Какие особенности характерны для дендрита длинный отросток. Дендриты - это проводники электрического импульса. Морфологическое строение нейронов многообразно

Схема нейрона

Тело клетки

Тело нервной клетки состоит из протоплазмы(цитоплазмыиядра), снаружи ограничена мембраной из двойного слоялипидов(билипидный слой). Липиды состоят изгидрофильныхголовок и гидрофобных хвостов, расположеныгидрофобнымихвостами друг к другу, образуягидрофобныйслой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПРс активнымирибосомами,аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра:Микротрубочки(Д = 20-30 нм) - состоят из белкатубулинаи тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии. В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашиваетсябазофильнои известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные(двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. эффектус - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Основные статьи: Дендрит ,Аксон


Схема строения нейрона

Аксон- обычно длинный отросток нейрона, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу.Дендриты- как правило, короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновойоболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Основная статья: Синапс

Си́напс (греч.σύναψις, отσυνάπτειν- обнимать, обхватывать, пожимать руку) - место контакта между двумянейронамиили между нейроном и получающей сигналэффекторнойклеткой. Служит для передачинервного импульсамежду двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Однисинапсывызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Состоит из нейронов (специфических клеток, имеющих отростки) и нейроглии (она заполняет пространство между нервными клетками в ЦНС). Главное отличие между ними заключается в направлении передачи нервного импульса. Дендриты - этопринимающие ответвления, по ним сигнал идет к телу нейрона. Передающие клетки - аксоны - проводят сигнал от сомы к принимающим. Это могут быть не только отростки нейрона, но и мышцы.

Виды нейронов

Нейроны бывают трех видов: чувствительные - воспринимающие сигнал из организма или внешней среды, моторные - передающие импульс к органам, и вставочные, которые соединяют между собой два других типа.

Нервные клетки могут отличаться по размеру, форме, ветвлению и количеству отростков, длине аксона. Результаты исследований показали, что ветвление дендритов больше и сложнее у организмов, стоящих выше на ступенях эволюции.

Отличия аксонов и дендритов

Какова же разница между ними? Рассмотрим.

  1. Дендрит нейрона короче передающего отростка.
  2. Аксон всего один, принимающих ответвлений может быть много.
  3. Дендриты сильно ветвятся, а передающие отростки начинают разделяться ближе к концу, образуя синапс.
  4. Дендриты истончаются по мере удаления от тела нейрона, толщина аксонов практически неизменна по всей длине.
  5. Аксоны покрыты миелиновой оболочкой, состоящей из липидных и белковых клеток. Она выполняет роль изолятора и защищает отросток.

Поскольку нервный сигнал передается в виде электрического импульса, клеткам необходима изоляция. Её функции выполняет миелиновая оболочка. Она имеет мельчайшие разрывы, способствующие более быстрой передаче сигнала. Дендриты - это безоболочечные отростки.

Синапс

Место, в котором происходит контакт между ответвлениями нейронов или между аксоном и принимающей клеткой (например, мышечной), называется синапсом. В нем может участвовать всего по одному ответвлению от каждой клетки, но чаще всего контакт происходит между несколькими отростками. Каждый вырост аксона может контактировать с отдельным дендритом.


Сигнал в синапсе может передаваться двумя способами:

  1. Электрическим . Это происходит только в случае, когда ширина синаптической щели не превышает 2 нм. Благодаря такому маленькому разрыву импульс проходит через него, не задерживаясь.
  2. Химическим. Аксоны и дендриты вступают в контакт благодаря разнице потенциалов в мембране передающего отростка. С одной ее стороны частицы имеют положительный заряд, с другой - отрицательный. Это обусловлено разной концентрацией ионов калия и натрия. Первые находятся внутри мембраны, вторые - снаружи.

При прохождении заряда увеличивается проницаемость мембраны, и натрий входит в аксон, а калий выходит из него, восстанавливая потенциал.

Сразу после контакта отросток становится невосприимчивым к сигналам, через 1 мс способен к передаче сильных импульсов, через 10 мс возвращается в исходное состояние.

Дендриты - этопринимающая сторона, передающая импульс от аксона телу нервной клетки.

Функционирование нервной системы

Нормальное функционирование нервной системы зависит от передачи импульса и химических процессов в синапсе. Не менее важную роль играет создание нервных связей. Способность к обучению присутствует у людей именно благодаря возможности организма формировать новые соединения между нейронами.


Любое новое действие на стадии изучения требует постоянного контроля со стороны мозга. По мере его освоения образуются новые нейронные связи, со временем действие начинает выполняться автоматически (например, умение ходить).

