин) из-за медленного гидролиза вещества Сукцинилхолин (дити- лин) Европеоиды (0,04%), эскимосы (1%)


Биотрансформация (метаболизм) - изменение химической структуры лекарственных веществ и их физико-химических свойств под действием ферментов организма. Основной направленностью этого процесса является превращение липофильных веществ, которые легко реабсорбируются в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах). В процессе биотрансформации, как правило, происходит снижение активности (токсичности) исходных веществ.
Биотрансформация липофильных ЛВ в основном происходит под влиянием ферментов печени, локализованных в мембране эндоплазматического ретикулума гепатоцитов. Эти ферменты называются микросомальными, потому что

они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматического ретикулума (микросомами), которые образуются при гомогенизации печеночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаются в так называемой «микросомальной» фракции).
В плазме крови, а также в печени, кишечнике, легких, коже, слизистых оболочках и других тканях имеются немикросомальные ферменты, локализованные в цитозоле или митохондриях. Эти ферменты могут участвовать в метаболизме гидрофильных веществ.
Различают два основных вида метаболизма лекарственных веществ:

  • несинтетические реакции (метаболическая трансформация);
  • синтетические реакции (конъюгация).
Лекарственные вещества могут подвергаться или метаболической биотрансформации (при этом образуются вещества, называемые метаболитами), или конъюгации (образуются конъюгаты). Но большинство Л В сначала метаболизируется при участии несинтетических реакций с образованием реакционноспособных метаболитов, которые затем вступают в реакции конъюгации.
Кметаболической трансформации относятся следующие реакции: окисление, восстановление, гидролиз. Многие липофильные соединения подвергаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р-450-редуктаза и цитохром Р-450 - гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (лекарственному веществу) с образованием гидроксильной группы (реакция гидро- ксилирования).
RH + 02 + НАДФН + Н+ -gt; ROH + Н20 + НАДФ+,
где RH - лекарственное вещество, a ROH - метаболит.
Оксидазы смешанных функций обладают низкой субстратной специфичностью. Известно много изоформ цитохрома Р-450 (Cytochrome Р-450, CYP), каждая из которых может метаболизировать несколько лекарственных веществ. Так, изоформа CYP2C9 участвует в метаболизме варфарина, фенитоина, ибупрофена, CYP2D6 метаболизирует имипрамин, галоперидол, пропранолол, a CYP3A4 - карбамазепин, циклоспорин, эритромицин, нифедипин, верапамил и некоторые другие вещества. Окисление некоторых лекарственных веществ происходит под влиянием немикросомальных ферментов, которые локализованы в цитозоле или митохондриях. Для этих ферментов характерна субстратная специфичность, например, моноаминоксидаза А метаболизирует норадреналин, адреналин, серотонин, алкогольдегидрогеназа метаболизирует этиловый спирт до ацетальдегида.
Восстановление лекарственных веществ может происходить при участии мик- росомальных (хлорамфеникол) и немикросомальных ферментов (хлоралгидрат, налоксон).
Гидролиз лекарственных веществ осуществляется в основном немикросомаль- ными ферментами (эстеразами, амидазами, фосфатазами) в плазме крови и тканях. При этом вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах лекарственных веществ. Гидролизу подвергаются сложные эфиры - ацетилхолин, суксаметоний (гидролизуются при участии холинэстераз), амиды (прокаинамид), ацетилсалициловая кислота (см. табл. 1.1).
Таблица 1.1. Основные пути метаболизма (биотрансформации) лекарственных веществ

Процессы биотрансформации. Ферменты

Химические
реакции

Лекарственные
вещества

Метаболические реакции

Окисление
Гидроксилазы

Гидроксилирование

Фенобарбитал, кодеин, циклоспорин, фенитоин, пропранолол, варфарин.

Деметилазы

Дезаминирование

Диазепам, амфетамин, эфедрин.

N-оксидазы

N-окисление

Морфин, хинидин, ацетаминофен.

S-оксидазы

S-окисление

Фенотиазины, омепразол, циметидин

Восстановление



Редуктазы

Восстановление

Хлоралгидрат, метронидазол, нитро- фураны

Гидролиз
Эстеразы

Гидролиз сложных эфиров

Прокаин, ацетилсалициловая кислота, эналаприл, кокаин.

