Биография эрнеста резерфорда. Эрнест резерфорд краткая биография

Как пишет В.И. Григорьев: «Труды Эрнеста Резерфорда, которого нередко справедливо называют одним из титанов физики нашего века, работы нескольких поколений его учеников оказали огромное влияние не только на науку и технику нашего века, но и на жизнь миллионов людей. Он был оптимистом, верил в людей и в науку, которой посвятил всю жизнь».

Эрнест Резерфорд родился 30 августа 1871 года вблизи города Нелсон (Новая Зеландия), в семье переселенца из Шотландии колесного мастера Джеймса Резерфорда.

Эрнест был четвертым ребенком в семье, кроме него было еще б сыновей и 5 дочерей. Мать его. Марта Томпсон, работала сельской учительницей. Когда отец организовал деревообрабатывающее предприятие, мальчик часто работал под его руководством. Полученные навыки впоследствии помогли Эрнесту при конструировании и постройке научной аппаратуры.

Окончив школу в Хавелоке, где в это время жила семья, он получил стипендию для продолжения образования в колледже провинции Нелсон, куда поступил в 1887 году. Через два года Эрнест сдал экзамен в Кентерберийский колледж - филиал Новозеландского университета в Крайстчерче. В колледже на Резерфорда оказали большое влияние его учителя: преподававший физику и химию Э.У. Бикертон и математик Дж.Х.Х. Кук.

Эрнест обнаружил блестящие способности. После окончания четвертого курса он удостоился награды за лучшую работу по математике и занял первое место на магистерских экзаменах, причем не только по математике, но и по физике. Став в 1892 году магистром искусств, он не покинул колледж. Резерфорд погрузился в свою первую самостоятельную научную работу. Она имела название «Магнетизация железа при высокочастотных разрядах» и касалась обнаружения высокочастотных радиоволн. Для того чтобы изучить это явление, он сконструировал радиоприемник (за несколько лет до того, как это сделал Маркони) и с его помощью получал сигналы, передаваемые коллегами с расстояния полумили. Работа молодого ученого была опубликована в 1894 году в «Известиях философского института Новой Зеландии».

Наиболее одаренным молодым заморским подданным британской короны один раз в два года предоставлялась особая стипендия, дававшая возможность поехать для усовершенствования в науках в Англию. В 1895 году оказалась вакантной стипендия для получения научного образования. Первый кандидат на эту стипендию химик Маклорен отказался по семейным обстоятельствам, вторым кандидатом был Резерфорд. Приехав в Англию, Резерфорд получил приглашение Дж.Дж. Томсона работать в Кембридже в лаборатории Кавендиша. Так начался научный путь Резерфорда.

На Томсона произвело глубокое впечатление проведенное Резерфордом исследование радиоволн, и он в 1896 году предложил совместно изучать воздействие рентгеновских лучей на электрические разряды в газах. В том же году появляется совместная работа Томсона и Резерфорда «О прохождении электричества через газы, подвергнутые действию лучей Рентгена». В следующем году вышла в свет заключительная статья Резерфорда по этой тематике «Магнитный детектор электрических волн и некоторые его применения». После этого он полностью сосредоточивает свои силы на исследовании газового разряда. В 1897 году появляется и его новая работа «Об электризации газов, подверженных действию рентгеновских лучей, и о поглощении рентгеновского излучения газами и парами».

Сотрудничество с Томсоном увенчалось весомыми результатами, включая открытие последним электрона - частицы, несущей отрицательный электрический заряд. Опираясь на свои исследования, Томсон и Резерфорд выдвинули предположение, что, когда рентгеновские лучи проходят через газ, они разрушают атомы этого газа, высвобождая одинаковое число положительно и отрицательно заряженных частиц. Эти частицы они назвали ионами. После этой работы Резерфорд занялся изучением атомной структуры вещества.

Осенью 1898 года Резерфорд занял место профессора Макгилльского университета в Монреале. Преподавание Резерфорда на первых порах шло не слишком успешно: студентам не понравились лекции, которые молодой и еще не вполне научившийся чувствовать аудиторию профессор перенасыщал деталями. Некоторые затруднения возникли вначале и в научной работе из за того, что задерживалось прибытие заказанных радиоактивных препаратов. Ведь при всех усилиях он не получал достаточных средств для постройки необходимых приборов. Много необходимой для опытов аппаратуры Резерфорд построил собственными руками.

Тем не менее он работал в Монреале довольно долго - семь лет. Исключение составил 1900 год, когда во время краткого пребывания в Новой Зеландии Резерфорд женился. Его избранницей стала Мэри Джорджии Ньютон, дочь хозяйки того пансиона в Крайстчерче, в котором он некогда жил. 30 марта 1901 родилась единственная дочь четы Резерфорд. По времени это почти совпало с рождением новой главы в физической науке -физики ядра.

«В 1899 году Резерфорд открывает эманацию тория, а в 1902-03 годах он совместно с Ф. Содди уже приходит к общему закону радиоактивных превращений, - пишет В.И. Григорьев. - Об этом научном событии нужно сказать подробнее. Все химики мира твердо усвоили, что превращение одних химических элементов в другие невозможно, что мечты алхимиков делать золото из свинца следует похоронить навеки. И вот появляется работа, авторы которой утверждают, что превращения элементов при радиоактивных распадах не только происходят, но и что даже ни прекратить, ни замедлить их невозможно. Более того, формулируются законы таких превращений. Мы теперь понимаем, что положение элемента в периодической системе Менделеева, а значит, и его химические свойства, определяются зарядом ядра. При альфа распаде, когда заряд ядра уменьшается на две единицы (за единицу принимается «элементарный» заряд -модуль заряда электрона), элемент «перемещается» на две клеточки вверх в таблице Менделеева, при электронном бета распаде - на одну клеточку вниз, при позитронном -на клеточку вверх. Несмотря на кажущуюся простоту и даже очевидность этого закона, его открытие стало одним из важнейших научных событий начала нашего века».

В своей классической работе «Радиоактивность» Резерфорд и Содди коснулись фундаментального вопроса об энергии радиоактивных превращений. Подсчитывая энергию испускаемых радием альфа частиц, они приходят к выводу, что «энергия радиоактивных превращений, по крайней мере, в 20000 раз, а может, и в миллион раз превышает энергию любого молекулярного превращения». Резерфорд и Содди сделали вывод, что «энергия, скрытая в атоме, во много раз больше энергии, освобождающейся при обычном химическом превращении». Эта огромная энергия, по их мнению, должна учитываться «при объяснении явлений космической физики». В частности, постоянство солнечной энергии можно объяснить тем, «что на Солнце идут процессы субатомного превращения».

Нельзя не поразиться прозорливости авторов, увидевших еще в 1903 году космическую роль ядерной энергии. Этот год стал годом открытия новой формы энергии, о которой с определенностью высказывались Резерфорд и Содди, назвав ее внутриатомной энергией.

Получивший мировую славу ученый, член Лондонского королевского общества (1903) получает приглашение занять кафедру в Манчестере. 24 мая 1907 года Резерфорд вернулся в Европу. Здесь Резерфорд развернул кипучую деятельность, привлекая молодых ученых из разных стран мира. Одним из его деятельных сотрудников был немецкий физик Ганс Гейгер, создатель первого счетчика элементарных частиц. В Манчестере с Резерфордом работали Э. Марсден, К. Фаянс, Г. Мозли, Г. Хевеши и другие физики и химики.