Дендриты - этопередающие волокна, составляющиепримерно треть всей нервной ткани организма. Благодаря их взаимодействию с аксонами люди имеют возможность обучаться.

Дендриты и аксоны это неотъемлемые части, входящие в строение нервной клетки. Аксон зачастую у нейрона содержится в одном числе и выполняет передачу от клетки, частью которой он является к другой, воспринимающей информацию посредством восприятия ее такой частью клетки, как дендрит.

Дендриты и аксоны, соприкасаясь с друг другом, создают в периферических нервах, головном, а также спинном мозге.

Дендрит - это короткий, разветвлённый отросток, который служит главным образом для передачи электрических (химических) импульсов от одной клетки к другой. Он выступает принимающей частью и проводит нервные импульсы, полученные от соседней клетки к телу (ядру) нейрона, элементом строения которой он является.

Свое название, он получил от греческого слова, что в переводе означает дерево благодаря своему внешнему сходству с ним.

Строение

Вместе они создают специфическую систему , отвечающую за восприятие передачи химических (электрических) импульсов и передачу их дальше. Они схожи по строению, только аксон намного длиннее дендрита, последний наиболее рыхлый, с наименьшей плотностью.

Нервная клетка зачастую содержит достаточно большую разветвленную сеть дендритных ответвлений. Это дает ей возможность повысить сбор сведений из среды вокруг нее.

Находятся дендриты около тела нейрона и образуют больше количество соприкосновений с другими нейронами, выполняя свою основную функцию передачу нервного импульса. Между собой они могут соединяться маленькими отростками.

К особенностям его строения относят:

  • длинной может достигать до 1 мм;
  • он не обладает электроизолирующей оболочки;
  • обладает большим количеством правильной уникальной системой микротрубочек (они ясно видны на срезах, идут параллельно, не пересекаясь между собой зачастую одни длиннее других, отвечают за передвижение веществ по отросткам нейрона);
  • имеет активные зоны соприкосновения (синапсов) с яркой электронной плотностью цитоплазмы;
  • от ствола клетки имеет такие отхождения, как шипики;
  • имеет рибонуклеопротеиды (осуществляющие биосинтез белка);
  • обладает гранулированной и не гранулированной эндоплазматической ретикулумой.


Цитоплазма дендритов характеризуется большим количеством ультраструктурных элементов.

Не меньшего внимания, заслуживают и шипики. На дендритах зачастую можно встретить такое образования, как мембранный вырост на нем тоже способный образовывать синапс (место соприкосновения двух клеток), называемый шипиком. Внешне это похоже, на то, что от ствола дендрита имеется узковатая ножка, заканчивающаяся расширением. Такая форма позволяет увеличивать площадь синапса дендрита с аксоном. Также внутри шипика в дендрических клетках мозга головы есть специальные органеллы (синаптические пузырьки, нейрофиламенты и т. д.). Такое строение дендритов с шипиками характерно для млекопитающих с высшей уровнем деятельности мозга.

Шипик хоть и признан производным дендрита, в нем нет нейрофиламентов и микротрубочек. Цитоплазма шпика имеет гранулированный матрикс и элементы, отличающиеся от содержания дендритных стволов. Она, и сами шипики имеют прямое отношение к синоптической функции.

Уникальностью является их чувствительность к внезапно возникшим экстремальным условиям. При отравлении, будь оно алкогольное или ядами, изменяется в меньшую сторону их количественное соотношение на дендритах нейронов коры больших полушарий мозга. Учеными были замечены и такие следствия патогенного воздействия на клетки, когда число шипиков не уменьшалось, а, наоборот, возрастало. Это характерно на начальной стадии ишемии. Считается, что увеличение их количества улучшает функционирование мозга. Таки образом, гипоксия служит толчком к возрастанию метаболизма в нервной ткани, реализуя ненужных в обычной ситуации ресурсов, быстрому выведению шлаков.

Шипики зачастую способны объединяться в кластеры (объединения нескольких однородных предметов).

Некоторые дендриты образуют ветви, которые, в свою очередь, образуют дендритный регион.

Все элементы одной нервной клетки именуются дендритным деревом нейрона, образующего его воспринимающую поверхность.

Дендриты ЦНС характеризуются увеличенной поверхностью, образующие в зонах деления увеличительные площади или узлы разветвляющей.


Благодаря своему строению, он получает сведения от соседней клетки, преобразует в импульс, передает телу нейрона, где тот обрабатывается и предается далее аксону, предающему информацию другой клетки.

