Гранулярная эпс. Тканевые базофилы выполняют функцию Тканевые базофилы

Лимфоциты – небольшие мононуклеарные клетки, координирующие и осуществляющие иммунный ответ за счет продуцирования воспалительных цитокинов и антигенспецифических связывающих рецепторов. Одной из групп лимфоцитов являются В-л. В-л. и их наиболее зрелые формы - плазматические клетки - продуцируют иммуноглобулины (антитела), то есть осуществляют синтез

эффекторов гуморального иммунитета. Специфическими рецепторами В-лимфоцитов являются молекулы иммуноглобулинов. На В-лимфоцитах lg-рецепторы нековалентно ассоциированы с двумя трансмембранными белками - Iga и Igp или Iga и Igy. Молекулы lg и полипептидные цепи,входящие в состав В-клеточного рецептора, являются наиболее надежными маркерами В-линейной принадлежности.


В-л. Осуществляют экспрессию уникальных антигенных рецепторов – иммуноглобулинов – и запрограммированы на продукцию их в большом количестве в ответ на антигенную стимуляцию. В-л. Образуются из стволовых клеток костного мозга, созревание В-д. у человека происходит в основном в костном мозге. ИС содержит большую популяцию отдельных клонов В-л., каждый из которых экспрессирует уникальный антигенный рецептор. Разнообразие клонов В-л. Обеспечивает разнообразие вырабатываемых ими антител.

Дифференцировка .B-клетки все стадии антигеннезависимой дифференцировки проходят в костном мозге. На поверхности предшественников B-лимфоцитов, про-В- лимфоцитов, обнаруживают ряд CD , однако данные об их экспрессии противоречивы. Наиболее ранние про-В-клетки часто определяют как CD19плюсCD10плюс-клетки, не экспрессирующие генов тяжелых цепей иммуноглобулинов, но экспрессирующие антигены MHC класса II . Возможными кандидатами для определения про-В-клеток являются CD9 , а также CD24: экспрессия CD24 (как и CD10) не ограничена клетками B-ряда, но ее уровень на ранних этапах дифференцировки повышен. CD19 является наиболее универсальным маркером клеток B-лимфоцитарного ряда (так называемый пан- B) - он обнаруживается уже на поверхности B-клеток эмбриональной печени и не экспрессируется только терминально дифференцированными плазматическими клетками. Аналогично CD19 экспрессируется другой пан-В- маркер - CD72 , являющийся контррецептором CD5 , но он пока мало изучен.

Следующий этап дифференцировки - пре-В-лимфоциты - определяется, главным образом, по цитоплазматической экспрессии мю-цепи иммуноглобулина. На этом же этапе начинается экспрессия (слабая) CD20 и, по-видимому, CDw78 . CD20 - еще один пан-В-маркер, как и CD19 , часто использующийся для идентификации B-клеток. Параллельно появляется CD21 . Начало поверхностной экспрессии IgM свидетельствует о появлении незрелых B-клеток. Одновременно начинается поверхностная экспрессия CD22 , на предыдущих этапах обнаруживающегося только в цитоплазме. Примерно в это же время на поверхности B-клеток появляется еще несколько антигенов - CD37 , CD39 , CD40 . На поверхности незрелых B-клеток обнаруживается также ряд дифференцировочных антигенов: CD73 , CD74 , CDw75 и CD76 . Следующий этап - зрелые или покоящиеся B-клетки характеризуются одновременной экспрессией поверхностных IgM и IgD . Параллельно с IgD экспрессируется CD23 .

Дальнейшая дифференцировка проходит в периферических клетках крови или лимфоидных органах и вызывается антигеном. Она характеризуется увеличением размеров B-клеток и повышением уровня экспрессии антигенов MHC класса II . Это стадия активированных B-клеток. Антигензависимая дифференцировка вызывает замену поверхностных IgM/IgD другим изотипом (который будет позднее секретироваться) и деление, что свидетельствует о вступлении в стадиюB-бластов, или пролиферирующих B-клеток. Последние могут дифференцироваться либо в плазматические клетки, либо в B-клетки памяти. Плазматические клетки теряют поверхностную экспрессию большинства специфических B-клеточных маркеров (в том числе поверхностный Ig). Однако они опять начинают экспрессировать CD38 и, кроме того, сильно отличаются от B-клеток морфологически.

Процесс созревания и дифференцировки B-клеток, особенно последние его стадии, не всегда одинаково подразделяется на этапы.