В 1908 году Резерфорд у была присуждена Нобелевская премия по химии «за проведенные им исследования в области распада элементов в химии радиоактивных веществ». В своей вступительной речи от имени Шведской королевской академии наук К.Б. Хассельберг указал на связь между работой, проведенной Резерфордом, и работами Томсона, Анри Беккереля, Пьера и Марии Кюри. «Открытия привели к потрясающему выводу: химический элемент... способен превращаться в другие элементы», - сказал Хассельберг. В своей нобелевской лекции Резерфорд отметил: «Есть все основания полагать, что альфа частицы, которые так свободно выбрасываются из большинства
радиоактивных веществ, идентичны по массе и составу и должны состоять из ядер атомов гелия. Мы, следовательно, не можем не прийти к заключению, что атомы основных радиоактивных элементов, таких как уран и торий, должны строиться, по крайней мере частично, из атомов гелия».

После получения Нобелевской премии Резерфорд провел эксперименты по бомбардировке пластинки тонкой золотой фольги альфа частицами. Полученные данные привели его в 1911 году к новой модели атома. Согласно его теории, ставшей общепринятой, положительно заряженные частицы сосредоточены в тяжелом центре атома, а отрицательно заряженные (электроны) находятся на орбите ядра, на довольно большом расстоянии от него. Эта модель подобна крошечной модели Солнечной системы. Она подразумевает, что атомы состоят главным образом из пустого пространства.

Широкое признание теории Резерфорда началось, когда к работе ученого в Манчестерском университете подключился датский физик Нильс Бор. Бор показал, что в терминах, предложенных Резерфордом, структуры могут быть объяснены общеизвестными физическими свойствами атома водорода, а также атомов нескольких более тяжелых элементов.

Плодотворная работа резерфордовской группы в Манчестере была прервана Первой мировой войной. Английское правительство назначило Резерфорда членом «адмиральского штаба изобретений и исследований» - организации, созданной для изыскания средств борьбы с подводными лодками противника. В лаборатории Резерфорда в связи с этим начались исследования по распространению звука под водой. Лишь по окончании войны ученый смог восстановить свои исследования атома.

После войны он вернулся в манчестерскую лабораторию и в 1919 году сделал еще одно фундаментальное открытие. Резерфорду удалось провести искусственным путем первую реакцию превращения атомов. Бомбардируя атомы азота альфа частицами, Резерфорд получил атомы кислорода. В результате проведенных Резерфордом исследований резко возрос интерес специалистов по атомной физике к природе атомного ядра.

В том же 1919 году Резерфорд перешел в Кембриджский университет, став преемником Томсона в качестве профессора экспериментальной физики и директора Кавендишской лаборатории, а в 1921 м занял должность профессора естественных наук в Королевском институте в Лондоне. В 1925 году ученый был награжден британским орденом «За заслуги». В 1930 году Резерфорд был назначен председателем правительственного консультативного совета управления научных и промышленных исследований. В 1931 году он получил звание лорда и стал членом палаты лордов английского парламента.

Ученики и коллеги вспоминали об ученом как о милом, добром человеке. Они восхищались его необычайным творческим способом мышления, вспоминали, как он с удовольствием говорил перед началом каждого нового исследования: «Надеюсь, что это важная тема, поскольку существует еще так много вещей, которых мы не знаем».

Обеспокоенный политикой, проводимой нацистским правительством Адольфа Гитлера, Резерфорд в 1933 году стал президентом Академического совета помощи, который был создан для оказания содействия тем, кто бежал из Германии.

Почти до конца жизни он отличался крепким здоровьем и умер в Кембридже 20 октября 1937 года после непродолжительной болезни. В признание выдающихся заслуг в развитии науки ученый был похоронен в Вестминстерском аббатстве.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

V

Памяти Эрнеста Резерфорда

Статья в газете "Известия"

В лице Эрнеста Резерфорда мировая наука потеряла самого крупного и смелого физика-экспериментатора наших дней. Я не сомневаюсь, что его имя в истории физики станет наравне с именем Фарадея.

Резерфорд, как и Фарадей,- в основном экспериментатор, наделенный исключительной интуицией. Она вела его к тем экспериментам, посредством которых он находил в самых трудных и основных проблемах науки простые и ясные решения. В физике, как и во всякой науке, существует ряд основных проблем, решение которых обозначает как бы вехами тот путь, по которому развивается научная мысль. Мало кому из ученых удается поставить больше одной такой вехи. Резерфорд, как и Фарадей, поставил их несколько.

В 1903 г., одиноко работая в маленьком провинциальном университете Монреаля (в Канаде), он доказал, что радиоактивность есть спонтанный распад элемента радия, открытого супругами Кюри. Он доказал это блестяще и неопровержимо убедительно, получив из радия эманацию и гелий. Смелая идея, руководившая его работой, шла вразрез с установившимся уже много десятилетий понятием о постоянстве атома. Эта работа подвела совсем новый фундамент под наши взгляды на материю и лежит теперь в основе наших космологических воззрений.

В 1911 г. Резерфорд создает модель атома. Экспериментально он показывает, что атом всякого вещества как бы подобен Солнечной системе. В центре положительно заряженное весомое ядро окружено отрицательными электронами. Эта модель в 1913 г. легла в основу Розданной Нильсом Бором теории атома и спектров. Теперь эти взгляды являются ведущими как в физике, так и в химии.

В 1919 г. Резерфорд экспериментально доказал возможность искусственного разложения материи. Он разложил ядро элемента азота и, таким образом, указал путь и положил основание современной физике ядра.

Для всех, близко его знавших, его смерть была полной неожиданностью. Он все время энергично руководил своими учениками в Кавендишской лаборатории, где он создал самую крупную школу физиков Англии. Его творческая мысль неистощимо работала, и он принимал живое участие в совместной работе ученых всех стран.

Резерфорд был не только гениальным ученым, но и большим учителем. Он оставляет после себя значительное количество учеников, рассеянных по всему свету.

Работы Резерфорда получили мировое признание. Еще в 1908 г. он получил Нобелевскую премию, имел все научные международные отличия. Он был почетным членом всех академий мира, в том числе и нашей всесоюзной..

Из доклада, прочитанного в Университете физико-химии им. Н. Д. Зелинского

Эрнест Резерфорд, известный всему миру как величайший ученый наших дней, родился в 1871 г. в деревне Брайтуотер, около городка Нельсон в Новой Зеландии. Ученый, имевший все международные отличия, какие только может иметь человек науки, Резерфорд начал свою жизнь очень скромно. Он был четвертым ребенком мелкого фермера, у которого после него было еще восемь детей. Его отцу, культивировавшему лен, было не под силу дать образование 12 детям, и Резерфорд, начиная с детского возраста и до получения высшего образования, все время учился на стипендии.

Это был очень живой, активный, веселый ребенок, любивший охоту, спорт. В школе и в университете он играл форвардом в футбольной команде. Но также он любил читать, мастерить модели, разбирать механизмы. Еще мальчиком он сделал себе фотографический аппарат, что по тем временам было довольно трудно. Окончив школу в 1890 г., он поступает в университет Кентербери-колледж в г. Крайстчерч. Это маленький провинциальный университет, там было всего 150 студентов и семь профессоров. С первого дня он увлекается наукой и начинает исследовательскую работу.

В студенческие годы Резерфорд очень заинтересовался радиоволнами, открытыми Герцем. Его увлекла идея беспроволочного телеграфа, но вопрос тогда упирался в то, чтобы найти детектор для электрических колебаний, возбужденных приходящими волнами. Резерфорд обнаружил, что высокочастотные колебания размагничивают железо. Практически это очень легко обнаружить, если рядом с намагниченным пучком железных проволок, помещенным в колебательный контур, поставим магнитную иглу. Тогда игла заметно отклонится при приеме радиоволн. Это открытие он опубликовал, и в маленьком университете это произвело впечатление и сразу создало Резерфорду репутацию.