Последствия разрушения дендритов

Они хоть и после устранения условий, вызвавших нарушения в их построении, способны восстанавливаться, полностью нормализуя обмен веществ, но только если эти факторы недолго, незначительно воздействовали на нейрон, в противном же случае, части дендритов погибают, и так как не имеют возможности покинуть организм, накапливаются в их цитоплазме, провоцируя отрицательные последствия.

У животных это приводит к нарушению форм поведения, за исключением простейших условных рефлексов, а у человека может вызвать нарушения нервной системы.

Кроме того, рядом ученных доказано, что при слабоумии в пожилом возрасте и заболевание Альцгеймера у нейронов не отслеживаются отростки. Стволы дендритов внешне становятся похожи на обгоревшие (обугленные).

Не менее важным является и изменения количественного эквивалента шипиков вследствие патогенных условий. Так как они признаны структурными компонентами межнейрональных контактов, то нарушения, возникающие в них, могут спровоцировать достаточно серьезные нарушениям функций мозговой деятельности.

Тот факт, что 80 % площади поверхности ближайших к соме дендритов мотонейрона покрыто синапсами, свидетельствует, что увеличение площади поверхности действительно является значимым для увеличения количества входных импульсов из нейрона, вместе с тем позволяя вместить большее количество нейронов в непосредственной близости друг к другу и расширить их возможности для большего разнообразия аксонов от других нейронов .

Функциональные и морфологические различия между аксонами и дендритами
Аксоны Дендриты
За редкими исключениями, каждый нейрон имеет аксоны. Большинство нейронов имеют дендриты.
Аксоны появляются первыми во время нейрональной дифференциации. Только когда аксоны сформировались, начинают диференцироваться дендриты.
Начальные сегменты аксонов отделены специальной плазматической мембраной , обладающей высокой плотностью ионных каналов и особой организацией цитоскелета . Дендриты неразделимы с соматической цитоплазмой, и точка перехода между ними трудно различима.
Аксоны, как правило, имеют цилиндрическую форму с круглым или эллиптическим поперечным сечением. Дендриты имеют конусообразную форму и небольшие отростки, которые придают ему неправильное поперечное сечение.
Большие аксоны имеют миелиновую оболочку, толщина которой пропорциональна размеру аксона. Дендриты не миелированы, хотя редко некоторые из них имеют несколько слоев миелина.
Размер аксона зависит от нейрофиламента и количества микротрубочек с перевесом нейрофиламентов в крупных аксонах. Дендритный цитоскелет является менее организованным, а микротрубочки преобладают даже в крупных дендритах.
Микротрубочки в аксонах имеют однородную полярность, с плюс-концами, удаленными от сомы. Микротрубочки в ближайших дендритах имеют смешанную полярность, с плюс- и минус-концами, наружу направленными к соме.
Микротрубочки в аксонах обогащены тау-белками . Дендриты могут иметь несколько тау-белков, но они имеют много протеинов en:MAP2 , которых нет у аксонов.
Зрелые аксоны не имеют рибосом , хотя некоторое их количество можно обнаружить в начальном сегменте. У дендритов есть эндоплазматический ретикулум и цитоплазматические полисомы, вместе с большим количеством специфических мРНК .
Ветви аксонов удалены от сомы Дендриты начинают своё разветвление возле сомы
Ветви аксонов образуют тупые углы и имеют диаметры, схожие с родительским стволом. Ветви дендритов образуют острые углы и имеют диаметры, меньшие родительского ствола.
Аксоны имеют пресинаптические образования, находящиеся на конце аксонных ветвей. Дендриты имеют большое количество постсинаптических образований, которые выходят из дендритного ствола.
Потенциалы действия обычно возникают в аксонном холмике и активно распространяются от сомы. Хотя дендриты способны генерировать потенциалы действия , чаще они модулируют электрическое состояние сомы и начального сегмента аксона.
Традиционно аксоны специализированы для проведения возбуждения и синаптической передачи сигнала, - нейронный «выход». Дендритная архитектура лучше всего приспособлена для интеграции синаптических импульсов из множества входов, - нейронный «вход».