В-л. Образующиеся в костном мозге иммунологически незрелые, поскольку они еще не поверглись воздействию АГ. Начальные этапы сохревания В-л. Не зависят от АГ. Пре-В-клетка временно продуцирует терминальную дезоксинуклеотидтрансферазу и общий АГ острого лейкоза(ОАОЛ;CD10). Несколько позднее экспрессирует характерные поверхностные АГ CD19, CD20[CD19 (В4) - это гликопротеин, молекулярная масса которого равна 95 кДа. Полипептидная цепь состоит из 540 аминокислот. СD19 - экспрессируется на В-клетках; мол. масса 95 кД; выполняет функцию корецептора.СТРУКТУРНАЯ ХАРАКТЕРИСТИКА . Внеклеточная область состоит из двух Ig-подобных доменов, разделенных областью, содержащей два остатка Cys. Эта область не имеет гомологии в аминокислотной последовательности с какими-либо известными белками. Большой цитоплазматический участок консервативен у разных видов млекопитающих и содержит несколько потенциальных мест фосфорилирования и пять потенциальных мест N- гликозилирования.ФУНКЦИИ . CD19 экспрессирован на всех В-лимфоцитах человека и на предшественниках В-клеток, но не на плазматических клетках. CD19 встречается также на фолликулярных дендритных клетках. CD19 включен в регуляцию В-клеточной пролиферации. Перекрестное связывание CD19 молекул без участия Ig ингибирует повышение концентрации свободных ионовкальция в цитоплазме и пролиферацию, индуцируемую антииммуноглобулиновыми антителам. CD20 (В1 , Рр35 ) - это фосфопротеин, молекулярная масса которого равна 33 - 37 кДа. Полипептидная цепь состоит из 297 аминокислот. CD20 экспрессируется на В-клетках; возможно участвует в активации В-клеток. СТРУКТУРНАЯ ХАРАКТЕРИСТИКА . Молекула содержит четыре трансмембранных сегмента. С и N-концы молекулы расположены внутри клетки. Фосфорлирование CD20 увеличивается в активированных клетках. CD20 обнаруживает гомологию с бета-цепью Fc-эпсилон-R1 . Общая организация структуры CD20 подобна структуре каналобразующих белков. ФУНКЦИИ . CD20 экспрессирован у человека и мышей только на В- лимфоцитах. У человека он встречается как на покоящихся, так и на активированных В-лимфоцитах, но отсутствует на плазматических клетках. CD20 принимает участие в В-клеточной активации и В-клеточной пролиферации. Ряд моноклональных антител к CD20 ингибирует клеточную пролиферацию, вызванную анти-Ig. В клетках Jurkat , трансфецированных геном CD20, этот белок непосредственно регулирует вход кальция в цитоплазму. Предполагают, что он формируеткальциевый канал.] и образует интрацитоплазматические μ-цепи иммуноглобулина. Когда В-л. Созревают, они экспрессируют на своей поверхности целые молеулы АТ. Последующие этапы созревания В-л. Зависят от АГ. С помощью Т-хелперов и специализированных макрофагов, антигенперзентующих, В-кл пролиферируют и созревают. Образующиеся в результате этих процессов плазматические клетки продуцируют большое количество иммуноглобулиновых молекул строго определенной специфичности. Характерный внешний вид: эксцентричное ядро с распредеоенным по периферии хроматином, базофильная цитоплазма, светлая чистая перинуклеарная зона с активным комплексом Гольджи. Другие стимулированные В-л. Становятся клетками долговременной памяти, сохраняющими информацию о ранее встречавшемся АГ, они быстро пролиферируют и продуцируют юольшое количество иммуноглобулина при повторной ыстрече с известным АГ.

Существуют 5 основных классов иммуноглобулинов IgG, IgA, IgM, IgD, IgE. Наиболее распространены IgG, есть 1,2,3 и 4. IgA имеет 2 подтипа: сывороточная и сереторная – находится в секретах слизистых и подслизистых, Ig D и IgE- минорные группы иммуноглобулинов, учавствующие в аллергических реакциях и реакциях гиперчувствительности замедленного типа. IgM полимеризуется, формируя большие пентамерные структуры.