В 1891 г. студенты организовали маленькое научное общество, в котором Резерфорд еще совсем молодым человеком делает доклад "Об эволюции материи". В этой работе он высказал для того времени совершенно революционные мысли: он утверждал тогда, что все атомы состоят из одних и тех же составных частей. Этот доклад был встречен очень неодобрительно, и ему пришлось извиниться перед обществом.

Надо сказать, что тогда, в 1891 г., у Резерфорда не было никаких данных для такого утверждения. Радиоактивность была открыта лишь в 1896 г., и со времени Дальтона атом рассматривался как нечто незыблемое. Но смелость Резерфорда, высказавшего такую мысль, правильность которой он экспериментально доказал через 12 лет, очень показательна.

В 1894 г. он кончает университет и, получив так называемую стипендию 1851 года, уезжает в Англию - в Кембридж. "Стипендия 1851 года"-это самая крупная стипендия, которую можно получить в Англии молодому ученому, и она полностью обеспечила научную работу Резерфорда на 2-3 года.

1895 год был годом реформ в Кембриджском университете. До этого года в исследовательских лабораториях Кембриджа не могли работать студенты, окончившие другие университеты. Но по инициативе Дж. Дж. Томсона было решено этот порядок изменить и дать возможность студентам, окончившим другие университеты, продолжать научную работу в кембриджских лабораториях.

Резерфорд был одним из первых молодых ученых, которые воспользовались этим изменением. Он записался в Кавендишскую лабораторию, руководимую Дж. Дж. Томсоном. Вместе с ним туда также поступили Мак-Леннан, Таунсенд и Ланжевен. Резерфорд в продолжение своего пребывания в Кавендишской лаборатории работал в одной комнате с Ланжевеном и очень с ним подружился. Дружба двух ученых, начавших вместе свою научную деятельность, была самой тесной и неразрывной до самой смерти Резерфорда.

В Кембридже Резерфорд начал с того, что продолжал свои работы по радиопередаче. Он устанавливает радиосвязь между лабораторией и обсерваторией, т. е. на расстоянии больше двух километров. Он первый в те времена передавал радиосигналы на такое большое расстояние. Надо думать, что, продолжай он эти работы, он ушел бы очень далеко, но его не привлекало практическое решение этого вопроса. В то время его начинает интересовать другой вопрос - об ионизации газов рентгеновскими лучами, природа которых в то время еще не была известна. Он начал работать вместе с Дж. Дж. Томсоном; ими было установлено такое явление, как ток насыщения при ионизации. Эту работу, опубликованную в 1896 г., можно считать основной по этому вопросу.

Как раз во время этой работы, в 1896 г., Беккерель открыл радиоактивность. Резерфорд увлекся этим явлением и стал его изучать. Он первый показал, что радий испускает два рода лучей (он назвал их а-лучи и b-лучи), которые разнятся по своей способности проникать через материю. Он показал, что эти лучи отличаются от обычного лучеиспускания.

В 1897 г. Резерфорд - уже молодой ученый с известной репутацией. В том же году он получает приглашение занять кафедру физики в университете города Монреаля в Канаде, уезжает туда и в продолжение 10 лет (с 1897 по 1907 г.) работает в Канаде. Эти годы, проведенные в маленьком провинциальном университете, были годами его плодотворнейшей работы. Мне кажется, это особенно поучительно для молодых ученых. Часто приходится слышать от молодых, начинающих ученых жалобы на то, что они не могут работать потому, что нет подходящих условий, нет подходящей лаборатории, нет того, нет другого. А теперь представьте себе молодого ученого, попадающего на другой конец света от своей родины, совершенно изолированного от всего научного мира, куда в те времена и журналы приходили с опозданием больше месяца. Но этот человек полон идей, полон энтузиазма и в этом далеком уголке мира он создает самые передовые, самые революционные, самые ведущие взгляды в науке того времени. Он привлекает этим молодых ученых всего мира, и к нему начинают уже съезжаться ученики.

Работа Резерфорда в Канаде ознаменовалась целым рядом крупнейших открытий. Им была открыта эманация тория. Вместе с Резерфордом там же работал в то время молодой химик Содди, и с ним Резерфорд начал изучать химический характер элементов, получаемых при радиоактивном распаде, так как было очень важно установить наряду с физическими и химические особенности радиоактивного процесса. В то время радиоактивность еще не была понята, и Резерфорд вместе с Содди были первыми, кто доказал, что это есть спонтанный переход одних элементов в другие, называемый теперь радиоактивным распадом. При этом испускаются либо а-лучи, состоящие из быстро летящих атомов гелия с положительным зарядом, либо р-лучи - быстро летящие электроны. На основании этого Резерфорд предполагал, что эманация тория есть элемент, отличный от самого тория. Вместе с Содди он по диффузии определил атомный вес эманации и показал, что она соответствует благородному газу.

Теория радиоактивного распада, выдвинутая Резерфордом и Содди в 1903 г., произвела революцию. Когда Резерфорд говорил об эволюции материи еще студентом в 1891 г., в студенческом кружке, он не имел на это никаких оснований, но теперь, когда он это доказал на основе чисто опытных данных, это произвело колоссальное впечатление не только в узком кругу его университета, но и на ученых всего мира. Но все же этот взгляд был тогда настолько революционен, что многие, даже очень крупные, ученые его не разделяли. Кельвин так и умер, не согласившись с тем, что радиоактивность есть распад атомов элементов, которые он считал незыблемой основой строения материи.

В этом же году, 32 лет, Резерфорд был выбран в Королевское общество (научное общество, эквивалентное нашей Академии наук). Но это не исключительный случай в английской академии. Там обычно ученого выбирают сразу же после того, как он достиг крупного успеха в научной работе, и потому нередки случаи избрания молодых ученых 25-28 лет. В этом большая сила английской академии, делающая ее активным научным центром, и этим она выгодно отличается от академий других стран.

В 1907 г. освобождается кафедра физики в Манчестере- в одном из крупных университетов Англии. В XIX в. эту кафедру занимали такие ученые, как Дальтон, Джоуль и др. Резерфорд переезжает туда. И в период с 1907 по 1919 г., находясь в Манчестере, он делает целый ряд не менее крупных работ, чем в Монреале. Из его работ этого периода надо отметить работу по рассеянию α-частиц при прохождении через вещество. Она привела к тому, что Резерфорд установил новую модель атома, принятую до сих пор.

В 1908 г. за свои работы он получает Нобелевскую премию по химии. В 1919 г. он открывает искусственную дезинтеграцию вещества и показывает, что в природе существует не только спонтанный распад радиоактивных элементов, но можно вызвать и искусственное разложение ядра под влиянием бомбардировки α-лучами. Это было открыто на азоте, а потом проверено на ряде других легких элементов. Таким образом, он создает совершенно новую область ядерной физики - искусственный распад атома.

Так же, как и в Канаде, в Манчестере он привлекает к себе целую плеяду молодых ученых. С ним работают не только англичане, но и немец Гейгер, датчанин Бор и другие, и в его лаборатории его учениками делается ряд выдающихся работ.

В 1919 г. Резерфорд получает кафедру в Кембридже, едет туда и весь остаток своей жизни проводит в Кембридже директором Кавендишской лаборатории, оставленной Дж. Дж. Томсоном, который ушел в отставку. Здесь он продолжает работу по искусственному разложению элементов. Он руководит работами своих учеников, и в его лаборатории делаются два из самых крупных открытий ядерной физики за последнее десятилетие - открытие нейтрона Чадвиком и работа Кокрофта и Уолтона по искусственному разложению вещества под влиянием бомбардировки пучком протонов, ускоренных искусственным путем.