Структура и типы

В отличие от аксонов, дендриты имеют высокое содержание рибосом и образуют относительно локальные соединения, которые непрерывно ветвятся во все стороны и сужаются, что ведёт к уменьшению в размерах дочерних отростков на каждой ветке. Также, в отличие от ровной поверхности аксонов, поверхность большинства дендритов усеяна выступающими маленькими органеллами , которые называются дендритными шипиками и которые обладают высокой пластичностью: они способны рождаться и умирать, менять свою форму, объём и количество на протяжении короткого отрезка времени. Среди дендритов есть как те, которые усеяны шипиками (пирамидальные нейроны), так и те, которые шипиков не имеют (большинство интернейронов), достигая максимального количества транзакций в клетках Пуркинье - 100 000 транзакций, то есть около 10 шипиков на 1 пм. Другая отличительная черта дендритов в том, что они характеризуются разным количеством контактов (вплоть до 150 000 на дендритном дереве в клетке Пуркинье) и различными типами контактов (аксон-шипик, аксон-ствол, дендро-дендритные).

  1. Биполярные нейроны , в которых два дендрита отходят в противоположных направлениях от сомы;
  2. Некоторые интернейроны , в которых дендриты расходятся во всех направлениях от сомы;
  3. Пирамидальные нейроны - главные возбуждающие клетки в мозгу - которые имеют характерную пирамидальную форму клеточного тела и в которых дендриты распространяются в противоположные стороны от сомы, покрывая две перевёрнутые конические площади: вверх от сомы простирается большой апикальный дендрит, который поднимается сквозь слои, а вниз - множество базальных дендритов, которые простираются латерально.
  4. Клетки Пуркинье в мозжечке , дендриты которых выходят из сомы в форме плоского веера.
  5. Звёздчатые нейроны , дендриты которых выходят из разных сторон сомы, образуя форму звезды.

В связи с большим количеством типов нейронов и дендритов целесообразно рассмотреть морфологию дендритов на примере одного конкретного нейрона - пирамидальной клетки. Пирамидальные нейроны находятся во многих регионах мозга млекопитающих: гиппокамп , миндалина , неокортекс . Эти нейроны наиболее обильно представлены в коре головного мозга , составляя более чем 70-80 % всех нейронов изокортекса млекопитающих . Наиболее популярными, и поэтому лучше исследованными, являются пирамидальные нейроны 5 слоя коры: они получают очень мощный поток информации, которая прошла через различные предыдущие слои коры, и имеют сложную структуру на поверхности мягкой мозговой оболочки («апикальный пучок»), которая получает входные импульсы из иерархически обособленных структур; далее эти нейроны посылают информацию другим корковым и подкорковым структурам. Хотя, подобно другим нейронам, пирамидальные клетки имеют апикальные и базальные дендритные пучки, им также присущи дополнительные отростки вдоль апикальной дендритной оси - это т. н. «наклонённый дендрит» (oblique dendrite), который раз или дважды ветвится от основания. Особенностью дендритов пирамидальных нейронов является также то, что они могут отправлять ретроградные сигнальные молекулы (напр., эндоканабиноиды), которые проходят в обратном направлении через химический синапс к аксону пресинаптического нейрона .

Хотя часто дендритные ветви пирамидальных нейронов сравнивают с ветвями обычного дерева, они таковыми не являются. В то время как диаметр ветвей дерева постепенно сужается с каждым делением и становится все более коротким, диаметр последней ветви дендрита пирамидальных нейронов значительно тоньше, чем её родительская ветка, и эта последняя ветвь часто является самым длинным сегментом дендритного дерева. Тем более, диаметр оконечности дендрита не является суженным, в отличие от апикального ствола веток дерева: он имеет <1 мкм в диаметре, как в точке соединения с главным апикальным стволом, так и на своем удалённом конце, 100 мкм от ствола. Такая уникальная геометрия дендритов хорошо подходит для электрической сегментации и раздельной обработки информации в этих сегментах, поскольку здесь синаптические токи собраны с относительно большой площади в пределах региона с высоким сопротивлением. Поэтому даже относительно небольшой синаптический ток, поступающий в дендритные окончания, генерирует здесь значительную деполяризию, достаточную для порождения локального дендритного потенциала действия .

Ветвления

Своей функциональностью и высокой рецептивностью дендриты обязаны сложной геометрической разветвленности. Дендриты одного нейрона, взятые вместе, называются «дендритным деревом», каждая ветвь которого называется «дендритной ветвью». Хотя иногда площадь поверхности дендритной ветки может быть достаточно обширной, чаще всего дендриты находятся в относительной близости от тела нейрона (сомы), из которого выходят, достигая в длину не более 1-2 мкм. Количество входных импульсов, которые данный нейрон получает, зависит от его дендритного дерева: нейроны, которые не имеют дендритов, контактируют только с одним или несколькими нейронами, тогда как нейроны с большим количеством разветвлённых деревьев способны принимать информацию от множества других нейронов. Наиболее сложную и красивую дендритную форму имеют клетки Пуркинье , дерево на которых имеет около 400 верхушек, тогда как альфа-мотонейроны в спинном мозгу кошки имеют лишь 8-12 дендритных деревьев, каждое с около 30 верхушками .