Активация B-клеток вызывается либо неспецифическими поликлональными активаторами, либо перекрестным связыванием иммуноглобулиновых рецепторов одновременно с получением сигнала от макрофага или T-хелпера, распознающего номинальный антиген в комплексе с молекулами MHC класса II . Таким образом, B-лимфоциты реагируют на три различных типа антигенов:

Антигены тимус-независимые типа 1 Некоторые антигены, такие, как бактериальный липополисахарид, при достаточно высокой концентрации способны к поликлональной активации значительной части популяцииB-лимфоцитов, т.е. для такой активации антигенная специфичность поверхностных рецепторов клетки роли не играет.При низкой концентрации подобных антигенов, не приводящей к поликлональной активации, те B-лимфоциты, у которых иммуноглобулиновые рецепторы специфичны по отношению к данным антигенам, будут пассивно фокусировать их на своей поверхности. При этом за счет собственной митогенной активности эти антигены будут стимулироватьпролиферациюклеток.Таким образом, тимус-независимые антигены типа 1 стимулируют деление B-клеток, взаимодействуя не с иммуноглобулиновыми рецепторами, а с другими структурами поверхностной мембраны.Тимус-независимые антигены вызывают преимущественный синтезIgM, и индуцируемый ими иммунный ответ практически не сопровождается формированиемклеток памяти.

Антигенны тимуснезависимые 2 типа.Некоторые линейные антигены, медленно распадающиеся в организме и имеющие часто повторяющуюся, определенным образом организованную детерминанту, например, полисахарид пневмококков или полимеры D- аминокислот способны непосредственно без участия T-клеток стимулировать B-лимфоциты, т.е. относятся к тимус-независимым антигенам. Они длительное время персистируют на поверхности специализированных макрофагов краевого синусалимфатического узла и маргинальной зоны селезенки. Связывание этих антигенов с антигенспецифическими B-клетками происходит с высокой авидностью и обусловлено как перекрестным взаимодействием антигенных детерминант с иммуноглобулиновыми рецепторами (рис.6.13б), так и вспомогательными факторами, выделяемымыми макрофагами. Таким образом, тимус-независимые антигены типа 2, по-видимому, вызывают деление клеток как за счет перекрестного связывания иммуноглобулиновых рецепторов, так и с помощью вспомогательных факторов, выделяемых макрофагами. Тимус-независимые антигены вызывают преимущественный синтез IgM , и индуцируемый ими иммунный ответ практически не сопровождается формированием клеток памяти.

TD (антигены тимусзависимые) Антигены T-зависимые (или тимус-зависимые) - это антигены, не способные непосредственно, без участия T-клеток стимулировать B- лимфоциты. Большинство природныхантигеновявляется тимусзависимыми. Это означает, что полноценное развитие специфического иммунного ответа к таким антигенам начинается только после подключенияT-лимфоцитов. Эти антигены в отсутствиеT-лимфоцитовлишены иммуногенности: они могут быть одновалентными в отношении специфичности каждойдетерминанты, подвергаться быстрой деградации фагоцитирующими клетками, наконец, не обладать собственной митогенной активностью. Связавшись с B-клеточными рецепторами, они, так же как игаптены, не способны активировать B- клетку. Гаптены приобретают иммуногенность при соединении с подходящимбелком-носителем. В настоящее время известно, что функция носителя заключается в стимуляцииT-хелперов, помогающих B-клеткам реагировать на гаптен, стимулируя последние дополнительными сигналами (рис. 6.10). Подобные представления сложились на основании опытов как in vivo, так и in vitro.

Макрофаги, находящиеся в спокойном состоянии называют гистиоцитами , а подвижном – свободными. Это клетки неправильной веретенообразной или звездчатой формы. Поверхность клеток неровная, характерно наличие отростков, псевдоподий. Цитоплазма окрашивается базофильно; содержит много гранул (лизосом), вакуолей, пиноцитозных пузырьков. Ядра более плотные, чем у фибробластов.

Функции макрофагов:

1. Фагоцитоз микробов и продуктов распада тканей. По той причине их называют «чистильщиками» внутренней среды.

2. Некоторые их разновидности выполняют функцию антигенпредставляющих клеток в реакциях гуморального иммунитета, т.е. участвуют в кооперации Т – и В – лимфоцитов.

Тканевые базофилы (тучные клетки, лаброциты, гепариноциты). Располагаются в соединительной ткани по ходу мелких сосудов (капилляров, венул). Их много в рыхлой соединительной ткани под эпителием дыхательных путей и кишечника, откуда чаще всего поступают во внутреннюю среду антигены. Клетки имеют округлую или овальную форму. Цитоплазмы содержит большое количество специфических гранул, которые окрашиваются основными красителями в пурпурно-красный цвет. Гранулы содержать гепарин (30%), гистамин (10%), серотонин, гликозамингликаны и др.