Мы видим, что, начав свои экспериментальные работы по радиоактивности в 1896 г., Резерфорд затем их неуклонно развивает, и к концу его жизни эта область знания принимает такие размеры, что представляется нам уже в виде отдельной науки - ядерной физики.

Для того чтобы понять значение каждого открытия резерфорда, надо представить себе тот исторический фон, на котором они происходили. Эта задача чересчур широкая для такого доклада, как мой. Но очень поучительно на отдельных примерах проследить те методы, которыми Резерфорд вел свою научную работу и которыми он достигал таких крупных результатов.

Резерфорд был экспериментатором и в этом отношении напоминает Фарадея. Он мало пользовался формулами и мало прибегал к математике. Иной раз, пытаясь вывести при своих докладах формулу, он путался и тогда просто писал результат, замечая:

Если все вывести правильно, то так и получится.

Но экспериментом он владел исключительно. Можно сказать, что он "видел" явление, над которым работал, хотя бы оно и происходило в неизмеримо малом ядре атома.

Если говорить очень схематично, то среди физиков существуют как бы два типа исследователей. Один - это тип скорее немецкой школы, когда экспериментатор исходит из известных теоретических предположений и старается их проверить на опыте. Другой же тип ученого, скорее английской школы, исходит не из теории, а из самого явления - изучает его и смотрит, может ли это явление быть объяснено существующими теориями. Тут изучение явления, его анализ являются основным мотивом для экспериментатора. И если такое деление возможно, Резерфорд был ярким представителем этого второго направления в экспериментальной физике. Главное для Резерфорда было - разобраться, понять явление. Эксперимент должен быть так построен, чтобы было ясно, в чем состоит явление. Для этого точность и сложность измерений должны быть как раз таковы, чтобы можно было разобраться и понять явление.

Как пример я приведу случай с изучением α-частиц. Радий испускает α-частицы. Резерфорд показал в самом начале своих опытов, что они не являются обычным лучеиспусканием. Но что же все-таки они собой представляют?

Резерфорд решил, что, если они вылетают из радия, они должны быть каким-то уже существующим элементом. Для того чтобы узнать - каким, надо только определить массу, а массу нужно определить лишь настолько точно, чтобы увидеть, какому из существующих элементов она соответствует.

Резерфорд ставит эксперимент, который очень характерен для него. Опишу этот эксперимент, хотя он имеет только историческое значение, так как теперь для определения массы α-частиц пользуются более точными и сложными методами. Но первоначальный метод Резерфорда поражает своей простотой и тем, как прямо он вел к цели.

На рисунке изображен прибор для этих опытов. Простой электроскоп 1, сделанный из листков золотой фольги, помещен над 20 параллельно поставленными металлическими пластинками 2. Зазор между пластинками только 1 мм, чтобы α-лучи, испускаемые радиоактивной солью 3 (положенной на дне), проходили в камеру электроскопа параллельным пучком. Чтобы удалять эманацию и увеличивать пробег α-лучей, через прибор пропускался водород.

Прикладывая сильное магнитное поле, направленное параллельно плоскостям пластинок 2, можно было почти полностью прекратить ионизацию в камере электроскопа. Таким простым способом Резерфорд показал, что α-лучи представляют собой быстро двигающиеся заряженные частицы. Прикрывая со стороны электроскопа половину зазоров между пластинками, можно было показать, что при одном направлении магнитного поля ионизация прекращается при меньших силах поля, чем при другом направлении. Так было установлено направление отклонения α-лучей магнитным полем и отсюда выведено, что знак заряда α-частиц положителен. Создавая между пластинками 2 электрическое поле, поочередно присоединяя их к противоположным полюсам батареи, Резерфорду удалось получить прекращение ионизации и отклонение α-лучей электрическим полем. Из этих данных он определил скорость α-частиц и показал также, что они представляют поток положительно заряженных атомов с большей массой, чем атомы водорода, и с точностью до 10% определил отношение их заряда к массе. Это отношение указывало на то, что α-частицы, по-видимому, соответствуют атомам гелия, дважды ионизованным.

Но надо было точнее доказать, что это действительно гелий. Эта работа была предпринята позднее, в 1909 г., уже в Манчестере, когда он располагал большими запасами радия.

Прибор для этих опытов был тоже чрезвычайно прост. Он изображен на рисунке

В маленькую стеклянную тонкостенную трубочку 1 помещалась эманация радия. Толщина стенок этой трубки была всего лишь 0,01 мм, и быстрые α-частицы могли проходить через стекло, в то время как эманация была изолирована. Эта трубка помещалась в стеклянный сосуд 2, оканчивающийся капиллярной разрядной трубочкой с электродами 5 и 4. Посредством поднятия и опускания ртути в сосуде 2 в пространстве, окружающем трубочку 1, создавался вакуум. Трубочка с эманацией оставалась в приборе в продолжение двух дней, а потом газ, образованный проходящими α-частицами, сжимался поднятием ртути в разрядную трубку. При свечении газа в трубке были видны желтые гелиевые линии, которые доказывали присутствие гелия. Что этот гелий не продиффундировал из трубочки с эманацией, легко показывалось контрольным опытом, при котором эта трубка наполнялась гелием. Тогда гелиевые линии не появлялись в спектре. Так было показано, что α-лучи есть атомы гелия.

Эти два описанных мной опыта исключительно просты, их свободно может сделать любой студент. Но в то же время эти опыты, так правильно поставленные, так прямо ведущие к цели, решали в тот период вопрос первостепенной важности и произвели революцию во взглядах на материю.

Резерфорда не удовлетворяло изучение пучка α-лучей по наблюдению производимой ими ионизации, и он искал метод, каким он мог бы обнаружить отдельные α-частицы. Первое найденное им решение основывалось на методе сцинтилляций.

Еще Крукс заметил, что под влиянием бомбардировки положительными лучами некоторые вещества светятся - люминесцируют. Наиболее ярко светящимся веществом оказалась цинковая обманка. Когда Резерфорд вместе с Гейгером поместили цинковую обманку под микроскоп и направили на нее пучок α-лучей, то вместо того, чтобы видеть в поле зрения микроскопа ровный светящийся фон, они увидели отдельные вспыхивающие точки. Они заключили, что вспышки происходят в тех местах, где α-частицы ударяют о цинковую обманку. Так можно было определить число испускаемых α-частиц по счету вспышек, возникающих в цинковой Обманке.

Другой способ обнаружения α-частиц, открытый Резерфордом, благодаря изобретению усилительных ламп стал теперь еще более могущественным, чем счет сцинтилляций,- это метод счетчика. Этот метод основан на явлении, открытом Таунсендом. Если в газе при пониженном давлении находится острие, то можно подобрать такой потенциал, при котором еще не возникает разряд. Если теперь в окружающем газе произвести даже самую слабую ионизацию хотя бы одной α-частицей, то разряд сразу возникнет на некоторый промежуток времени. В 1908 г. Резерфорд и Гейгер построили первый счетчик, работающий на этом принципе. Он изображен на рисунке. Вместо острия они взяли тонкую проволочку 1, помещенную в цилиндрический сосуд 2. Между проволочкой и цилиндром создавался критический потенциал. Через отверстие 3, закрытое очень тонким слюдяным листком, могут проникать α-лучи, источник которых находится в сосуде 4. Разрядные токи от проволочки регистрируются струнным гальванометром, по отбросам которого можно считать α-частицы. Теперь в счетчике, изобретенном Резерфордом и Гейгером, струнный гальванометр заменяется ламповым усилителем, что делает счетчик чрезвычайно чувствительным. В современном своем виде он является одним из основных приборов, посредством которых только и стало возможным полное изучение космической радиации.