Трёхмерное распределение дендритных ветвей также имеет важное значение для определения типа информации, которая поступает к нейрону. Тогда как нейроны с дендритными деревьями, локализованными только в данном слое коры, могут получить очень ограниченное количество и разнообразие контактов, то нейроны с расширенными дендритными ветвями, простирающимися в другие слои (напр., как большие пирамидальные нейроны) способны получать значительно более разнообразные и сложные входные импульсы .

Но разветвленность и многообразие дендритной морфологии также имеет и ограничительное воздействие на нейронные высчисления, в частности на эффективность входных синаптических импульсов (синаптическую информационную эффективность, SIE ): нейроны с более развитыми дендритными деревьями характеризуются более резким и быстрым уменьшением синаптической эффективности (амплитуды синаптических потенциалов) вдоль пути от удалённого места синаптического входа до сомы, что приводит к затуханию постсинаптического потенциала . Впрочем, значительная нелинейность дендритов, которая обусловлена наличием потенциалзависимых ионных каналов , способна преодолеть это затухание, поддерживая и усиливая импульс на разных уровнях дендритного дерева .

Диаметр и длина

Диаметр дендритов возле сомы имеет несколько мкм, становясь меньше 1 мкм, когда они постепенно ветвятся. Много типов дендритов усеяны множеством крошечных отростков, дендритными шипиками , которые образуют чрезвычайно тонкие (около 0,1 мкм) и короткие (1 мкм) дендритные веточки. Эти шипики является главной мишенью для возбудимых синаптических входов и играют важную роль в нейронной пластичности. Длина самих дендритных деревьев колеблется от очень коротких (100-200 мкм, как в шипиковых звёздчатых клетках коры млекопитающих) до достаточно больших (1-2 мм, как у спинного альфа-мотонейрона). Общая длина дендритов может достигать 10 4 мкм (1 см) и более .

В целом, дендриты (не включая шипики) занимают примерно такой же объём коры , как и аксоны (без включения тела клеток и кровеносных сосудов) (на примере коры мыши) :

  • дендриты - 35 %;
  • шипики («шея» и «голова») - 14 %;
  • внеклеточное пространство - 6 %.

В некоторых регионах ЦНС соседние дендритные деревья тесно переплетаются, очень часто деля между собой ту же область и группу аксонов, с которыми формируют синаптические контакты. Это особенно характерно для дендритов пирамидальных нейронов в коре, тогда как в других регионах мозга дендритные деревья (напр., клеток Пуркинье в мозжечке) отделены друг от друга и не перекрываются, каждый имея свои индивидуальные синаптические контакты. Именно поэтому на примере пирамидальных клеток лучше всего заметно значительное влияние морфологии дендритов на сложность нейронных операций.

Если предположить, что дендриты имеют цилиндрическую форму и средний диаметр 0,9 мкм (на основе данных электронной микрофотографии), то длина дендритов в 1 мм³ составит 456 м, что почти на порядок меньше, чем длина аксонов в том же объёме, иллюстрируя большую среднюю толщину дендритов. Следовательно, 9,2×10 4 нейронов в 1 мм³ соответствовало бы ~276-460 м дендритам в 1 мм³ .

Из этого следует, что в системе связей между пирамидальными нейронами, которая включает большинство синапсов коры, влияние одного нейрона на другой является достаточно слабым, опосредуясь в основном одним синапсом. Это означает, что сколько каждый кортикальный пирамидальный нейрон имеет синапсов (~4000), со столькими же другими пирамидальными нейронами он образует контакты .

Подобному максимальному расхождению сигналов от одной клетки к тысячам других соответствует такое же максимальное восхождение: тысячи синапсов на дендритном дереве одной пирамидальной клетки (при 3,3 синапсах на мкм дендритной длины) формируют контакты с аксонами стольких же различных пирамидальных клеток .

Такая уникальная дендритная морфология пирамидальных клеток, которая позволяет им формировать не похожую на другие нейроны сеть контактов, привела некоторых исследователей к мысли, что «кора предстаёт как „устройство“ для наиболее широкого распространения и наиболее глубинного смешивания сигналов, совместного с естественными ограничениями нервных клеток» .

