«Язык математики». Доклад. Математика и язык

Когда люди долгое время взаимодействуют в рамках определенной сферы деятельности, они начинают искать способ оптимизировать процесс коммуникации. Система математических знаков и символов представляет собой искусственный язык, который был разработан, чтобы уменьшить объем графически передаваемой информации и при этом полностью сохранить заложенный в сообщение смысл.

Любой язык требует изучения, и язык математики в этом плане - не исключение. Чтобы понимать значение формул, уравнений и графиков, требуется заранее владеть определенной информацией, разбираться в терминах, системе обозначений и т. д. При отсутствии такого знания текст будет восприниматься как написанный на незнакомом иностранном языке.

В соответствии с запросами общества графические символы для более простых математических операций (например, обозначение сложения и вычитания) были выработаны раньше, чем для сложных понятий наподобие интеграла или дифференциала. Чем сложнее понятие, тем более сложным знаком оно обычно обозначается.

Модели образования графических обозначений

На ранних этапах развития цивилизации люди связывали простейшие математические операции с привычными для них понятиями на основе ассоциаций. Например, в Древнем Египте сложение и вычитание обозначались рисунком идущих ног: направленные по направлению чтения строки они обозначали «плюс», а в обратную сторону - «минус».

Цифры, пожалуй, во всех культурах изначально обозначались соответствующим количеством черточек. Позже для записи стали использоваться условные обозначения - это экономило время, а также место на материальных носителях. Часто в качестве символов использовались буквы: такая стратегия получила распространение в греческом, латинском и многих других языках мира.

История возникновения математических символов и знаков знает два наиболее продуктивных способа образования графических элементов.

Преобразование словесного представления

Изначально любое математическое понятие выражается некоторым словом или словосочетанием и не имеет собственного графического представления (помимо лексического). Однако выполнение расчетов и написание формул словами - процедура длительная и занимающая неоправданно много места на материальном носителе.

Распространенный способ создания математических символов - трансформация лексического представления понятия в графический элемент. Иначе говоря, слово, обозначающее понятие, с течением времени сокращается или преобразуется каким-либо другим способом.

Например, основной гипотезой происхождения знака «плюс» является его сокращение от латинского et , аналогом которого в русском языке является союз «и». Постепенно в скорописи первая буква перестала писаться, а t сократилась до креста.

Другой пример - знак «икс», обозначающий неизвестное, который изначально представлял собой сокращение от арабского слова «нечто». Сходным образом произошли знаки для обозначения квадратного корня, процента, интеграла, логарифма и др. В таблице математических символов и знаков можно встретить более десятка графических элементов, появившихся таким образом.

Назначение произвольного символа

Второй распространенный вариант образования математических знаков и символов - назначение символа произвольным образом. В этом случае слово и графическое обозначение между собой не связаны - знак обычно утверждается в результате рекомендации одного из членов научного сообщества.

Например, знаки умножения, деления, равенства были предложены математиками Уильямом Отредом, Иоганном Раном и Робертом Рекордом. В некоторых случаях несколько математических знаков могли быть введены в науку одним ученым. В частности, Готфрид Вильгельм Лейбниц предложил целый ряд символов, в том числе интеграла, дифференциала, производной.

Простейшие операции

Такие знаки, как «плюс» и «минус», а также символы, обозначающие умножение и деление, знает каждый школьник, несмотря на то, что для последних двух упомянутых операций существует несколько возможных графических знаков.

Можно с уверенностью говорить, что складывать и вычитать люди умели ещё за много тысячелетий до нашей эры, а вот стандартизованные математические знаки и символы, обозначающие данные действия и известные нам сегодня, появились лишь к XIV-XV столетию.

Впрочем, несмотря на установление определенной договоренности в научном сообществе, умножение и в наше время может изображаться тремя различными знаками (диагональный крестик, точка, звёздочка), а деление - двумя (горизонтальная черта с точками сверху и снизу или наклонная черта).

Латинские буквы

На протяжении многих столетий научное сообщество использовало для обмена информацией исключительно латынь, и многие математические термины и знаки обнаруживают свои истоки именно в этом языке. В некоторых случаях графические элементы стали результатом сокращения слов, реже - их намеренного или случайного преобразования (например, вследствие описки).

Обозначение процента («%»), вероятнее всего, происходит от ошибочного написания сокращения cto (cento, т. е. «сотая доля»). Сходным образом произошёл знак «плюс», история которого описана выше.

Гораздо большее было образовано путём намеренного сокращения слова, хотя это не всегда очевидно. Далеко не каждый человек узнает в знаке квадратного корня букву R , т. е. первый знак в слове Radix («корень»). Символ интеграла также представляет собой первую букву слова Summa, однако интуитивно она похожа на прописную f без горизонтальной черты. К слову, в первой публикации издатели совершили именно такую ошибку, напечатав f вместо данного символа.