Амидазы

Гидролиз амидов

Новокаинамид, лидокаин, индомета-



цин

Биосинтетические реакции

Конъюгация с Остатка
Сулъфотрансферазы

эм серной кислоты
Образование сульфатов

Ацетаминофен, стероиды, метилдофа, эстрон

Конъюгация с остатка
Глюкуронилтрансфе- раза

эм глюкуроновой кислоты
Образование эфиров, тио- эфиров или амидов глюкуроновой кислоты

Ацетаминофен, хлорамфеникол, диазепам, морфин, дигоксин

Конъюгация с остатками а-ами- нокислот (глицином, глутамином)

Амидирование

Никотиновая кислота, салициловая кислота

Метилирование
Метилтрансферазы

Присоединение метальной группы

Допамин, эпинефрин, гистамин

Ацетилирование
N-ацетилтрансфе-
разы

Образование амидов уксусной кислоты

н
Сульфаниламиды, изониазид

Метаболиты, которые образуются в результате несинтетических реакций, могут в отдельных случаях обладать более высокой активностью, чем исходные соединения. Примером повышения активности лекарственных веществ в процессе метаболизма является использование предшественников лекарств (пролекарства). Пролекарства фармакологически неактивны, но в организме они превращаются в активные вещества. Например, препарат для лечения неспецифического язвенного колита салазопиридазин под действием фермента азоредуктазы кишечника превращается в сульфапиридазин и 5-аминосалициловую кислоту, обладающие антибактериальным и противовоспалительным действием. Многие антигипертензивные средства, например ингибиторы ангиотензин-пре- вращающего фермента (эналаприл), гидролизуются в организме с образованием активных соединений. Пролекарства обладают рядом преимуществ. Очень часто с их помощью решаются проблемы с доставкой лекарственного вещества к месту его действия. Например, леводопа является предшественником дофамина, но в отличие от дофамина она проникает через гематоэнцефалический барьер в ЦНС, где под действием ДОФА-декарбоксилазы превращается в активное вещество - дофамин.
Иногда продукты метаболической трансформации оказываются более токсичными, чем исходные соединения. Так, токсические эффекты препаратов, содержащих нитрогруппы (метронидазол, нитрофурантоин), определяются промежуточными продуктами метаболического восстановления N02-rpynn.
В процессе биосинтетических реакций (конъюгация) к функциональным группировкам молекул лекарственных веществ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой кислоты, глутатиона, глицина, сульфаты и др.) или высокополярные химические группы (ацетильные, метальные группы). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легкие, почки). Локализуются ферменты в микросомах или в цитозольной фракции (см. табл. 1.1).
Наиболее общей реакцией является конъюгация с глюкуроновой кислотой. Присоединение остатков глюкуроновой кислоты (образование глюкуронидов) происходит при участии микросомального фермента UDP-глюкуронилтрансфе- разы, обладающей низкой субстратной специфичностью, вследствие чего очень многие лекарственные вещества (а также некоторые экзогенные соединения, такие как кортикостероиды и билирубин) вступают в реакцию конъюгации с глюкуроновой кислотой. В процессе конъюгации образуются высокополярные гидрофильные соединения, которые быстро выводятся почками (многие метаболиты также подвергаются конъюгаций). Конъюгаты, как правило, менее активны и токсичны, чем исходные лекарственные вещества.
Скорость биотрансформации лекарственных веществ зависит от многих факторов. В частности, активность ферментов, метаболизирующих лекарственные вещества, зависит от пола, возраста, состояния организма, одновременного назначения других лекарственных средств. У мужчин активность микросомальных ферментов выше, чем у женщин, так как синтез этих ферментов стимулируется мужскими половыми гормонами. Поэтому некоторые вещества метаболизируются быстрее у мужчин, чем у женщин.
В эмбриональном периоде отсутствует большинство ферментов метаболизма лекарственных веществ, у новорожденных в первый месяц жизни активность этих ферментов снижена и достигает достаточного уровня лишь через 1-6 мес. Поэтому в первые недели жизни не рекомендуется назначать такие лекарственные вещества, как хлорамфеникол (вследствие недостаточной активности ферментов замедлены процессы его конъюгации и проявляются токсические эффекты).
Активность ферментов печени снижается в старческом возрасте, вследствие чего уменьшается скорость метаболизма многих лекарственных веществ (лицам старше 60 лет такие препараты назначают в меньших дозах). При заболеваниях печени снижается активность микросомальных ферментов, замедляется биотрансформация некоторых лекарственных веществ и происходит усиление и удлинение их действия. У утомленных и ослабленных больных обезвреживание лекарственных веществ происходит медленнее.