В 1910 г. к нему в лабораторию приехал работать молодой ученый по имени Марсден. Он попросил Резерфорда дать ему какую-нибудь очень простую задачу. Резерфорд поручил ему считать α-частицы, проходящие через вещество, и найти их рассеяние. При этом Резерфорд заметил, что, по его мнению, Марсден ничего особенного не обнаружит. Свои соображения Резерфорд основывал на принятой в то время модели атома Дж. Дж. Томсона. В соответствии с этой моделью атом представлялся сферой размером 10 -8 см с равнораспределенным положительным зарядом, в которую были вкраплены электроны. Гармонические колебания последних определяли спектры лучеиспускания. Нетрудно показать, что α-частицы должны были легко проходить через такую сферу, и особенного рассеяния их нельзя было ожидать. Всю энергию на своем пути α-частицы тратят на то, чтобы выбивать электроны, т. е. ионизовать окружающие атомы.

Марсден под руководством Гейгера стал делать свои наблюдения и скоро заметил, что большинство α-частиц проходит через вещество, но все же существует заметное рассеяние, а некоторые частицы как бы отскакивают назад. Когда это узнал Резерфорд, он сказал: "Это невозможно. Это так же невозможно, как для пули невозможно отскочить от бумаги".

Эта фраза показывает, как конкретно и образно он видел явление.

Изучая закон распределения отразившихся α-частиц, Резерфорд постарался определить, какое распределение поля внутри атома необходимо, чтобы объяснить закон рассеяния, при котором α-частицы могли бы даже возвращаться обратно. Он пришел к выводу, что это возможно тогда, когда весь заряд сосредоточен в центре, а не распределен по всему объему атома. Размер этого центра, названного им ядром, очень мал: 10 -12 -10 -13 см в диаметре. Но куда же тогда поместить электроны? Резерфорд решил, что отрицательно заряженные электроны надо распределить кругом - они могут удерживаться благодаря вращению, центробежная сила которого уравновешивает силу притяжения положительного заряда ядра. Следовательно, модель атома есть не что иное, как некая солнечная система, состоящая из ядра - солнца и электронов - планет. Так он создал свою модель атома.

Эта модель встретила полное недоумение, так как она противоречила некоторым тогдашним, казавшимся незыблемыми, основам физики. Резерфорд, конечно, понимал, что на основе максвелловской теории электроны, вращаясь вокруг центра, неминуемо должны испускать свет, терять свою кинетическую энергию и рано или поздно упасть на ядро. Идти вразрез с основами максвелловской теории в то время было чрезвычайно трудно. Поэтому модель атома Резерфорда вначале не была признана.

Так продолжалось два года. В это время к Резерфорду приехал работать молодой датский ученый Нильс Бор. Они часто обсуждали эту модель атома. Для Бора также было ясно, что принципы строения этой модели не находятся в соответствии с теми законами, которые было принято тогда считать основными. И Бор начал работать над этим парадоксом. Он верил в экспериментальную обоснованность модели Резерфорда, но надо было найти ей теоретическое обоснование. Ему пришла гениальная мысль применить для этого обоснования только тогда появившиеся идеи квантовой теории излучения. Они были выдвинуты сперва Планком и значительно обобщены Эйнштейном.

В 1913 г. Бор дает обоснование модели атома Резерфорда, которая теперь носит название модели Бора - Резерфорда и является той основой, на которой покоится вся современная атомная физика.

Одной из основных черт Резерфорда при его экспериментировании была исключительная наблюдательность, уменье обобщить явление, выяснить самое важное, самое нужное. Это можно проследить на ряде примеров. Когда он открыл эманацию тория, то он исходил из наблюдения разницы в ионизации, производимой торием при открытой и закрытой дверце электроскопа. Казалось, что поток воздуха, проходящий через препарат, изменяет радиоактивность самого тория. Резерфорд стал собирать этот воздух и сразу обнаружил, что он сам радиоактивен. Это и было открытием эманации. Большинство ученых, увидя разницу, начало было изучать явление либо при закрытой, либо при открытой дверце. Резерфорд же сразу ставит вопрос, почему это явление происходит так, а не иначе, и сейчас же старается уяснить себе, в чем тут дело. Вот этот неизменно возникающий вопрос "почему?" и таил в себе ключ к великим открытиям.

Вот другой случай. Его замечательная наблюдательность проявилась и при открытии искусственного разложения вещества. Дело в том, что когда наблюдали сцинтилляции, то часто оказывалось, что из бомбардируемого вещества вылетают лучи с очень длинным пробегом - гораздо более длинным, нежели пробег бомбардирующих α-частиц. Их наблюдали все, часто о них говорили, но никто не пытался их объяснить, никто не задавал себе вопроса "почему?". Резерфорд решил, что это явление надо проанализировать и попытаться выяснить, в чем дело. Вскоре объяснение было найдено. Оказалось, что под влиянием бомбардировки а-лучами атомы азота, всегда присутствующего в воздухе, распадаются. Этим и объяснялись длинные пробеги. Резерфорд поставил свои опыты исключительно просто. На рисунке

изображен его прибор. Герметическую камеру 1 через два крана можно заполнить газом при различных давлениях (2 - источник α-частиц, 3 - экран, на котором наблюдают сцинтилляции с помощью микроскопа 4). Экран со стороны источника α-частиц покрыт серебряной пластинкой, которая поглощает значительную часть энергии их пробега. Наполняя камеру 1 азотом, Резерфорд наблюдал, что при некотором давлении большинство сцинтилляций пропадает. Это происходит тогда, когда α-частицы, испускаемые радиоактивным источником, тратят всю энергию на ионизацию воздуха, и не доходят до экрана. Но остающиеся сцинтилляции указывали на присутствие очень малого количества α-частиц с пробегом в несколько раз больше пробега α-частиц, испускавшихся источником. Если вместо азота взять другой газ, например углекислоту или кислород, то таких остаточных сцинтилляций не появляется. Единственное объяснение в том, что они появляются из азота. Так как энергия остаточных α-частиц больше, чем первичных, то они могут появляться только за счет разложения ядра атома азота. Так было доказано разложение азота и принципиально решена задача алхимии.

Такая простота постановки вопроса, так просто экспериментально оформленная, не может не поразить любого исследователя, не только физика. Подобная простота является исключительно гениальной, в особенности когда она ведет к таким поразительным результатам.

Многие говорят, что Резерфорд обладал исключительной интуицией - он как бы чувствовал, как сделать опыт и что искать. Под интуицией обычно подразумевается какой-то бессознательный процесс, который идет внутри человека,- это то, чего нельзя объяснить, что подсознательно приводит к правильному решению. Я лично думаю, что, может быть, это отчасти и правда, но во всяком случае это сильно преувеличено. Для обычного читателя просто неизвестно то колоссальное количество работы, которое производит ученый. Он узнает только ту часть, которая ведет к определенным результатам. Наблюдая Резерфорда вблизи, можно было видеть, какое колоссальное количество работы он выполнял. Его энергия и энтузиазм были неисчерпаемы. Он все время работал и все время искал чего-то нового. Резерфорд публиковал и доводил до сведения своих товарищей ученых только работы с положительными результатами, и вряд ли они составляли больше нескольких процентов той громадной работы, которую он проводил; остальное не только не было опубликовано, но вообще оставалось неизвестным даже его ученикам. Иногда только по отдельным намекам, прорывавшимся в разговоре с ним, можно было уловить, что он нечто пробовал, но у него не вышло. Он не любил говорить о проектах своих работ и охотнее говорил только о том, что уже сделано и дало результаты.