Греческие буквы

В качестве графических обозначений для различных понятий используются не только латинские, но и В таблице математических символов можно найти целый ряд примеров такого наименования.

Число Пи, представляющее собой отношение длины окружности к её диаметру, произошло от первой буквы греческого слова, обозначающего окружность. Существует ещё несколько менее известных иррациональных чисел, обозначаемых буквами греческого алфавита.

Крайне распространенным знаком в математике является «дельта», отражающая величину изменения значения переменных. Ещё одним употребительным знаком является «сигма», выполняющая функцию знака суммы.

Более того, практически все греческие буквы так или иначе используются в математике. Однако данные математические знаки и символы и их значение знают только люди, занимающиеся наукой профессионально. В быту и повседневной жизни эти знания человеку не требуются.

Знаки логики

Как ни странно, многие интуитивно понятные символы были придуманы совсем недавно.

В частности, горизонтальная стрелка, заменяющая слово «следовательно», была предложена лишь в 1922 года Кванторы существования и всеобщности, т. е. знаки, читающиеся как: «существует…» и «для любого…», были введены в 1897 и 1935 году соответственно.

Символы из области теории множеств были придуманы в 1888-1889 гг. А перечеркнутый круг, который сегодня известен любому учащемуся средней школы как знак пустого множества, появился в 1939 году.

Таким образом, знаки для столь непростых понятий, как интеграл или логарифм, были придуманы на столетия раньше, чем некоторые интуитивно понятные символы, легко воспринимаемые и усваиваемые даже без предварительной подготовки.

Математические символы на английском

Ввиду того, что значительная часть понятий была описана в научных трудах на латыни, ряд названий математических знаков и символов на английском и русском языке одинаковы. Например: Plus («плюс»), Integral («интеграл»), Delta function («дельта-функция»), Perpendicular («перпендикулярный»), Parallel («параллельный»), Null («нуль»).

Часть понятий в двух языках называются различным образом: так, деление - это Division, умножение - Multiplication. В редких случаях английское название для математического знака получает некоторое распространение в русском языке: например, косая черта в последние годы нередко именуется «слешем» (англ. Slash).

Таблица символов

Самый простой и удобный способ ознакомиться с перечнем математических знаков - посмотреть специальную таблицу, в которой содержатся знаки операций, символы математической логики, теории множеств, геометрии, комбинаторики, математического анализа, линейной алгебры. В данной таблице представлены основные математические знаки на английском языке.

Математические знаки в текстовом редакторе

При выполнении различного рода работ зачастую требуется использовать формулы, где употребляются знаки, отсутствующие на клавиатуре компьютера.

Как и графические элементы из практически любой области знаний, математические знаки и символы в «Ворде» можно найти во вкладке «Вставка». В версиях программы 2003 или 2007 года существует опция «Вставка символа»: при нажатии на кнопку в правой части панели пользователь увидит таблицу, в которой представлены все необходимые математические знаки, греческие строчные и прописные буквы, различные виды скобок и многое другое.

В версиях программы, вышедших после 2010 года, разработана более удобная опция. При нажатии на кнопку «Формула» происходит переход в конструктор формул, где предусмотрено использование дробей, занесения данных под корень, смена регистра (для обозначения степеней или порядковых номеров переменных). Здесь же могут быть найдены все знаки из таблицы, представленной выше.

Стоит ли учить математические символы

Система математических обозначений представляет собой искусственный язык, который лишь упрощает процесс записи, но не может принести понимание предмета стороннему наблюдателю. Таким образом, запоминание знаков без изучения терминов, правил, логических связей между понятиями не приведет к овладению данной областью знаний.

Человеческий мозг легко усваивает знаки, буквы и сокращения - математические обозначения запоминаются сами при изучении предмета. Понимание смысла каждого конкретного действия создает настолько прочные что знаки, обозначающие термины, а зачастую и формулы, связанные с ними, остаются в памяти на многие годы и даже десятилетия.

В заключение

Поскольку любой язык, в том числе искусственный, является открытым к изменениям и дополнениям, число математических знаков и символов непременно будет расти с течением времени. Не исключено, что какие-то элементы будут заменены или скорректированы, а другие - стандартизованы в единственно возможном виде, что актуально, например, для знаков умножения или деления.

Умение пользоваться математическими символами на уровне полного школьного курса является в современном мире практически необходимым. В условиях бурного развития информационных технологий и науки, повсеместной алгоритмизации и автоматизации владение математическим аппаратом следует воспринимать как данность, а освоение математических символов - как неотъемлемую его часть.

Поскольку расчеты используются и в гуманитарной сфере, и в экономике, и в естественных науках, и, разумеется, в области техники и высоких технологий, понимание математических понятий и знание символов станет полезным для любого специалиста.

Секция Математика

«Язык математики»

Выполнила Шаповалова Анна

Научный руководитель

учитель математики высшей квалификационной категории.

Введение.