Под действием некоторых лекарственных веществ (фенобарбитал, рифампи- цин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).
Некоторые лекарственные вещества (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может повысить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких лекарственных веществ, как циклоспорин, мидазолам, алпразолам и, следовательно, усиливают их действие. При одновременном применении лекарственных веществ с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.
Скорость метаболизма некоторых лекарственных веществ определяется генетическими факторами. Появился раздел фармакологии - фармакогенетика, одной из задач которого является изучение патологии ферментов лекарственного метаболизма. Изменение активности ферментов часто является следствием мутации гена, контролирующего синтез данного фермента. Нарушение структуры и функции фермента называют энзимопатией (ферментопатией). При энзимопатиях активность фермента может быть повышена, и в этом случае процесс метаболизма лекарственных веществ ускоряется и их действие снижается. И наоборот, активность ферментов может быть снижена, вследствие чего разрушение лекарственных веществ будет происходить медленнее и действие их будет усиливаться вплоть до появления токсических эффектов. Особенности действия лекарственных веществ у лиц с генетически измененной активностью ферментов приведены в табл. 1gt;2.
Таблица 1.2. Особые реакции организма на лекарственные вещества при генетической недостаточности некоторых ферментов


Недостаточность
фермента

Особые
реакции

Лекарственные
вещества

Распространение среди населения^

Глюкозо-6-фосфатде- гидрогеназа эритроцитов

Гемолиз эритроцитов вследствие образования хинона. Гемолитическая анемия

Хинин, хинидин, сульфаниламиды, ацетилсалициловая кислота, хлорамфеникол

Тропические и субтропические страны; до 100 млн человек

N-ацетилтрансфераза
печени

Более частые побочные реакции из-за медленного ацетилирования веществ

Изониазид, сульфаниламиды, прокаинамид

Европеоиды (до 50%)

Каталаза

Отсутствие эффекта из-за медленного образования атомарного кислорода

Перекись водорода

В Японии, Швейцарии (до 1%)

Псевдохолинэстераза плазмы крови

Длительная релаксация скелетных мышц (6-8 ч вместо 5-7 мин) из-за медленного гидролиза вещества

Сукцинилхолин (дити- лин)

Европеоиды (0,04%), эскимосы (1%)

Лекарственные средства в результате химической модификации, как правило, теряют свою биологическую активность. Таким образом, эти реакции лимитируют во времени действие лекарств. При патологии печени, сопровождающейся снижением активности микросомальных ферментов, продолжительность действия ряда лекарственных веществ увеличивается. Некоторые препараты снижают активность монооксигеназной системы. Например, левомицетин и бутадиен ингибируют ферменты микросомального окисления. Антихолинэстеразные средства, ингибиторы моноаминооксидазы, нарушают функционирование фазы конъюгации, поэтому они пролонгируют эффекты препаратов, которые инактивируются этими ферментами. Кроме того, скорость каждой из реакций биотрансформации лекарственного вещества зависит от генетических, физиологических факторов и экологического состояния окружающей среды.

Возрастные особенности. Чувствительность к лекарственным средствам меняется в зависимости от возраста. Например, у новорождённых активность метаболизма лекарств в первый месяц жизни существенно отличается от взрослых. Это связано с недостаточностью многих ферментов, участвующих в биотрасформации лекарственных веществ, функции почек, повышенной проницаемостью гематоэнцефалического барьера, недоразвитием ЦНС. Так, новорождённые более чувствительны к некоторым веществам, влияющим на ЦНС (в частности, к морфину). Очень токсичен для них левомицетин; это объясняется тем, что в печени у новорождённых малоактивны ферменты, необходимые для его биотрансформации. В пожилом возрасте метаболизм лекарственных веществ протекает менее эффективно: снижается функциональная активность печени, нарушается скорость экскреции препаратов почками. В целом чувствительность к большинству лекарственных средств в пожилом возрасте повышена, в связи с чем их доза должна быть снижена.