Одним из блестящих примеров его исключительной проницательности является открытие нейтрона. Нейтрон- это материальная частица, по массе равная ядру водорода, но не несущая никакого заряда. Экспериментальное доказательство существования такой частицы было сделано Чадвиком - ближайшим учеником Резерфорда - в Кембридже в 1932 г. За это открытие Чадвик получил Нобелевскую премию. Он изучал одно явление, при котором в результате бомбардировки бериллия γ-лучами полония получились чрезвычайно проникающие лучи. Ему удалось показать, что это не были γ-лучи. Впервые эта радиация была обнаружена Боте и исследована затем супругами Жолио-Кюри, но объяснить ее удалось только Чадвику, который доказал, что в данном случае мы имеем дело с нейтронами. Открытие нейтрона играет огромную роль в современной ядерной физике, так как нейтрон является одной из основных элементарных частиц, из которых построены ядра всех элементов. Оказывается, что Резерфорд за 12 лет до открытия нейтрона чрезвычайно подробно предсказал возможность его существования. Вот выдержка из лекции Резерфорда в Королевском обществе, прочитанной в 1920 г.:

"Если мы правы в этом предположении,- говорил резерфорд,- то очень вероятно, что один электрон может связывать два ядра водорода или, что также возможно, одно ядро водорода. В первом случае это влечет за собой возможность существования атома с массой, равной почти 2, и с одним зарядом, который должен рассматриваться как изотоп водорода. В другом же случае это приводит к мысли о возможности существования атома, масса которого 1 и ядерный заряд 0.

Такое атомное образование не представляется невозможным. Современные взгляды таковы, что нейтральный атом водорода рассматривается как ядро с единичным зарядом, к которому на некотором расстоянии присоединен электрон, и спектр водорода объясняется движением этого удаленного электрона. При некоторых условиях, однако, электрон может быть связан с ядром водорода сильнее, образуя нечто вроде нейтрального дублета. Такой атом имел бы новые свойства. Его внешнее поле было бы практически равно нулю повсюду, за исключением области, прилегающей непосредственно к ядру. И по этой причине он мог бы свободно проходить через вещество. Его присутствие было бы трудно уловимо спектроскопом, и, вероятно, его было бы невозможно сохранить в закрытом сосуде. С другой стороны, он должен был бы свободно входить в структуру атомов и мог бы или соединяться с ядром, или быть разложенным его сильным полем, результатом чего возможен был бы вылет заряженного атома водорода или электрона или же их обоих".

Таким образом, Резерфорд задолго предсказал все те основные моменты, по которым стала развиваться вся ядерная физика после открытия Чадвика и Жолио-Кюри.

Я не назвал бы этот процесс интуицией. Это процесс глубокого мышления и глубокого экспериментирования. Мы все знали, что Резерфорд сам искал нейтрон - он искал его долго и настойчиво, но не нашел его там, где искал. В этой ситуации много зависело от случая. По, чему надо было выбрать бериллий и полоний, а не другие вещества - этого нельзя было предвидеть теорией. Тут надо было просто упорно искать...

Смерть Резерфорда - очень тяжелый удар для ученых всего мира. В нем наука потеряла величайшего со времен Фарадея пионера физических исследований. В продолжение всей своей жизни, столь плодотворной научными открытиями, он работал над самыми фундаментальными проблемами современной теории атома.

Его можно рассматривать не только как создателя новой главы в науке, но и как создателя целой новой науки - физики ядра.

Уже с 1896 г., совсем молодым человеком, он начал изучать радиоактивность, которая только была открыта, и с тех пор его работа, продолжавшаяся 40 лет, каждый год давала человечеству новые открытия и новые идеи, которые были руководящими в атомной физике во всем мире.

Его влияние на международную науку значительно усилилось благодаря большому количеству учеников всех национальностей, в том числе ряда советских ученых, которые работали в лаборатории Резерфорда. Его самоотверженность и необычайная индивидуальность заслужили с их стороны не только уважение и восхищение, но также и глубокую любовь. Так была создана вокруг него самая крупная школа физиков, которая когда-либо существовала. И мы легко понимаем, почему его смерть ощущалась многими учеными как большая личная потеря.

30 августа 1871 года родился британский физик новозеландского происхождения, известный как «отец» ядерной физики, также лауреат Нобелевской премии по химии 1908 года, сэр Эрнест Резерфорд.

Мы решили вспомнить биографию знаменитого ученого и проиллюстрировать ее основные вехи в нашей фотоподборке.

Родился 30 августа 1871 г. в городе Спринг — Броув (Новая Зеландия) в семье шотландских эмигрантов. Отец работал механиком и фермером-льноводом, мать — учительницей. Эрнест был четвёртым из 12 детей Резерфордов и самым талантливым.


Дом в Фоксхилл , где Эрнест провел часть своего детства


«Науки делятся на две группы — на физику и коллекционирование марок»

Уже при окончании начальной школы, как первый ученик, он получил премию в 50 фунтов стерлингов для продолжения образования. Благодаря этому Резерфорд поступил в колледж в Нельсоне (Новая Зеландия).


Портрет Резерфорда в 1892 году, когда он был студентом в Кентерберийском колледже


После окончания колледжа юноша сдал экзамены в Кентерберийский университет и здесь серьёзно занялся физикой и химией.


« Если ученый не может объяснить, чем он занимается, уборщице, моющей пол в его лаборатории, значит, он сам не понимает, чем он занимается «


Резерфордом со студентами в Монреале , штат Калифорния. 1899 год



Дж. Дж. Томсон , как и многие выдающиеся профессоры физики в конце 19 века , собрал группу ярких молодых « студентов-исследователей » вокруг себя . Непосредственно среди них находится его протеже Эрнест Резерфорд .

Он участвовал в создании научного студенческого общества и сделал в 1891 г. доклад на тему «Эволюция элементов», где впервые прозвучала идея о том, что атомы — сложные системы, построенные из одних и тех же составных частей.


Ханс Гейгер был у Резерфорда основным партнером в исследовании с 1907 по 1913 год

В период, когда в физике господствовала идея Дж. Дальтона о неделимости атома, эта мысль показалась абсурдной, и молодому Резерфорду даже пришлось извиняться перед коллегами за «явную чепуху».


Эрнест Резерфорд (первый слева в нижнем ряду) с коллегами

Правда, через 12 лет Резерфорд доказал свою правоту. После окончания университета Эрнест стал учителем средней школы, но это занятие было ему явно не по душе. Резерфорду — лучшему выпускнику года — присудили стипендию, и он отправился в Кембридж — научный центр Англии — для продолжения занятий.


Резерфорд (второй слева в верхнем ряду) с одноклассниками в 1896 году

В Кавендишской лаборатории Резерфорд создал передатчик для радиосвязи в радиусе 3 км, но отдал приоритет на его изобретение итальянскому инженеру Г. Маркони, а сам приступил к изучению ионизации газов и воздуха. Учёный заметил, что урановое излучение имеет две составляющие — альфа- и бета-лучи. Это было открытием.