Увидев в кабинете высказывание Г. Галилея «Книга природы написана языком математики» я заинтересовалась: а что же это за язык?

Оказывается, Галилей придерживался мнения о том, что природа сотворена по математическому плану. Он писал: “Философия природы написана в величайшей книге,… но понять ее сможет лишь тот, кто сначала выучит язык и постигнет письмена, которыми она начертана. А написана эта книга на языке математики”.

И вот, что бы найти ответ на вопрос о математическом языке, я изучила много литературы, материалов из интернета.

В, частности, нашла в Интернете «Историю математики» , где узнала этапы развития математики и математического языка.

Я постаралась ответить на вопросы:

· как возник математический язык;

· что собой представляет математический язык;

· где он распространен;

· действительно ли он универсален.

Я думаю, это будет интересно не только мне, т. к. все мы пользуемся языком математики.

Поэтому целью моей работы стало изучение такого явления как «математический язык» и его распространение.

Естественно, что объектом исследования будет математический язык.

Я сделаю анализ применения математического языка в различных областях науки (естествознании, литературе, музыке); в повседневной жизни. Докажу, что этот язык действительно универсален.

Краткая история развития математического языка.

Математика удобна для описа­ния самых разнообразных явлений реального мира и тем самым может выполнять функцию языка.

Исторически составные части математики - арифметика и геометрия - выросли, как известно, из нужд практики, из необходимости индуктивного решения различных практических задач земледелия, мореплавания, астрономии , сбора налогов, возврата долгов, наблюдения за небом, распределения урожая и т. п. При создании теоретических основ математики, основ математики как научного языка, формального языка наук, различных теоретических построений стали важными элементами различные обобщения и абстракции , исходящие из этих практических задач, и их инструментарий.

Язык современной математики - результат ее длительного развития. В период своего за­рождения (до VI в. до н. э.) математика не имела собственного языка. В процессе формирования письменности появились математические знаки для обозначения некоторых натуральных чисел и дробей. Математический язык античного Рима включает дошедшую до наших дней систему обозначения целых чисел был скуден:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI,..., L,..., C,..., D,..., M.

Единица I символизирует зарубку на посохе (не латинскую букву I - это позднее переосмысление). Усилие, уходящее на каждую зарубку, и занимаемое ею место на, скажем, пастушеской палке, заставляет переходить от просто системы обозначения чисел

I, II, III, IIII, IIIII, IIIIII, . . .

к более сложной, экономной системе скорее «имен», чем символов:

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000.

2. Перловский Л. Сознание, язык и математика. "Русский журнал" *****@***ru

3. Грин Ф. Математическая гармония природы. Журнал « Новые Грани» №2 2005 года

4. Бурбаки Н. Очерки по истории математики, М.: ИЛ, 1963.

5. Стройк Д. Я «История математики» - М.: Наука, 1984.

6. Эвфоника «Незнакомки» А. М.ФИНКЕЛЬ Публикация, подготовка текста и комментарии Сергея ГИНДИНА

7. Эвфоника «Зимней дороги» . Научный руководитель – учитель русского языка

Доклад на конференции в рамках «Дней науки»
(организатор — Фонд «Династия», СПб, 21−23 мая 2009 г.)

Вообразите Париж 20-х годов — столицу модернизма и мировой моды. Коко Шанель, вспоминая это время, рассказывает Полю Морану о Пикассо: «Я восхищалась его живописью, хотя не понимала ее. Но я находила ее убедительной, а это то, что я люблю. Для меня это как таблица логарифмов».

Вдумайтесь в эту удивительную параллель. Математика абстрактна, живопись Пикассо абстрактна; казалось бы, вот самое очевидное сходство между двумя непонятностями: «Девушка с обручем» (1919) и «Таблица логарифмов». Но Шанель выбирает другое слово: обе «убедительны», а убедительность — это то, что ее привлекает.

В рамках этого доклада, посвященного разным языковым аспектам содержания и формы математической деятельности, я постараюсь уделить специальное внимание этому качеству — «убедительности».

На личностном уровне убедительность доказательства, идеи, компьютерной симуляции зависит от предрасположенности математика к геометрическому или логическому мышлению, философских склонностей (возможно, неосознаваемых), наконец, ценностной установки.

В социальном плане в игру вступают крупномасштабные исторические обстоятельства, которые могут способствовать как поразительному расцвету математики, так и ее практическому исчезновению.

По понятным причинам историки математики обращаются к тем местам и временам, где математика создавалась или хотя бы принималась по наследству. Но очень интересно было бы пристально вглядеться в исторические обстоятельства ее неприятия, вплоть до (временного) ухода со сцены.