Генетические факторы . Индивидуальные различия в метаболизме ряда препаратов и в реакциях на препараты объясняют генетическим полиморфизмом, т.е. существованием в популяции изоформ некоторых ферментов биотрансформации. В ряде случаев повышенная чувствительность к лекарственным средствам может быть обусловлена аследственной недостаточностью некоторых ферментов, участвующих в химической модификации. Например, при генетической недостаточности холинэстеразы плазмы крови длительность действия миорелаксанта дитилина резко возрастает и может достигать 6-8 ч и более (в обычных условиях дитилин действует в течение 5-7 мин). Известно, что скорость ацетилирования противотуберкулёзного средства изониазида варьирует довольно широко. Выделяют лиц с быстрой и медленной метаболизирующей активностью. Считают, что у лиц с медленной инактивацией изониазида нарушена структура белков, регулирующих синтез фермента ацетилтрансферазы, обеспечивающего конъюгацию изониазида с ацетильным остатком.

Факторы окружающей среды . Существенное влияние на метаболизм лекарственных веществ в организме оказывают также факторы окружающей среды, такие как ионизирующая радиация, температура, состав пищи и особенно различные химические вещества (ксенобиотики), в том числе и сами лекарственные вещества.

Связывание лекарственных средств с белками плазмы крови

Распределение лекарственных средств в организме

После абсорбции (всасывания) ЛС попадает в системное циркуляторное русло и распределяется по органам и тканям организма.

Биологические барьеры, влияющие на распределение лекарств:

1. стенка капилляра;

2. клеточные мембраны;

3. гематоэнцефалический барьер;

4. плацентарный барьер.

Факторы, влияющие на распределение ЛС в организме:

1. растворимость ЛС в воде и липидах:

Гидрофильные ЛС проникают только через мембраны капилляров и накапливаются во внеклеточном пространстве;

Липофильные ЛС проникают через все биомембраны;

Нерастворимые в воде и липидах ЛС проникают в клетки через поры в мембранах или путём активного транспорта;

2. способность связываться с белками плазмы крови;

3. особенности регионарного кровотока (в первую очередь ЛС попадают в хорошо кровоснабжаемые органы – сердце, лёгкие, печень, почки);

4. способность ЛС к диффузии в органы и ткани;

5. функциональное состояние сердечно - сосудистой системы.

ЛС в кровеносных и лимфатических сосудах в зависимости от особенностей своей химической структуры взаимодействуют и связываются с белками плазмы крови, вследствие чего теряют способность проникать через мембраны клеток. Таким образом, в циркуляторном русле ЛС находится в активной и неактивной формах, находящихся, как правило, в равновесии при одинаковом сродстве ЛС к белкам плазмы и тканям организма. Белки плазмы играют роль депо ЛС. Связи ЛС с белками непрочные и между ЛС существует конкуренция, что может приводить к повышению концентрации ЛС, освободившегося от связи с белком.

Связь ЛС с белками плазмы приводит к:

1. увеличению концентрации ЛС в крови;

2. образованию депо ЛС в крови;

3. увеличению периода полувыведения ЛС.

Факторы, ограничивающие способность белков плазмы к связыванию с ЛС:

1. уремия;

2. гипоальбуминемия(менее 30 г/л);

3. гипербилирубинемия и печёночная недостаточность;

4. свободные жирные кислоты, в большей степени пальмитиновая, чем олеиновая

Факторы, усиливающие способность белков плазмы к связыванию с ЛС

1. острое воспаление;

2. начальная стадия инфекционного заболевания;

3. увеличение СОЭ (более 20 мм/ч).

Некоторые ЛС могут связываться с белками тканей и накапливаться в них (сердечные гликозиды), а также с мембранами эритроцитов.

Биодоступность ЛС – это содержание свободного (не связанного с белками) ЛС в плазме крови.

Биотрансформация (метаболизм) – это комплекс физико-химических и/или биохимических реакций, превращающих ЛС в водорастворимые соединения (метаболиты), легко выводящиеся из организма. Как правило, образовавшиеся метаболиты менее активны и токсичны, но может быть и наоборот.