Функция тканевых базофилов – защита от инфекции. Они предупреждают организм о повторном поступлении антигенов. В частности, при повторном поступлении антигена во внутреннюю среду происходит дегрануляция (выброс гранул). При этом гистамин попадает в окружающую среду и определяет развитие местной аллергической реакции. Симптоматика последней зависит от действия гистамина :

1. Сокращает гладкомышечные клетки бронхиол, что приводит к бронхоспазму (одышка) ;

2. Расширяет мелкие сосуды. Результат – падение артериального давления ;

3. Повышает проницаемость капилляров и основного аморфного вещества, последствием чего является отек .

Эта реакция развивается, если человек обладает гиперчувствительностью к антигену. У большинства лиц она протекает незаметно, поскольку действия гистамина быстро подавляются эозинофилами, которые поглощают гистамин.

Плазматические клетки имеют округлую или овальную форму. Характерно эксцентрическое расположение ядер, с грубыми глыбками хроматина, локализованными радиально в виде «спиц». Цитоплазма окрашивается резко базофильно, кроме небольшого, просветленного околоядерного участка, который носит название «дворик ». Это место расположения комплекса Гольджи. В цитоплазме исключительно хорошо развита гранулярная эндоплазматическая сеть.

Плазматические клетки развиваются из В – лимфоцитов после их контакта с Т – лимфоцитами и антигенами. Клетки продуцируют антитела (иммуноглобулины), тем самым, определяют конечный этап реакции гуморального иммунитета.

Жировые клетки (аденоциты).

Это крупные клетки округлой формы. Вся средняя часть клетки занята одной крупной каплей жира. Цитоплазма на периферии в виде узкого ободка, где располагаются общие органеллы и ядро. Жировые клетки обычно располагаются группами вблизи сосудов, образуя дольки в составе белой жировой ткани. Во взрослом организме жировые клетки не делятся; их предшественниками считаются перициты .

Функционально жировые клетки являются хранителем запаса энергетического материала . (Более подробно о функциях жировых клеток в составе жировой ткани будет отмечено ниже, в разделе «Соединительные ткани с особыми свойствами»).

Базофилы (BASO) – немногочисленная группа представителей . Эти небольшие (по размерам меньше нейтрофилов) клетки после образования выходят сразу на периферию (в ткани), не создавая резерва в костном мозге. Живут базофилы недолго, до недели. Они слабо фагоцитируют, но в их задачу это и не входит. Базофилы являются носителями рецепторов к иммуноглобулину Е, продуцентами гистамина и других стимулирующих веществ, принимают участие в процессе свертывания (производят антикоагулянт – гепарин).

Тканевая форма базофилов – мастоциты, которые привычнее называть тучными клетками. Базофилов много в коже, серозных оболочках, а также в соединительной ткани, окружающей капиллярные сосуды. У этих лейкоцитов еще много всяких полезных свойств, правда, самих базофилов в крови всего ничего – 0-1% , но, если будет у организма в них нужда, количество их повысится.

Пониженных значений не бывает

Норма базофилов в периферической крови у взрослых составляет 0-1% , но это не значит, что в организме их может не быть вовсе, например, аллергическая реакция их вмиг активизирует и количество их возрастет. Такого понятия, как «базофилопения» в медицинской практике не существует.

Невзирая на то, что лейкоцитарная формула у детей имеет особенности меняться с возрастом, переживая два перекреста, базофилов все эти изменения не касаются – они остаются на одной цифре нормы – в среднем 0,5% (0-1%) , а у новорожденного ребенка их вообще далеко не всегда можно встретить в мазке. В целом, соотношение белых клеток в формуле (в процентах) у детей грудного возраста может заметно варьировать даже в течение суток (плач, беспокойство, введение прикормов, изменение температуры, болезни), поэтому для получения более точного результата производят оценку результатов по абсолютным значениям.

Абсолютное содержание базофилов в норме будет находиться в пределах: от 0 до 0,09 Х 10 9 /л (0,09 Гига/литр).

Причинами повышенных значений базофилов могут стать различные состояния, начиная от немедленной реакции на введение лекарственного препарата и заканчивая длительно протекающим воспалительным процессом. Словом, уровни этих клеток бывают повышены в случае:

  • Острых реакций гиперчувствительности;
  • Некоторых гематологических заболеваний ( , гемолитическая , хронический миелоидный )
  • После введения профилактических вакцин;
  • Вирусных инфекций (ветрянка, грипп);
  • Ревматоидного артрита;
  • Туберкулезного процесса;
  • Железо-дефицитной анемии;
  • Неспецифического язвенного колита;
  • Злокачественных новообразований из эпителиальной ткани.