Развитие античной, главным образом греческой, математики в Европе прервалось по крайней мере на первую тысячу лет христианства. Ho еще до христианства практичные и воинственные римляне, создав высокую цивилизацию, интегрировали в нее греческую гуманитарную культуру, но не греческую науку. Даже очевидные военные приложения не смогли соблазнить их. Согласно Плутарху, при осаде Сиракуз римский генерал Марцелл тщетно призывал своих солдат не отступать перед «этим геометрическим Бриареем» (Архимедом), который со своими военными игрушками «превосходит сторуких гигантов мифологии!»

Впрочем, сам Архимед не считал свои инженерные свершения «приложением» своей математики: для его могучего ума они были отвлечением от математики, которого он предпочел бы избежать.

Скудное математическое наследие античного Рима включает дошедшую до наших дней систему обозначения целых чисел:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI,…, L,…, C,…, D,…, M.

Поучительнее всего рассматривать ее как уникальную археологическую коллекцию следов архаического состояния математической мысли.

Единица I символизирует зарубку на посохе (не латинскую букву I — это позднее переосмысление). Усилие, уходящее на каждую зарубку, и занимаемое ею место на, скажем, пастушеской палке, заставляет переходить от тупой, но предельно систематической и потенциально бесконечно продолжимой системы обозначения чисел

I, II, III, IIII, IIIII, IIIIII,. . .

к гораздо более непоследовательной (и не позволяющей уйти в бесконечность), но поначалу экономной и уютной системе скорее «имен», чем символов (так же в начальном отрезке прослеживаемой до зарубок):

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000.

Короткие последовательности этих примарных символов интерпретируются с помощью сложения, иногда вычитания: 2009 = MMIX = M + M — I + X. Конечно, нуль не имеет имени. Ужас перед «отсутствием», «пустотой», глубоко укоренен в человеческой психологии. Еще Экклезиаст сказал: «Чего нет, того нельзя считать».

Невозможность обозначить нуль критически мешает развитию системы и превращению ее в позиционную.

Распространение позиционной системы записи чисел в Европе после выхода книги Леонардо Фибоначчи Liber Abaci (1202) было в сущности началом экспансии единственного действительно глобального мирового языка. Семантикой этого языка был счет чего угодно: зарубок, скота, кораблей, флоринов… Его ядерный синтаксис определялся универсальным правилом перевода абстрактного количества в позиционную (десятичную) запись и обратно. Наконец, его прагматика имела две стороны. Когда референтом текста, состоящего из чисел, был фрагмент внешнего мира, скажем торговля, важным связующим звеном между текстом и внешним миром становились синтаксические правила более высокого уровня. Знаменитый пример таких правил — система двойной бухгалтерии, кодифицированная Лукой Пачиоли в 1494 г.

Когда референтом числового текста служили данные научных, например астрономических, наблюдений, его прагматика могла быть связана с предсказанием, скажем, затмения или построением количественной модели Солнечной системы. В этом случае текст должен был подвергнуться алгоритмической переработке. Иными словами, он служит входом для некоторой программы, тогда как ее выходом становится новый числовой текст, опять имеющий референтом наблюдаемый мир.

Неоценимым достоинством позиционной системы была ее идеальная приспособленность к такой алгоритмической переработке, в частности простые и универсальные правила сложения и умножения, которым можно было научить школьников и клерков. Более сложные программы — инструкции клеркам — описывались на естественном языке как итерация элементарных алгоритмов с добавлением условных переходов («если дебит клиента NN превзойдет его кредит на ZZ флоринов, прекратить поставки»).

Язык программ очень долго существовал лишь как неформализованный поддиалект естественного языка с очень ограниченной (хотя критически важной) сферой применимости. Еще Алан Тьюринг, уже в XX в., мотивируя свою универсальную формализацию вычислимости, когда говорил «компьютер», подразумевал человека, механически следующего конечному списку лежащих перед ним инструкций.

Парадоксальный пример такой деятельности, ставший культурно-историческим памятником общецивилизационного масштаба, — 90 страниц таблиц натуральных логарифмов Джона Непера, опубликованные в его работе Mirifici Logarithmorum Canonis Descriptio, 1614 (интуиция Коко Шанель и здесь не обманула ее). Логарифмы были вычислены знак за знаком, вручную. Конечно, Непер соединял в одном лице роль творца новой математики и клерка-компьютера, следующего собственным инструкциям.

Тем поразительнее философское прозрение Лейбница, его знаменитое Calculemus!, постулирующее, что не только манипуляции с числами, но любое строгое и логически последовательное рассуждение, выводящее умозаключение из принятых посылок, должно быть сводимо к вычислению.

Нанесение на карту точных границ лейбницевского идеального мира, в котором рассуждение эквивалентно вычислению, истинность может быть формализована, но не всегда может быть формально удостоверена, где с предельной ясностью можно увидеть, как даже самая малая канторовская бесконечность (натуральных чисел) ускользает из объятий конечно порожденного языка, и было высшим достижением великих логиков ХХ в. (Гильберт, Черч, Гедель, Тар-ский, Тьюринг, Марков, Колмогоров…).