Биотрасформация может происходить во многих органах и тканях (стенка кишечника, плазма крови, почки, лёгкие), но в большинстве случаев в печени (в микросомах – микросомальная биотрансформация, в митохондриях и цитоплазме – немикросомальная биотрансформация).

Виды биотрансформации ЛС:

1. метаболическая трансформация - превращение веществ в метаболиты в результате окисления, восстановления, гидролиза;

2. коньюгация - процесс, сопровождающийся присоединением к ЛС или его метаболитам ряда химических групп или молекул эндогенных соединений.

Фазы биотрансформации:

1. I фаза несинтетических химических реакций (образование активного радикала);

2. II фаза синтетических химических реакций (присоединение к активному радикалу эндогенных молекул глюкуроновой кислоты, глицина, сульфата, воды и др. и образование растворимых в воде соединений, которые выводятся с мочой).

Метаболизм ЛС приводит к:

1. уменьшению растворимости ЛС в липидах;

2. уменьшению биологической активности лекарственного препарата.

Основные места и способы метаболизма лекарственных и токсических веществ в организме (схема)

Факторы, влияющие на биотрансформацию:

1. возраст;

2. пол;

3. особенности питания (усиливают метаболизм ЛС приём жирной пищи, алкоголя, кофе, чая; тормозит метаболизм приём низкобелковой пищи);

4. вредные привычки (усиление метаболизма ЛС – алкоголь, курение);

5. одновременный приём других лекарственных препаратов (усиление метаболизма – фенобарбитал, резерпин; торможение - циметидин);

6. функциональное состояние печени;

7. кровоснабжение печени и др.

Биотрансформация

Виды:

    Метаболическая трансформация – превращение веществ за счет окисления, восстановления и гидролиза.

    Конъюгация – это биосинтетический процесс, сопровождащийся присоединением к лекарственным веществ или его метаболитам ряда химических препаратов.

Выведение ЛВ из организма:

    Элиминация – выведение лекарственных средств из организма в результате биотрансформации и экскреции.

    Пресистемная – осуществляется при прохождении ЛВ через стенку кишечника, печень, легкие до его попадания в систему кровообращения (до его действия).

    Системная – удаление вещества из системы кровообращения (после его действия).

    Экскреция – выведение лекарственных средств (с мочой, калом, секретами желез, выдыхаемым воздухом).

Для количественной характеристика элиминации используют параметры:

    Константа скорости элиминации (Ке lim ) - отражает скорость удаления вещества из организма.

«Период полужизни » (Т50) – отражает время, необходимое для снижения концентрации вещества в плазме крови на 50%

Клиренс – отражает скорость очищения плазмы крови от ЛВ (мл/мин; мл/кг/мин).

Фармакодинамика

Фармакодинамика – раздел фармакологии, изучающий локализацию, механизм действия ЛС и их биохимические эффекты (то что лекарство делает с организмом).

Для проявления действия ЛС должно вступить во взаимодействие с биологическими субстратами.

Мишени:

    Рецептор

    Мембраны клеток

    Ферменты

    Транспортные системы

Типы рецепторов:

    Рецепторы, осуществляющие прямой контроль за функцией ионных каналов. (HXR…).

    Рецепторы связанные с G-белками (R и G – белок – ионные каналы) (MXR).

    Рецепторы, осществляющие прямой контроль за функцией ферментов клетки (R-инсулина).

    Рецепторы, контролирующие транскрипцию ДНК (внутриклеточные рецепторы).

По отношению к рецепторам ЛС обладают аффинитетом и внутренней активностью.

Аффинитет (сродство) – способность ЛВ образовывать комплекс с рецептором.

Внутренняя активность – способность вызывать появлением клеточного ответа при связи с рецептором.

В зависимости от выраженности аффинитета и наличия внутренней активности ЛВ разделяют на:

    Агонисты (миметики – вещества обладающие аффинитетом и высокой внутренней активностью).

  • Частичные

    Атогонисты (блокаторы – вещества с высоким аффинитетом, но лишенные внутренней активностью (закрывают свои рецепторы и препятствуют действию эндогенных лигандов, либо агонистов).

    Конкурентные

    Неконкурентные

    Агонист – антогонист (на один подтип рецепторов влияет как агонист и на другой подтип рецепторов как антогонист).