Физиология

Морфология дендритов придаёт им уникальные электрические и пластические свойства, и, как следствие, обусловливает вариации в вычислительных свойствах самих нейронов. Если, например, рассматривать дендриты как пассивные проводники (классическое представление), то разнообразная дендритная морфология влияет только на частоту нейронного разряда (англ. firing ). Однако, если рассматривать активную электрическую проводимость в дендритах (современное представление), то становится очевидным влияние морфологии дендритов: возникает вариация разрядов между всплесками (англ. bursts ) и регулярными формами пульсации , или происходит воздействие на обратное распространение потенциалов действия .

Электрически дендриты могут быть охарактеризованы через их пассивные свойства («скелет»), к которым добавлены (нелинейные) синаптически- и потенциал-зависимые ионные каналы. Пассивный (близкий к потенциалу покоя) скелет дендритов характеризуется удельным мембранным сопротивлением , R m дендритов, которое является относительно высоким (1000-100 000 Ом·см²), откуда следует, что дендритная мембрана является диэлектриком высокого сопротивления. С удельной ёмкостью , C m в приблизительно 1 мкФ /см², мембранная постоянная времени , τ m (которая определяет временной интервал для интеграции синаптических входных импульсов) составляет порядка τ m = R m C m = 10-100 мс . В зависимости от типа и морфологии, площадь поверхности мембранного дендритного дерева колеблется от 20 000 до 750 000 мкм², объём может достигать до 30 000 мкм³, длина - 10 мм (напр., в поясничных мотонейронах). Внутриклеточная цитоплазма и внеклеточная среда дендритов содержит ионы, способные проводить электрический ток. Дендритная мембрана также способна проводить ток через специфические трансмембранные ионные каналы, но ток, который проходит через мембрану, встречает значительно большее сопротивление, чем вдоль внутренней сердцевины. Кроме мембранных каналов (мембранное сопротивление), дендритная мембрана способна накапливать ионные заряды, то есть функционировать, как конденсатор .

Осевое (продольное) сопротивление дендритной цитоплазмы, R i , колеблется от 70 до 300 Ом·см, что вместе с малыми измерениями отдаленных ветвей предусматривает большое входное сопротивление (импеданс) в дендритах. Увеличение дендритного диаметра с приближением к соме означает большой коэффициент затухания (~100) пикового синаптического потенциала, когда тот распространяется от начала в отдаленной точке дендрита к соме. Мембранное и цитоплазматическое удельное сопротивления обусловливают также внутреннее сопротивление R in в каждой данной точке на дендритном дереве: R in может варьироваться от 1 MОм (толстые и проникающие дендриты) до 1000 MОм (тонкие отростки, как шипики). Наибольшие значения R in в дендритах показывают, что малое возбуждающее синаптическое изменение проводимости (около 1 нСм) приведёт, локально, к значительному (в несколько десятков мВ) изменению потенциала .

Дендриты, следовательно, являются электрически распределенными «механизмами», поэтому нейроны не являются эквипотенциальными - как их моделировали в классических теориях, - ибо между различными регионами дендритного дерева (и сомы) может существовать десятикратная разница напряжений как результат локального синаптического входа в дендриты.

Некоторые типичные размеры дендритов для различных типов нейронов
Нейрон Средний диаметр сомы (мкм) Количество дендритов на соме Диаметр близких к соме дендритов (мкм) Количество точек ветвления Диаметр отдаленных от сомы дендритов (мкм) Протяженность дендрита א (мкм) Общая длина дендрита (мкм)
Гранулярные клетки мозжечка (кот) 7 4 1 0 0,2-2 15 60
Звёздчатые амакриновые клетки (резус) 9 1 1 40 0,2-2 120 -
Гранулярные клетки зубчатой извилины (крыса) 14 2 3 14 0,5-1 300 3200
Пирамидальная клетка CA1 (крыса) 21 - - - - - 11,900
Базальные дендриты - 5 1 30 0,5-1 130 5500
s.radiatum - 1 3 30 0,25-1 110 4100
s.lacunosum-moleculare - - - 15 0,25-1 500 2300
Клетки Пуркинье мозжечка (морская свинка) 25 1 3 440 0,8-2,2 200 9100
Длинноаксонная клетка бледного шара (человек) 33 4 4 12 0,3-0,5 1000 7600
Клетки Мейнерта зрительной коры (макака) 35 - - - - - 15 400
Базальные дендриты - 5 3 - - 250 10 200
Апикальные дендриты - 1 4 15 2-3 1800 5 200
Альфа-мотонейрон спинного мозга (кот) 58 11 8 120 0,5-1,5 1100 52 000

Дендритные синапсы

Хотя дендриты прилегают ко многим аксонам и др. дендритам, передача сигнала происходит главным образом в синапсах . Синапсы могут находиться непосредственно на поверхности дендрита (т. н. стволовые синапсы), или на дендритных шипиках.