Таким образом, общий анализ крови с повышенным количеством базофильных гранулоцитов в первую очередь говорит о проникновении чужого антигена, который по своим характеристикам абсолютно не вписывается в антигенный состав данного организма, поэтому последний и пытается как можно быстрее отторгнуть врага. Порой, ответ бывает весьма бурным и стремительным (анафилактический шок ), тогда пациенту требуется такая же стремительная медицинская помощь (введение адреналина, гормонов), иначе быстро наступит печальный итог.

Важные функции малочисленной группы

На поверхности базофилов сосредоточено большое количество стимулирующих веществ, рецепторов к иммуноглобулину Е (IgE), цитокинам, комплементу. Они осуществляют реакции немедленного типа (гранулоцит-зависимый тип), где эти клетки играют главную роль. Мы можем видеть участие базофилов в развитии анафилактического шока. Секунды – и человеку требуется экстренная помощь.

Базофилы вырабатывают гистамин, серотонин, гепарин, протеолитические ферменты, пероксидазу, простагландины и другие биологически-активные вещества (БАВ), которые до поры до времени хранят в своих гранулах (вот, оказывается, для чего они нужны). Попадание чужеродного антигена заставляет базофилы быстро мигрировать в место «аварии» и выбрасывать БАВ из своих гранул, а тем самым способствовать наведению порядка на проблемных участках (расширение капилляров, заживление раневых поверхностей и др.).

Как было отмечено, базофилы – участники производства естественного антикоагулянта – гепарина, препятствующего свертыванию крови там, где в этом нет необходимости, например, при анафилаксии, когда существует реальная опасность развития тромбогеморрагического синдрома .

Защитник или враг?

Воплощая в себе функциональные способности тканевых тучных клеток, базофилы на своих поверхностях сосредотачивают участки связывания с высоким сродством к IgE (их называют высоко-афинными рецепторами – FcεR), которые идеально отвечают потребностям иммуноглобулинов этого класса (Е). Эти участки, то есть рецепторы FcεR, в отличие от других Fc-структур, обладают способностью связывать свободно передвигающиеся в кровеносном русле антитела, почему и относятся к высоко-афинным. Коль базофилы от природы наделены преимуществом обладать подобными рецепторами, то свободно плавающие антитела их быстро «чувствуют», «усаживаются» на них и прочно «приклеиваются» (связываются). Кстати, такие же рецепторы имеют и эозинофилы, поэтому они всегда скапливаются в зонах проведения реакций гиперчувствительности немедленного типа, где совместно с базофилами выполняют эффекторную функцию (клетки-эффекторы IgE-опосредованных аллергических реакций).

Схематично все это взаимодействие между антителами и рецепторами базофильных гранулоцитов можно представить в следующем виде:

  1. Антитела, передвигаясь по кровеносному руслу, ищут подходящие рецепторы, которые находятся на мембранах базофильных лейкоцитов. Отыскав нужный объект, антитела прикрепляются к нему, чем получают возможность привлекать аналогичные своей специфичности антигены.
  2. Антигены, проникнув в организм, попадают к ожидающим их, связанным с базофильными гранулоцитами, антителам.
  3. Вступая во взаимодействие с антителами, специфические антигены «сшиваются» с ними, в результате чего образуются агрегаты IgE.
  4. Рецепторы сигнализируют базофилам и тучным клеткам о запуске местной ответной воспалительной реакции. Это заставляет их активизироваться и начать выделение содержимого гранул, то есть, биогенных аминов и прочих медиаторов гиперчувствительности немедленного типа.
  5. В один миг из гранул базофилов (дегрануляция) выбрасываются гистамин с серотонином и гепарин, вызывающие местное расширение сосудов микроциркуляторного русла в очаге воспаления. Проницаемость стенок капилляров повышается, кровоток на данном участке усиливается, в окружающих тканях накапливается жидкость, из кровотока в место «катастрофы» устремляются циркулирующие там гранулоциты. При дегрануляции сами базофилы не страдают, жизнеспособность их остается сохраненной, просто все устроено так, что гранулы направляются к периферии клетки и через мембранные поры выходят наружу .