Центральное понятие этой программы, формальный язык, унаследовало основные черты как естественных языков (фиксируемых посредством алфавитной письменности), так и позиционной системы записи чисел и арифметики. В частности, любой классический формальный язык одномерен/линеен, состоит из дискретных символов, эксплицитно выражает базисные логические средства.

Любой реальный математический текст состоит из слов с вкраплениями формул. Формулы можно считать выражениями формального языка (он может меняться от статьи к статье, но часто представляет собой просто версию языка теории множеств).

Вопрос о том, как слова и символы делят между собой функцию передачи содержания, заслуживает отдельного обсуждения. Важнее всего, что слова адресуют работу людям, а не читающим автоматам; они же занимаются такими тонкостями, как выражение системы ценностей автора.

Формулы не всегда и не везде являются носителем смысла в ядерных фрагментах математического текста. По крайней мере со времени Евклида и до наших дней в школьных учебниках геометрии роль формул играют чертежи. Многие помнят рисунок квадрата, разделенного двумя линиями на два меньших квадрата и два прямоугольника. Этот чертеж иллюстрирует/заменяет/доказывает формулу (а + b) 2 = а 2 + 2ab + b 2 .

Гораздо интереснее — и гораздо менее известен — чертеж, иллюстрирующий античную теорему Паппа Александрийского (около 300 г. н. э.).

Пользуясь им, удобно проиллюстрировать, как геометрическое мышление математиков взаимодействует с формульным и формальным, причем на протяжении многих поколений.

Прежде всего — о содержании теоремы.

Начнем с плоского шестиугольника, на чертеже его вершины BXbCYc. (Он не обязан быть выпуклым, как на картинке! Вот первая ловушка чертежей — они часто заставляют принимать неосознанные ограничения.)

Любая пара противоположных сторон шестиугольника, скажем Bc и bC, определяет также промежуточную между ними диагональ XY. Продолжим эти две стороны и диагональ; может оказаться, что три прямые пересекутся в одной точке.

ТЕОРЕМА ПАППА. Если это свойство выполняется для двух пар противоположных сторон шестиугольника, то оно выполняется и для третьей пары.

Это удивительный результат. Прежде всего, трудно вообразить себе, как к нему можно было прийти. Он не принадлежит евклидовой геометрии: расстояния, длины и углы не играют в его формулировке и доказательстве никакой роли; не играет роли также группа эвклидовых движений плоскости. Единственные структурные отношения примитивны: плоскость состоит из точек; прямые — это некоторые подмножества точек; две прямые пересекаются ровно в одной точке; через две точки проходит одна прямая.

Только в XIX в. было понято, что теорема Паппа — центральный результат плоской проективной геометрии. Сначала это была геометрия обычной плоскости над вещественными числами. Потом открылось, что-то же верно для проективной плоскости над любым абстрактным полем; это поле, его законы композиции и аксиомы — всё восстанавливается по конфигурациям Паппа.

Наконец, ближе к концу XX в. оказалось, что эквивалентность теоремы Паппа с теорией коммутативных полей объясняется и обобщается в широком контексте теории моделей. Модель формального языка есть, попросту говоря, отображение этого языка в язык теории множеств вместе со стандартной интерпретацией последнего. Так смысл изысканного чертежа проявляется в сложной метаязыковой конструкции.

Чертежи не поддаются объединению в язык по многим причинам. Синтаксис чертежей прихотлив и не систематичен, синтаксические связи между ними сопротивляются формализации, чертежи обладают целостностью, которая утрачивается при анализе. Их функция в разных процессах передачи и хранения информации отличается от функции даже «синонимичных» языковых конструкций, они взывают к другому типу воображения, к право-полушарной интуиции.

Когда с развитием гомологической алгебры и теории категории во второй половине ХХ в. в математику стали внедряться «чертежеподобные» языковые конструкции, коммутативные диаграммы, должен был пройти некоторый период привыкания к ним.


На рис. 2 изображена такая диаграмма (вполне реалистическая: из работы Д. Борисова и автора, 2007 г.). Элементарной составляющей диаграммы является коммутативный квадрат. До эры категорий линейная языковая запись утверждения, выражаемого этим квадратом, почти исчерпывалась бы равенством h ◦ f = k ◦ g. Но это верно лишь с существенной оговоркой: f, g, h, k здесь — морфизмы в категории, и необходимо знать, из какого объекта в какой каждый морфизм «бьет».

Более того, в большой диаграмме на рис. 2 можно увидеть косые стрелки, вроде а. Такая стрелка изображает морфизм не в исходной категории, скажем C, где живут объекты, имена которых отмечают начала и концы стрелок. Она изображает морфизмы в категории морфизмов Mor C:

а: Id ◦ F"- F" ◦ G.