Это открытие было настолько одновременно необычным и важным, что десятилетия после его публикации нейробиологи вспоминали о нём, как о «тихой революции» в понимании нейронов и дендритов: «Новое представление о нейроне [которое вытекает из этого открытия], заключается в том, что дендрит - это отнюдь не пассивная рецептивная поверхность, но также может становиться пресинаптичным, таким, который передаёт информацию в другие нейроны через дендроденритные синапсы» . Другой редкий случай синаптического контакта - это «autapse», когда аксон образует синапс с собственным дендритным деревом, но этот тип связи пока мало понятен .

Синапсы не хаотически распределены на дендритной поверхности. Во многих системах (пирамидальных клеток гиппокампа или клетках Пуркинье в мозжечке) источник синаптического импульса выборочно направляется на данный регион дендритного дерева, а не просто случайно распределяется по поверхности дендритного дерева. К примеру, в коре ~79 % всех возбуждающих синапсов находятся на шипиках, а другие - на дендритных стволах, тогда как всего лишь 31 % всех ингибиторных синапсов локализованы на шипиках. Тем более, что шипик с ингибиторным синапсом всегда также имеет возбуждающий синапс: ~15 % всех дендритных шипиков имеют как возбуждающие, так ингибирующие синапсы. Ингибиторные синапсы чаще локализуются на соме или на стволе дендритного дерева . Вследствие такой локализации всего несколько ингибиторных входных импульсов могут шунтировать весь входящий возбуждающий импульс, который собирался дендритным деревом из сотен синапсов апикальных дендритов. Этот феномен называется «ингибиторное шунтирование» .

В целом принято выделять несколько синаптических типов на дендритах :

  1. Varicosities (варикозно расширенные) - синапсы, которых больше всего на амакриновых клетках сетчатки , а также среди некоторых интернейронов .
  2. Filopodia (филоподии). Все нейроны короткое время имеют дендритные филоподии в течение развития: они очень динамичны, расширяясь и втягиваясь в течение нескольких минут. Однако после периода развития нейрона филоподии исчезают, следовательно, принимая роль в синаптогенезе (формировании синапсов между нейронами), часто образуя слабые контакты. После развития нейрона филоподии заменяются стволовыми синапсами.
  3. Synaptic crests (синаптические гребешки) формируются двумя аксонами с обеих сторон тонкой ламеллярной шеи гребешка.
  4. Thorny excrescences (тернистые наросты) образуют 90 % дендритных отростков на близких к соме апикальных дендритах.
  5. Rasemose appendages (кистевидные отростки)
  6. Corralline excrescenec (коралловые отростки)

Синаптические специализации дендритов: а - дендритные варикозы (тонкий дендрит амакриновых клеток сетчатки); b - филоподия; c - безчерешковый, обрубок и крючковатый шипик (типичен для пирамидальных нейронов коры и зубчатого ядра мозжечка); d - шипик на тонкой ножке, грибовидный и почечка (типичен для коры и обонятельной луковицы); e - разветвлённые шипики, каждая ветвь которых имеет свой собственный пресинаптический объект (типично для CA1- и CA3-пирамидальных нейронов, гранулярных клеток зубчатой извилины и клеток Пуркинье мозжечка); f - тернистые отростки с разделёнными на части дендритными выступлениями (типичны для пирамидальных клеток CA3 и нейронов зубчатой извилины); g - кистевидные разветвлённые дендритные сегменты с синаптическими варикозами, которые заканчиваются луковично-образными концами (типичны для нейронов нижней оливы и латерального коленчатого тела); h - коралловидный нарост с дендритными варикозами, которые растягиваются в многочисленные тоненькие отростки (типичны для дендритов нейронов зубчатого и латерального ядер вестибулярного))