Резерфорд любил хорошую игру в гольф по воскресеньям. Слева-направо: Ральф Фаулер , Ф. У. Астон , Резерфорд , Г. И. Тейлор

В Монреале при изучении активности тория Резерфорд открыл новый газ — радон. В 1902 г. в работе «Причина и природа радиоактивности» учёный впервые высказал мысль о том, что причиной радиоактивности является самопроизвольный переход одних элементов в другие. Он установил, что альфа-частицы заряжены положительно, их масса больше массы атома водорода, а заряд приблизительно равен заряду двух электронов, и это напоминает атомы гелия.


Свадьба Эрнеста и Мэри Резерфорд , 28 июня 1900 г. в Новой Зеландии

В 1903 г. Резерфорд стал членом Лондонского королевского общества, а с 1925 по 1930 г. занимал пост его президента.


Эрнест Резерфорд на Сольвеевском конгрессе 1911 года

В 1904 г. вышел фундаментальный труд учёного «Радиоактивные вещества и их излучения», который стал энциклопедией для физиков-ядерщиков. В 1908 г. Резерфорд стал нобелевским лауреатом за исследования радиоактивных элементов. Руководитель физической лаборатории в Манчестерском университете, Резерфорд создал школу физиков-ядерщиков, своих учеников.


Резерфорд всегда собирал группу ярких молодых талантов вокруг себя. Фото 1910 года

Вместе с ними он занимался исследованием атома ив 1911 г. окончательно пришёл к планетарной модели атома, о чём написал в статье, вышедшей в майском номере «Философского журнала». Модель приняли не сразу, она утвердилась только после её доработки учениками Резерфорда, в частности Н. Бором.


Кокрофт , Резерфорд , и Уолтон в 1932 году


Скульптура молодого Эрнеста Резерфорда. Мемориал в Новой Зеландии

Умер учёный 19 октября 1937 г. в Кембридже. Как и многие великие люди Англии, Эрнест Резерфорд покоится в соборе Святого Павла, в «Уголке науки», рядом с Ньютоном, Фарадеем, Дарённом, Гершелем.

Первая страница статьи Э. Резерфорда в журнале Philosophical Magazine, 6, 21 (1911), в которой впервые водится понятие «атомное ядро».

Открытое 100 лет назад Э.Резерфордом атомное ядро является связанной системой взаимодействующих протонов и нейтронов. Каждое атомное ядро по-своему уникально. Для описания атомных ядер разработаны различные модели, описывающие отдельные специфические особенности атомных ядер. Изучение свойств атомных ядер открыло новый мир - субатомный квантовый мир, привело к установлению новых законов сохранения и симметрии. Полученные в ядерной физике знания широко используются в естествознании от изучения живых систем до астрофизики.

1. 1911 г. Резерфорд открывает атомное ядро.

В июньском 1911 г. номере журнала «Philosophical Magazine» была опубликована работа Э. Резерфорда «Рассеяние α- и β-частиц веществом и строение атома», в которой впервые было введено понятие «атомное ядро» .
Э.Резерфорд проанализировал результаты работы Г. Гейгера и Э.Марсдена по рассеянию α-частиц на тонкой золотой фольге, в которой совершенно неожиданно было обнаружено, что небольшое число α-частиц отклоняется на угол больше 90°. Этот результат противоречил господствовавшей в то время модели атома Дж. Дж. Томсона, согласно которой атом состоял из отрицательно заряженных электронов и равного количества положительного электричества равномерно распределенного внутри сферы радиуса R ≈ 10 - 8 см. Для объяснения результатов, полученных Гейгером и Марсденом, Резерфорд разработал модель рассеяния точечного электрического заряда другим точечным зарядом на основе закона Кулона и законов движения Ньютона и получил зависимость вероятности рассеяния α-частиц на угол θ от энергии E налетающей α-частицы

Измеренное Гейгером и Марсденом угловое распределение α-частиц можно было объяснить только в том случае, если предположить, что атом имеет центральный заряд, распределенный в области размером <10 -12 см. Результирующий заряд ядра приблизительно равен Ae/2, где A - вес атома в атомных единицах массы, e - фундаментальная единица заряда. Точность определения величины заряда ядра золота составила ≈ 20%. Так возникла планетарная модель атома, согласно которой атом состоит из массивного положительно заряженного атомного ядра и вращающихся вокруг него электронов. Так как в целом атом электрически нейтрален - положительный заряд ядра компенсировался отрицательным зарядом электронов. Число электронов в атоме определялось величиной заряда ядра Z.

В 1910 г. к Резерфорду в лабораторию приехал работать молодой ученый по имени Марсден. Он попросил Резерфорда дать ему какую-нибудь очень простую задачу. Резерфорд поручил ему считать α-частицы, проходящие через материю, и найти их рассеяние. При этом Резерфорд заметил, что по его мнению Марсден ничего заметного не обнаружит. Свои соображения Резерфорд основывал на принятой в то время модели атома Томсона. В соответствии с этой моделью атом представлялся сферой размером 10 -8 см с равнораспределенным положительным зарядом, в которую были вкраплены электроны. Гармонические колебания последних определяли спектры лучеиспускания. Легко показать, что α-частицы должны были легко проходить через такую сферу, и особенного рассеяния их нельзя было ожидать. Всю энергию на пути своего пробега α-частицы тратили на то, чтобы выбрасывать электроны, которые ионизировали окружающие атомы.
Марсден под руководством Гейгера стал делать свои наблюдения и скоро заметил, что большинство α-частиц проходит через материю, но все же существует заметное рассеяние, а некоторые частицы как бы отскакивают назад. Когда это узнал Резерфорд, он сказал:
Это невозможно. Это так же невозможно, как для пули невозможно отскочить от бумаги.
Эта фраза показывает, как конкретно и образно он видел явление.
Марсден и Гейгер опубликовали свою работу, а Резерфорд сразу решил, что существующее представление об атоме неправильно и его надо в корне пересмотреть.
Изучая закон распределения отразившихся α-частиц, Резерфорд постарался определить, какое распределение поля внутри атома необходимо, чтобы определить закон рассеивания, при котором α-частицы могут даже возвращаться обратно. Он пришел к выводу, что это возможно тогда, когда весь заряд сосредоточен не по всему объему атома, а в центре. Размер этого центра, названного им ядром, очень мал: 10
-12 —10 -13 см в диаметре. Но куда же тогда поместить электроны? Резерфорд решил, что отрицательно заряженные электроны надо распределить кругом — они могут удерживаться благодаря вращению, центробежная сила которого уравновешивает силу притяжения положительного заряда ядра. Следовательно, модель атома есть не что иное, как некая солнечная система, состоящая из ядра — солнца и электронов — планет. Так он создал свою модель атома.
Эта модель встретила полное недоумение, так как она противоречила некоторым тогдашним, казавшимся незыблемыми, основам физики .

П.Л. Капица. «Воспоминания о профессоре Э. Резерфорде»

1909-1911 г. Опыты Г. Гейгера и Э. Марсдена

Г. Гейгер и Э. Марсден увидели, что при прохождении через тонкую фольгу из золота большинство α-частиц, как и ожидалось, пролетает без отклонения, но неожиданно было обнаружено, что часть α-частиц отклоняется на очень большие углы. Некоторые α-частицы рассеивались даже в обратном направлении. Расчеты напряженности электрического поля атомов в моделях Томсона и Резерфорда показывают существенное различие этих моделей. Напряжённость поля положительного заряда распределенного по поверхности атома в случае модели Томсона ~10 13 В/м. В модели Резерфорда положительный заряд, находящийся в центре атома в области R < 10 -12 см создаёт напряженности поля на 8 порядков больше. Только такое сильное электрического поле массивного заряженного тела может отклонить α-частицы на большие углы, в то время как в слабом электрическом поле модели Томсона это было невозможно.