Виды действия ЛВ:

    Местные (на месте приложения)

    Резорбтивные (при всасывании – на систему)

  • Рефлекторное

    Косвенное

    Обратимое

    Необратимое

    Избирательное

    Неизбирательное

    Побочное

Общая характеристика действия ЛС на организм (по Н.В. Вершининну).

    Тонизирование ( функции до нормы)

    Возбуждение ( функции сверх нормы)

    Успокаивающие действие (↓ повышенной функции до нормы).

    Угнетение (↓ функции ниже нормы)

    Паралич (прекращение функции)

    Основное действие ЛВ

    Побочное действие ЛВ

    Желательные

    Нежелательные

Нежелательные реакции ЛВ:

1 тип:

    Связанные с передозировкой

    Связанные с отравлением

2 тип:

    Связан с фармакологическими свойствами лекарственных веществ

2 тип:

Прямые токсические реакции

    Нейротоксичность (ЦНС)

    Гепатоксичность (функции печени)

    Нефротоксичность (функции почек)

    Ульцерогенный эффект (слизистая оболочка кишечника и желудка)

    Гематотоксичность (кровь)

    Влияние на эмбрион и плод:

    Эмбриотоксическое действие

    Тератогенное действие (уродство)

    Фетотоксическое действие (гибель плода)

Мутагенность (способность ЛВ вызывать стойкое повреждение зародышевой клетки и ее генетического аппарата, что проявляется в изменении генотипа потомства).

Концерогенность (способность ЛВ вызывать развитие злокачественных опухолей).

Нежелательные реакции могут быть связаны с изменением чувствительности организма:

    Аллергические реакции

    Идиосинкразия (атипическая реакция организма на ЛВ связанная с гентическим деффектом)

Факторы, влияющие на действие ЛС:

    Физико-химические свойства ЛС и условия их применения (дозы, повторное применение, взаимодействие с другими ЛС).

    Индивидуальные способности организма больного (возраст, пол, состояние организма).

    Факторы внешней среды.

Дозы ЛС

  • Суточная

    Курсовая

    Минимально действующая (пороговая)

    Средняя терапевтическая

    Высшая терапевтическая

    Токсическая

    Смертельная

    Ударная (двойная доза)

    Поддерживающая

Широта терапевтического действия – диапозон доз, от средней терапевтической до токсической.

Чем больше ШТП, тем меньше опасность фармакотерапии.

Виды лекарственного взаимодействия:

    Фармацевтическое (происхожит вне организма больного, в результатефизико-химических реакций, до введения в организм).

    Фармакологическое

    Фармакодинамическое (одно ЛС влияет на реализацию фармакологического эффекта другого ЛС)

    Фармакокинетическое (под влиянием одного ЛС изменяется концентрация в крови другого ЛС).

    Физиологическое (ЛС оказывают независимое действие на разные органы и ткани, образуют часть одной и той же физиологической системы).

Фармакодинамическое взаимодействия ЛС:

    Синергизм – однонаправленность действия лекарственных средств:

    Суммированный (аддитивный)

    Потенцированный (общий эффект превышает сумму эффектов обоих средств).

Сенситизация (один препарат в малой дозе усиливает действие другого в их комбинаци)

    Антогонизм – ослабление действия одного ЛС другим (физическй, химический, физиологический, косвенный (разная локализация действия), прямой (конкурентный и неконкурентный)

Повторное применение ЛС

    Усиление эффекта (кумуляция материальная и функциональная)

    Снижение эффекта (снижение чувствительности рецепторов – привыкание или телерантность) (простое, перекрестное, врожденное, приобретенное, тафилаксия – быстрое привыкание).

    Лекарственная зависимость (психическая, физическая)

    Сенсибилизация (аллергические реакции 4 типов)

Виды лекарственной терапии

    Профилактическая

    Этиотропная – уничтожение причины

    Заместительная – устранение недостатка вещества

    Симптоматическая – устранение симптомов

    Патогенетическая – на патогенез заболевания

Алгоритм характеристики ЛС

    Групповая принадлежность

    Фармакодинамика

    Фармакокинетика

    Принцип назначения

    Показания к применению

    Дозы, формы выпуска и пути введения

    Побочные эффекты и меры их предупреждения

    Противопоказания к назначению