Точное содержание диаграммы можно передать лишь подробно откомментировав ее обычным линейным текстом, перемежающим слова и формулы. Но делает ли такой текст излишней самое диаграмму? Нет! (Я переписывался с коллегой по электронной почте, обсуждая вполне конкретный математический сюжет. В тексте e-mail, конечно, приходится обходиться словесными экивоками. Вдруг я получаю от своего корреспондента вопль души: «Диаграмму! Полцарства за диаграмму!»)

Ниже я намерен аргументировать точку зрения, согласно которой, развитие теории категорий, и в особенности гомотопической топологии, в течение последних десятилетий не только было существенным прогрессом конкретной области математики, но также способствовало осознанию и вербализации происходящего на наших глазах эпистемологического сдвига в том, что принято было называть «основаниями» математики.

Я должен оговориться: для меня «основания» лишены прескриптивной или нормативной функции. Я понимаю под «основаниями» плод работы математиков, которые склонны вглядываться в практику выбора задач, оформления доказательств и экспериментов, в ценностные ориентации живущих и ушедших поколении математиков.

Важнейшая социальная функция исследований, посвященных основаниям, состоит в поддержании диалога между «двумя культурами» (Ч.П.Сноу). Диалог этот начинается потому, что математика постоянно вызывает естественное философское беспокойство. Если не принимать буквально существование объективного, независимого от нас платоновского мира идей (а философы иногда готовы не принимать даже существования мира вещей и явлений), то придется признать, что математика есть просто плод высокотренированного воображения нескольких тысяч человек в каждом поколении.

Тогда, даже оставив на время заботу о критериях «истинности» математических утверждений, нельзя не поразиться упрямой устойчивости математического знания, его межпоколенческой и межцивили-зационной воспроизводимости.

Больше того, это знание не просто воспроизводится, как воспроизводятся тексты «Одиссеи», «Гильгамеша» или Евангелия. Оно развивается и обогащается, в последние 200 лет — с неслыханной прежде скоростью.

Возвращаясь к проблеме математического содержания «оснований математики» и его исторической эволюции за последние полторы сотни лет, я представлю ее следующим образом.

Исходным ментальным образом, общим для огромного большинства работающих математиков после, скажем, Второй мировой войны, является образ множества с дополнительной структурой: топологического пространства, группы, кольца, пространства с мерой…

На первых ступеньках это множество является чисто канторовской абстракцией: природа его элементов не важна, важно лишь, что они попарно различимы и мыслятся как объединенные в единое целое. На следующих этапах элементы нового множества могут быть открытыми подмножествами предыдущего, локальными функциями на нем и т. п.

Сам Кантор в минималистком вдохновении задал самые базисные вопросы о таких множествах, продемонстрировал бесконечную шкалу бесконечностей и оставил нескольким поколениям логиков задачу разбираться с онтологией и гносеологией этой шкалы.

Более прагматичное поколение, пережившее первую войну, построило на этом потенциально метафизическом фундаменте архитектурно современное и функционально эффективное здание работающей математики из индустриально производимых элементов под названием «структуры» в смысле Бурбаки.

Вопросы о шкале бесконечностей ушли для работающих математиков на задний план, но дискретные множества как основной строительный материал остались. Непрерывное стало надстройкой над дискретным.

Между тем, еще до Кантора некоторые проблемы со строительством из множеств даже элементарной арифметики были совершенно ясны. Если натуральные числа именуют количества палочек или любых конечных дискретных множеств,

I, II, III,. . .

то уже нуль как мощность пустого множества создает психологические проблемы, а отрицательные числа требуют или искусственной алгебры, или интерпретации в совершенно другом универсуме, скажем экономических отношений («долг»).

Вместе с тем, если исходным элементом интуиции считать непрерывное, а дискретное вводить как производную структуру, то целые числа получают удивительно естественное воплощение. Вообразите точку, движущуюся по плоскости. Пусть она выходит из какой-то начальной позиции, блуждает некоторое время, а потом возвращается назад, ни на момент не попадая, скажем, в начало координат. Вопрос: сколько раз она обойдет вокруг начала? Нетрудно дать точное определение этому целому числу: оно может быть нулем, положительным или отрицательным (обходы бывают по часовой стрелке, а бывают — против).

Более того, нетрудно понять, как обходы сначала в одну сторону, а потом в другую сокращаются (1 — 1 = 0): путь, состоящий из двух таких обходов, можно стянуть в точку, не задевая начала координат.

Так что же было вначале, дискретное или непрерывное? Конечно, это архетипический вопрос философии: ijoyoq, вероятно, символизирует дискретное, а х ао? — непрерывное.

Пользуясь метафорой из смежной профессии, этнографии, я сравнил бы эту ситуацию с теорией мифа по Леви-Строссу. Не без влияния Бурбаки Леви-Стросс сконструировал интерпретацию мифа как медиации оппозиции. Обдумывая его концепцию четверть века назад, я предположил эволюцию в обратном направлении: согласно этому взгляду, миф отмечает эпоху, когда осознание оппозиции («дискретного») рождалось из ментального хаоса. Так музыкальная нотация рождалась из самой музыки.