Такая стремительная реакция может стать защитницей организма или служить фактором, привлекающим в инфекционный очаг других участников иммунного ответа:

  • , обладающих всеми свойствами фагоцитирующих клеток;
  • , захватывающих и перерабатывающих чужеродные субстанции;
  • , уничтожающих антигены или отдающих команды вырабатывать антитела;
  • Сами антитела.

Но все-таки в первую очередь подобные события (реакции немедленного типа) составляют основу развития анафилаксии, а потом уже воспринимаются в другом качестве.

Для гистамина и серотонина не характерно продолжительное действие, ведь эти вещества не могут существовать долго. Между тем, местный воспалительный очаг не исчезает с прекращением действия серотонина и гистамина, борьба с инфекцией поддерживается за счет других компонентов реакции (цитокинов, вазоактивных метаболитов – лейкотриенов и других веществ, продуцируемых в очаге воспаления).

Клинические проявления анафилаксии и экстренный случай – шок

Клинически аллергическая (анафилактическая) реакция может проявляться:

  1. Анафилактическим шоком, который относится к самым тяжелым проявлениям аллергии (потеря сознания, падение артериального давления) и требует немедленной медицинской помощи;
  2. Приступом удушья у больных-астматиков;
  3. Непрерывным чиханием и отеком слизистой оболочки носа (ринит);
  4. Появлением сыпи ().

Очевидно, что самой быстрой ответной реакцией организма на поступление чужеродного антигена является анафилактический шок. Время наступления – секунды. Многие люди были свидетелями или сами пережили случаи, когда укус насекомого (чаще пчелы) или введение лекарственных препаратов (обычно новокаина в зубном кабинете) вызывали резкое падение давления, что создавало угрозу жизни. Это и есть анафилактический шок, который человеку, пережившему подобный ужас, следует запомнить на всю оставшуюся жизнь, ибо второй случай будет развиваться еще более стремительно. Впрочем, каждый последующий ответ более тяжелый, чем предыдущий – антитела ведь уже есть. И хорошо, если рядом окажется противошоковая аптечка с адреналином и глюкокортикоидами…

Тканевые базофилы (тучные клетки, лаброциты) являются истинными клетками рыхлой волокнистой соединительной ткани. Функция этих клеток заключается в регуляции местного тканевого гомеостаза, то есть в поддержании структурного, биохимического и функционального постоянства микроокружения. Это достигается посредством синтеза тканевыми базофилами и последующим выделением в межклеточную среду гликозоаминогликанов (гепарина и хондроитинсерных кислот), гистамина, серотонина и других биологически активных веществ, которые оказывают влияние как на клетки и межклеточное вещество соединительное ткани, так и особенно на микроциркуляторное русло, повышая проницаемость гемокапилляров и, тем самым усиливая гидратацию межклеточного вещества. Кроме того продукты тучных клеток оказывают влияние на иммунные процессы, а также на процессы воспаления и аллергии. Источники образования тучных клеток пока не установлены.

Для ультраструктурной организации тканевых базофилов характерно наличие в цитоплазме двух типов гранул:

    метахроматических гранулокрашивающихся основными красителями с изменением цвета окраски;

    ортохроматических гранулокрашивающихся основными красителями без изменения цвета и представляющих собой лизосомы.

При возбуждении тканевых базофилов из них выделяются биологически активные вещества двумя способами:

    посредством выделения гранулдегрануляции;

    посредством диффузного выделения через мембрану гистамина, который усиливает сосудистую проницаемость и вызывает гидратацию (отек) основного вещества, усиливая тем самым воспалительную реакцию.

Тучные клетки принимают участие в иммунных реакциях. При попадании в организм некоторых антигенных веществ плазмоцитами синтезируются иммуноглобулины класса Е, которые затем адсорбируются на цитолемме тучных клеток. При повторном попадании в организм этих же антигенов на поверхности тучных клеток образуются иммунные комплексы антиген-антитело, которые вызывают резкую дегрануляцию тканевых базофилов, а выделяющиеся в большом количестве вышеназванные биологически активные вещества обуславливают быстрое развитие аллергических и анафилактических реакций.