Шипики

Решающий фактор для способности нейронной сети хранить информацию - количество различных нейронов, которые могут быть соединены синаптически . Одним из главных факторов увеличения разнообразия форм синаптических связей в биологических нейронах является существование дендритных шипиков, открытых в 1888 году Кахалем . Он же впервые выдвинул предположение, что шипики выполняют функцию увеличения поверхности для синаптических контактов с аксонами, находящимися на далёком расстоянии от дендритов: «…дендритные шипики играют главную роль в увеличении поверхности соединений протоплазматического разветвления [то есть, дендритного дерева], выступая, чтобы соединиться с удалёнными нервными волокнами, которые не могут непосредственно соединиться с дендритным отростком» и 0,22-0,34 в . Отдаленные дендриты базального конуса имеют подобную плотность шипиков, тогда как в низшем апикальном пучке их плотность значительно ниже. Апикальный ствол в stratum radiatum сам по себе имеет наибольшую плотность шипиков - 7 шипиков на 1 мкм . Наиболее близкие к соме дендриты пирамидального нейрона получают ингибиторные входные импульсы, поэтому эти регионы, так же как и сома, лишены шипиков. У взрослого мозга плотность простых шипиков значительно варьируется от 0,01 мкм³ до более чем 1,5 мкм³ . Тот факт, что различные регионы дендритной ветви имеют разную плотность шипиков, свидетельствует о различиях в соединениях с различными возбуждающими входными синапсами .

Диаметр шипиков колеблется от 0,1 до 0,4 мкм, а длина от 0,4 до 2 мкм. В большинстве регионов мозга шипики имеют два входа - возбуждающий и ингибиторный. Впрочем, в поле CA1 гиппокампа каждый шипик пирамидальной клетки имеет только один синапс - возбуждающий .

Хотя шипики трудно изучать при нормальных условиях, накоплен ряд данных, которые позволяют сделать предположение о существовании различных популяций стабильных и более пластических шипиков in vivo , и эти популяции могут варьироваться с опытом . Существует несколько догадок, что именно эти, динамические шипики долговременной потенциацией (LTP) и играют ключевую роль в обучении .

Общие свойства дендритов
Морфология Физиология Синаптология
Диаметр около сомы : 1-6 мкм Пассивные свойства дендритов: Число синапсов на нейрон: 500-200 000
Диаметр на отдалённых концах: 0,3-1 мкм Мембранное сопротивление (R m ): 1-100 кОм·см² Тип І (возбуждающие): 60-90 %; распределены, главным образом на шипиках
Средняя длина пути: 0,15-1,5 мм Осевое сопротивление (R i ): 70-300 Ом·см Тип II (ингибирующие): 10-40 %; около сомы, лишь некоторые на шипиках
Общая длина дендритов: 1-10 мм Мембранная ёмкость (C m ): 1-2 мкФ/см²
Дендритная площадь: 2000-750 000 мкм² Мембранная временная постоянная (τ m ): 1-100 мс Возбуждающий синаптический входной импульс:
Дендритные деревья/нейрон: 1-16 Дендритная пространственная постоянная (λ ): 0,2-1 мм АМРА : g пик: 0,1-0,3 нс; t пик: 0,3-1 мс
Дендритные концы/нейрон: 10-400 Электротоническая протяженность (L = x /λ ): 0,2-2 (может увеличиваться с расстоянием от сомы)
Дендритные шипики/нейрон: 300-200 000 Входное сопротивление сомы (R N ): 1-10³ МОм NMDA: g пик: 0,05-0,5 нс; t пик: 5-50 мс
Плотность шипиков/1 мкм дендрита: 0,5-14 Входное сопротивление на концах (R T ) 10²-10³ МОм
Длина шипика: 0,1-2 мкм Коэффициент затухания напряжения: Ингибирующий синаптический входной импульс:
Диаметр шеи шипика: 0,04-0,5 мкм сома → конец: 1,1-2 ГАМК А: g пик: 0,4-1 нс; t пик: 0,2-1,2 мс
Диаметр головы шипика: 0,3-1 мкм конец → сома: 2-15 ГАМК B: g пик: 0,1-0,3 нс; t пик: 40-150 мс
Объём шипика: 0,005-0,3 мкм³
Активные свойства дендритов:
Ca 2+ -каналы (L-, N-, P-типы) - локальный дендритный Ca 2+ -спайк: Ca 2+ -концентрация в шипиках
Na + -каналы: быстрая активация/инактивация - поддерживает сому → дендритное обратное распространение ПД
K + -каналы, I A и смешанные токи, I h - увеличение плотности с расстоянием от сомы - «поглотители ударов», нелинейность, временное нормирование

Дендритный потенциал поля (DFP)

Считается, что пространственная суммация LFP отражает среднее взвешенное возбуждающих и ингибирующих постсинаптических потенциалов, которые являются более медленными, чем потенциалы действия . Хотя уже долгое время считается, что LFP определяется преимущественно синхронизированными дендритными входными сигналами на пирамидальных клетках, но сегодня ещё не ясно, как именно и насколько корреляции в синаптической активности влияют на LFP .