Способ вводить целые числа, который я набросал выше — считать количество обходов с учетом ориентации, которые делает замкнутый путь на плоскости вокруг начала координат, — начал свое существование как одна из самых ранних теорем гомотопической топологии.

Геометр, занимающийся гомотопической топологией, видит умственным взором бесконечномерные пространства, которые могут деформироваться и должны деформироваться вплоть до стягивания в одну точку. В конечном счете дискретность, которую тополог вычисляет и передает дискретным языком, сводится к «связным компонентам» этих пространств и производных от них пространств отображений.

В популярных изложениях математики, а теперь и в видеофильмах «узлы» в R 3 , или «выворачивание сферы наизнанку», используются, чтобы экстериоризировать такие приватные ментальные образы. Возможности этой экстериоризации как учебного средства ограничены, так же как ограничена возможность вообразить себя Святославом Рихтером, исполняющим Шуберта, посмотрев его интервью с Бруно Монсенжоном.

Поэтому я смогу лишь вкратце изложить свои впечатления об эпистемологическом сдвиге, динамику которого я различаю в основаниях математики.

Суть его состоит в том, что отношения между дискретным и непрерывным, между языком и воображением, между алгеброй и топологией инвертируются. Непрерывность, геометрическое воображение, топология медленно завоевывают место первичного математического материала.

Язык становится вторичным, подчиненным, его «внутренняя письменность» возвращается к архаичной иероглифической форме, и его материей делается комбинаторика геометрических образов. Сама эта комбинаторика нелинейна, многомерна, и уже на уровне своего зарождения новый язык смешивает синтаксис, семантику и прагматику способами, которые мы еще не начали философски осмыслять.

Коммутативные диаграммы категорного языка были предвестием такой эволюции. С проникновением в обиход поликатегорий, обогащенных категорий, А∞-алгебр и подобных структур мы начинаем говорить на языке, который в гораздо меньшей степени поддается экстериоризации, чем мы привыкли.

Очень убедительным для меня аргументом в пользу того, что эта перцепция — больше, чем моя частная иллюзия, было осознание параллельных процессов, происходящих на границе математики с теоретической физикой. Я имею в виду Фейнмановские интегралы, методы ренормализации и такие их приложения, как интеграл Виттена, вычисляющий инварианты узлов.

В заключение я хочу вернуться к теме, с которой начал, — проблеме убедительности математики и, более общо, современной науки.


Убедительность личного опыта, свидетельств очевидцев, отсылка к авторитетам и авторитетным текстам часто воспринимаются как полный список средств убеждения. Конечно, физики, химики, биологи добавляют к этому списку направленный эксперимент.

Но я бы хотел рассмотреть здесь то, что я назову «цивилизационным» аргументом, интуитивно угаданным Коко Шанель. Цивилизация предоставляет в наше распоряжение способы проверки истинности, которые не сводятся ни к апелляции к авторитетам, ни к личному опыту разбора длинных математических доказательств, ни к свидетельствам.


Готовясь к этому докладу, я вел обильную переписку по электронной почте. Возможность ее воспринимается почти всеми сейчас как нечто, само собой разумеющееся. Но ее сделал возможной такой уровень математики, выстроенной за 2 тыс. лет, полномасштабную убедительность которого ни мы сами, ни авторитетные для нас люди проверить не в состоянии. Математика верна кроме всего прочего и потому, что открытие уравнений Максвелла привело к технике передачи информации электромагнитными волнами, а Булева алгебра стала работать в вашем и моем ноутбуке.

Культура математического рассуждения в цивилизационном аспекте есть важнейшая форма объективации абстрактного математического знания, способ его передачи от поколения к поколению.

В личностном плане математическую культуру, культуру доказательства я сравнил бы с тренировкой музыканта — отработка точности мелких движений, пока они не станут автоматическими и смогут быть синтезированными, скажем, в «Сонату для скрипки соло» Баха. Кодификация формального языка с его компонентами логики и теории множеств была идеальным средством такой «отработки точных движений». Но если она сопровождается идеологической пропагандой вроде интуиционизма или конструктивизма, она становится философски зашоренной и цивилизационную ценность теряет.

I. Известное нам понятие приведённое в название раздела требуют повторного осмысления в контексте начального образования. Ими дети пользуются уже с первых дней обучения математики. Но строгих определений они не знают и не будут знать, т.к. это материал старших классов.

Математический язык- искусственный язык . Вещь рождается вместе с человеком, а математический язык внедряется только в результате обучения. Рассмотрим компоненты математического языка.

1) Цифры или «буквы» языка: их всего 10-0,1,2,3…9. С их помощью по специальным правилам записываются числа. Этот процесс называется нумерацией. Нумерация предполагает – чтение чисел, не путать цифры и числа. Цифр всего- 10, а чисел бесконечное множество. До первого десятка цифры можно называть числами.