Плазматические клетки (плазмоциты) являются клетками иммунной системы — эффекторными клетками гуморального иммунитета. Образуются плазмоциты из В-лимфоцитов при воздействии на них антигенных веществ. Большинство их локализуется в органах иммунной системы (лимфоузлах, селезенке, миндалинах, фолликулах), но значительная часть плазмоцитов распределяется в соединительной ткани. Функции плазмоцитов заключаются в синтезе и выделении в межклеточную среду антител — иммуноглобулинов, которые подразделяются на пять классов. Исходя из названной функции можно предложить, что в этих клетках хорошо развит синтетический и выделительный аппарат. И действительно, на электронограммах плазмоцитов видно, что почти вся цитоплазма заполнена зернистой эндоплазматической сетью, оставляя небольшой участок, примыкающий к ядру, в котором расположен пластинчатый комплекс Гольджи и клеточный центр. При изучении плазмоцитов под световым микроскопом при обычной гистологической окраске (гематоксилин-эозин) они имеют округлую или овальную форму, базофильную цитоплазму, эксцентрично расположенное ядро, содержащее глыбки гетерохроматина в виде треугольников (колесообразное ядро). К ядру прилежит бледно окрашенный участок цитоплазмы — "светлый дворик", в котором локализуется комплекс Гольджи. Число плазмоцитов отражает интенсивность иммунных реакций.

Жировые клетки (адипоциты) содержатся в рыхлой соединительной ткани в разных количествах, в разных участках тела и в разных органах. Располагаются они обычно группами вблизи сосудов микроциркуляторного русла. При значительном скоплении они образуют белую жировую ткань. Адипоциты имеют характерную морфологию — почти вся цитоплазма заполнена одной жировой каплей, а органеллы и ядро отодвигаются на периферию. При спиртовой фиксации и проводке жир растворяется и клетка приобретает форму перстня с печаткой, а скопление жировых клеток в гистологическом препарате имеет ячеистый, сотообразный вид. Выявляются липиды только после формалиновой фиксации гистохимическими методами (судан, осмий).

Функции жировых клеток:

    депо энергетических ресурсов;

    депо воды;

    депо жирорастворимых витаминов.

Источником образования жировых клеток являются адвентициальные клетки, которые при определенных условиях накапливают липиды и превращаются в адипоциты.

Пигментные клетки — (пигментоциты, меланоциты)это клетки отростчатой формы, содержащие в цитоплазме пигментные включения — меланин. Пигментные клетки не являются истинными клетками соединительной ткани, так как во-первых, они локализуются не только в соединительной ткани, но и в эпителиальной, а во-вторых, они образуются не из мезенхимальных клеток, а из нейробластов нервных гребешков. Синтезируя и накапливая в цитоплазме пигмент меланин (при участии специфических гормонов), пигментоциты выполняют защитную функциюзащиту организма от избыточного ультрафиолетового излучения.

Адвентициальные клетки локализуются в адвентиции сосудов. Имеют вытянутую и уплощенную форму. Цитоплазма слабо базофильна и содержит незначительное число органелл.

Перециты — клетки уплощенной формы, локализуются в стенке капилляров, в расщеплении базальной мембраны. Они способствуют передвижению крови в капиллярах, перенимая их.

Лейкоциты — лимфоциты и нейтрофилы. В норме в рыхлой волокнистой соединительной ткани обязательно содержатся в различных количествах клетки крови — лимфоциты и нейтрофилы. При воспалительных состояниях количество их резко увеличивается (лимфоцитарная или нейтрофильная инфильтрация). Эти клетки выполняют защитную функцию.

Адипоциты . Жировые клетки - адипоциты, - развиваются из адвентициаль ных клеток. Это крупные шаровидные клетки диаметром 30-50 мкм. В цитоплазме адипоцитов накапливаются липидные включения в виде мелких капель, которые позднее сливаются в одну большую каплю. Ядро при этом оттесняется на периферию, и цитоплазма составляет лишь узкий ободок. Обезжиренная клетка на гистологическом срезе напоминает по виду перстень. Под электронным микроскопом в жировых клетках определяются слабо развитые цитоплазматическая сеть, комплекс Гольджи и митохондрии. Адипоциты накапливают жир как трофический резервный материал. Жировые клетки могут освобождаться от включений. При этом они становятся трудно отличимыми от клеток фибробластического ряда.

Жировые клетки встречаются среди фибробластов рыхлой соединительной ткани в незначительном количестве. В тех случаях, когда они образуют большие скопления, то говорят уже не об отдельных клетках, а о жировой ткани.

Пигментоциты . В рыхлой волокнистой соединительной ткани обнаруживаются клетки, цитоплазма которых содержит зерна пигмента - меланина. Среди этих клеток различают синтезирующие пигмент - меланоциты и фагоцитирующие готовый пигмент, например, фибробласты и макрофаги. Ткань с большим количеством меланоцитов встречается у человека в радужке и сосудистой оболочке глаза, в соединительнотканных слоях сильно пигментированных участков кожи, а также в родимых пятнах. Меланоциты являются производными нервного гребня, имеют отростчатую или веретеновидную форму, подвижны, функция и форма клеток может меняться в зависимости от гуморальных и нервных факторов. Клетки могут втягивать свои отростки или вытягивать их, соответственно меняется окраска органа или, например, в органе зрения происходит защита фоточувствительного отростка нейрона от воздействия света.
Сказанным не исчерпывается все разнообразие клеточных форм, имеющихся в составе рыхлой соединительной ткани.

В рыхлой соединительной ткани постоянно находятся клетки, являющиеся потомками стволовой кроветворной клетки. Это гистиоциты-макрофаги, антигенпредставляющие клетки, тканевые базофилы (тучные клетки), плазмоциты, клетки крови (гранулоциты, моноциты, лимфоциты).

Гистиоциты-макрофаги . Они составляют 10-20% от всего клеточного состава рыхлой соединительной ткани. Размер клеток - 12-25 мкм. Макрофаги, находящиеся в спокойном состоянии, называют гистиоцитами, оседлыми макрофагами или блуждающими клетками в покое (рис.51). Подвижные макрофаги, не имеющие определенной локализации в ткани, называют свободными макрофагами. Ядро макрофагов - темное, округлое, содержит крупные глыбки хроматина. Цитоплазма макрофагов четко контурирована. В ней содержатся большое количество вакуолей - фагосом и лизосом, комплекс Гольджи, многочисленные пиноцитозные пузырьки. Остальные органеллы развиты умеренно. Хорошо развитая опорно-двигательная система способствует миграции клеток и фагоцитозу инородних частиц. По характеру и количеству ультраструктур выделяются макрофаги секреторного и фагоцитарного видов. У первых в цитоплазме преобладают секреторные вакуоли, у вторых - лизосомальный аппарат. Источником образования макрофагов являются моноциты крови.

Особая разновидность макрофагов принимает участие в качестве антигенпредставляющей клетки и тем самым являются участниками кооперации Т- и В-лимфоцитов при иммунном ответе на чужеродные вещества. Макрофаги нейтрализуют токсины, могут накапливать витальные красители при введении их в кровь. Они проявляют антибактериальные свойства, выделяя лизоцим, кислые гидролазы, лактоферрин и др., обладают антиопухолевой активностью, выделяя фактор некроза опухолей. Факторы роста макрофагов влияют на пролиферацию эпителиальных клеток, пролиферацию и дифференцировку фибробластов, новообразование кровеносных сосудов и др.

Способность к фагоцитозу является общебиологическим свойством многих тканевых клеток. Однако только те клетки, которые способны захватывать и ферментативно перерабатывать в своей цитоплазме бактерии, инородние частицы, токсины и др., следует относить к макрофагической системе организма. Учение о макрофагической системе заложил И.И. Мечников (1882), который в экспериментах на беспозвоночных обнаружил подвижные клетки, накапливающиеся около инороднего тела. Именно эти клетки были названы макрофагами. Кроме макрофагов-гистиоцитов в состав макрофагической системы организма входят макрофаги печени (звездчатые макрофагоциты, остеокласты, глиальные макрофаги, макрофаги кроветворных органов, макрофаги легкого и др.). Регуляция макрофагической системы осуществляется как местными так и центральными (нервная и эндокринная системы) механизмами.

Тканевые базофилы (тучные клетки, лаброциты, гепариноциты) - развиваются из стволовых кроветворных клеток. Клетки округлой или овальной формы размером от 20 до 30-100 мкм, располагаются преимущественно вдоль мелких кровеносных сосудов. Они имеют небольшое плотное ядро и зернистую цитоплазму (рис. 52). Наиболее характерный признак тучных клеток - это наличие в цитоплазме многочисленных гранул, диаметр которых 0,3-0,7 мкм, обладающих свойством метахромазии (окрашиваться не в цвет красителя). В гранулах содержатся гепарин, гистамин, хондроитинсульфаты, гиалуроновая кислота, серотонин, хемотаксические факторы для эозинофильных и нейтрофильных гранулоцитов и др. При дегрануляции тучных клеток выделяется гепарин, препятствующий свертыванию крови. Выход биогенных аминов сопровождается изменением проницаемости гематотканевого барьера. Кроме того, тучные клетки вырабатывают цитокины, участвующие в иммунных процессах. Тучные клетки размножаются крайне редко.