2) Знаки операции:

+
-
.
:

3) Знаки отношений:

= > < : .

- делится без остатка 24:.3 ; 24:. 12

4) Буквы латинского алфавита (лат.язык- это мертвый язык; он является языком науки; область возникновения- Италия)

5) Технические знаки- скобки (), , {}

Используя этот алфавит в математике образуют словосочетание носящее название «выражение». Из выражения составляют математическое выражение, которое носит название – «числовое равенство» или «числовое неравенство», «уравнение» и т.д.

II Выражение и их виды.

Запишем несколько словосочетаний математического языка: 15+21, 72:5а, 2х+18. Они отличаются друг от друга:

1)не содержит букв, называемых переменными; 15+21- числовое выражение;

2)последние записи называются выражениями с переменными.

ВЫРАЖЕНИЕ НЕ СОДЕРЖИТ ЗНАКОВ ОТНОШЕНИЙ

Одна буква- это уже выражение, одно число тоже выражение. Выполнив все действия можно найти значения числового выражения. Не все выражения имеют смысл. В первую очередь это те выражения, которые связаны с деление на ноль. 35+26:(27-27)

В младших классах, дети на это не обращают внимания, но в старших классах приходится постоянно проверять не присутствует ли в выражении деление на ноль. Для младшего школьника не имеющего смысла являются и такие: 14-23, 4:48 и др.

В выражениях из скобок сильными считаются умножение и деление, поэтому их выполняют по порядку слева на право, потом приступают к сложению, выписывают тоже по порядку.

III тождественные преобразования выражения.

Задача: Разложите на множители выражение с переменной: ах- в 2 – вх+ав.

ах-в 2 –вх+ав= - исходное выражение

Ах-вх+ав-в 2 = - использовали переменную- закон сложения

= (ах-вх)+(ав-в 2)= - использовали сочетательный закон

Х(а-в)+в(а-в)= - использовали распределительный закон относительного вычитания

=(а-в).(х+в) – искомый результат

Заметим, что одно и тоже выражение записано 5-ю способами. В таких случаях говорят, что выражение -тождественное преобразование выражения.

Определение: два выражения называется тождественно равным, если при любых значениях переменных из области определения выражений их соответствие значения равны.

В начальном курсе математики рассматривают в основном числовые выражения. Дети выполняют тождественные преобразования не обозначая его математическим значением: 35. 4=(30+5).4=30.4+5.4=120+20=140. Здесь 5 выражений тождественно равных друг другу. Объяснение мы писать не станем.

Математический язык является формальным языком людей изучающих точные науки. Считается, что он более краток и ясен, чем обычный, потому что оперирует точными понятиями, конкретен и состоит из логических высказываний с универсальными логическими символами.

История

Буквенные обозначения, которые применяются в алгебре, не использовались в древности, уравнения записывали в письменной форме. Первые сокращенные обозначения известных величин встречаются у древнегреческого математика Диофанта во II веке нашей эры. В XII веке стала известна в Европе «Алгебра» арабского астронома и математика Аль-Хорезми , переведенная на латинский язык. С этого времени появляются сокращенные обозначения для неизвестных. Когда в XVI веке Дель Ферро и Тарталья - итальянские математики - открыли правила для решения кубических уравнений, сложность этих правил потребовала усовершенствования существующих обозначений. Усовершенствование происходило в течение целого столетия. Французский математик Виета в конце XVI века ввел буквенные обозначения и для известных величин. Были введены сокращенные обозначения действий. Правда, обозначение действий еще долго выглядело у разных авторов согласно их представлению. И только в XVII веке благодаря французскому ученому Декарту алгебраическая символика приобрела вид очень близкий известному сейчас.

Знаки математического языка

Основными типами математического языка являются знаки объектов – это числа, множества, вектора и так далее, знаки отношений между объектами - «›», «=» и так далее. А также операторы или знаки операций , например, знаки «-», «+» , «F», «sin» и так далее. Сюда же необходимо отнести несобственные или вспомогательные знаки : скобки, кавычки и так далее.

Современная математика имеет в своем арсенале очень развитые знаковые системы, позволяющие отразить тончайшие оттенки мыслительного процесса. Культурный человек должен уметь говорить, писать, думать на математическом языке, поскольку это тот язык на котором «говорит» окружающая действительность. Знание математического языка дает богатейшие возможности для анализа научного мышления и всего процесса познания.

Пример

1. На обычном языке говорят: «От перемены мест слагаемых сумма не меняется». Математическим языком это будет написанно как:

a + b = b + a .

Запись a + b = b + a экономна и удобна для применения.

2. Пример обратного перевода, на математическом языке записан распределительный закон:

a (b + c) = ab + ac .

Перевод на обычный язык: «Чтобы умножить число a на сумму чисел b и c , надо число a умножить поочередно на каждое слагаемое и полученные произведения сложить».