Э. Резерфорд, 1911 г. «Хорошо известно, что α- и β-частицы при столкновении с атомами вещества испытывают отклонение от прямолинейного пути. Это рассеяние гораздо более заметно у β-частиц нежели у α-частиц, т.к. они обладают значительно меньшими импульсами и энергиями. Поэтому нет сомнения в том, что столь быстро движущиеся частицы проникают сквозь атомы, встречающиеся на их пути, и что наблюдаемые отклонения обусловлены сильным электрическим полем, действующим внутри атомной системы. Обычно предполагалось, что рассеяние пучка α- или β-лучей при прохождении через тонкую пластинку вещества есть результат многочисленных малых рассеяний при прохождении атомов вещества. Однако наблюдения проведенные Гейгером и Марсденом показали, что некоторое количество α-частиц при однократном столкновении испытывают отклонение на угол больше 90°. Простой расчет показывает, что в атоме должно существовать сильное электрическое поле, чтобы при однократном столкновении создавалось столь большое отклонение».

1911 г. Э. Резерфорд. Атомное ядро

α + 197 Au → α + 197 Au


Эрнест Резерфорд
(1891-1937)

Исходя из планетарной модели атома, Резерфорд вывел формулу описывающую рассеяние α-частиц на тонкой фольге из золота, согласующуюся с результатами Гейгера и Марсдена. Резерфорд предполагал, что α-частицы и атомные ядра с которыми они взаимодействуют можно рассматривать как точечные массы и заряды и что между положительно заряженными ядрами и α-частицами действуют только электростатические силы отталкивания и что ядро настолько тяжелое по сравнению с α-частицей, что оно не смещается в процессе взаимодействия. Электроны вращаются вокруг атомного ядра на характерных атомных масштабах ~10-8 см и из-за малой массы не влияют на рассеяние α-частиц.

Вначале Резерфорд получил зависимость угла рассеяния θ α-частицы с энергией E от величины прицельного параметра b столкновения с точечным массивным ядром. b − прицельный параметр − минимальное расстояние на которое α-частица подошла бы к ядру, если бы между ними не действовали силы отталкивания, θ − угол рассеяния α-частицы, Z 1 e − электрический заряд α-частицы, Z 2 e − электрический заряд ядра.
Затем Резерфорд рассчитал, какая доля пучка α-частиц с энергией E рассеивается на угол θ в зависимости от заряда ядра Z 2 e и заряда α-частицы Z 1 e. Так исходя из классических законов Ньютона и Кулона была получена знаменитая формула рассеяния Резерфорда. Основным при получении формулы было предположение, что в атоме находится массивный положительно заряженный центр, размеры которого R < 10 -12 см.

Э. Резерфорд, 1911 г.: «Наиболее простым является предположение, что атом имеет центральный заряд, распределенный по очень малому объему, и что большие однократные отклонения обусловлены центральным зарядом в целом, а не его составными частями. В то же время экспериментальные данные недостаточно точны, чтобы можно было отрицать возможности существования небольшой части положительного заряда в виде спутников, находящихся на некотором расстоянии от центра … Следует отметить, что найденное приближенное значение центрального заряда атома золота (100e) примерно совпадает с тем значением, который имел бы атом золота, состоящий из 49 атомов гелия, несущих каждый заряд 2e. Быть может, это лишь совпадение, но оно весьма заманчиво с точки зрения испускания радиоактивным веществом атомов гелия, несущих две единицы заряда».


Дж. Дж. Томсон и Э. Резерфорд

Э. Резерфорд, 1921 г.: «Представление о нуклеарном строении атома первоначально возникло из попыток объяснить рассеяние α-частиц на большие углы при прохождении через тонкие слои материи. Так как α частицы обладают большою массою и большою скоростью, то эти значительные отклонения были в высшей степени замечательны; они указывали на существование весьма интенсивных электрически! или магнитных полей внутри атомов. Чтобы объяснить эти результаты, необходимо было предположить, что атом состоит из заряженного массивного ядра, весьма малых размеров по сравнению с обычно принятой величиной диаметра атома. Это положительно заряженное ядро содержит большую часть массы атома и окружено на некотором расстоянии известным образом распределенными отрицательными электронами; число которых равняется общему положительному заряду ядра. При таких условиях вблизи ядра должно существовать весьма интенсивное электрическое поле и α-частицы, при встрече с отдельным атомом проходя вблизи от ядра, отклоняются на значительные углы. Допуская, что электрические силы изменяются обратно пропорционально квадрату расстояния в области, прилегающей к ядру, автор получил соотношение, связывающее число α-частиц, рассеянных на некоторый угол с зарядом ядра и энергией α-частицы.
Вопрос о том, является ли атомное число элемента действительной мерой его нуклеарного заряда, настолько важен, что для разрешения его должны быть применены все возможные методы. В настоящее время в кавендишевской лаборатории ведется несколько исследований с целью проверки точности этого соотношения. Два наиболее прямых метода основаны на изучения рассеяния быстрых α- и β-лучей. Первый метод применяется Chadwick"oм, пользующимся новыми приемами; последний - Crowthar"oм. Результаты, полученные до сих пор Chadwick"oм, вполне подтверждают тождество атомного числа с нуклеарным зарядом в пределах возможной точности эксперимента, которая у Chadwick"a составляет около 1%».

Несмотря на то, что комбинация двух протонов и двух нейтронов исключительно устойчивое образование, в настоящее время считается, что α-частицы не входит в состав ядра в качестве самостоятельного структурного образования. В случае α-радиоактивных элементов энергия связи α-частицы больше, чем энергия которую необходимо затратить на то, чтобы по отдельности удалить из ядра два протона и два нейтрона, поэтому α-частица может быть испущена из ядра, хотя она не присутствует в ядре как самостоятельное образование.
Предположение Резерфорда о том, что атомное ядро может состоять из какого-то количества атомов гелия или о положительно заряженных спутниках ядра, было вполне естественным объяснением открытой им α радиоактивности. Представления о том, что частицы могут рождаться в результате различных взаимодействий, в это время еще не существовало.
Открытие атомного ядра Э. Резерфордом в 1911 г. и последующее изучение ядерных явлений радикально изменило наше представление об окружающем мире. Обогатило науку новыми концепциями, явилось началом исследования субатомной структуры материи.

Резерфорд Эрнест (1871-1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы.

Родился 30 августа 1871 г. в городе Спринг – Броув (Новая Зеландия) в семье шотландских эмигрантов. Отец работал механиком и фермером-льноводом, мать - учительницей. Эрнест был четвёртым из 12 детей Резерфордов и самым талантливым.

Уже при окончании начальной школы, как первый ученик, он получил премию в 50 фунтов стерлингов для продолжения образования. Благодаря этому Резерфорд поступил в колледж в Нельсоне (Новая Зеландия). После окончания колледжа юноша сдал экзамены в Кентерберийский университет и здесь серьёзно занялся физикой и химией.

Он участвовал в создании научного студенческого общества и сделал в 1891 г. доклад на тему «Эволюция элементов», где впервые прозвучала идея о том, что атомы - сложные системы, построенные из одних и тех же составных частей.

В период, когда в физике господствовала идея Дж. Дальтона о неделимости атома, эта мысль показалась абсурдной, и молодому учёному даже пришлось извиняться перед коллегами за «явную чепуху».

Правда, через 12 лет Резерфорд доказал свою правоту. После окончания университета Эрнест стал учителем средней школы, но это занятие было ему явно не по душе. К счастью, Резерфорду - лучшему выпускнику года - присудили стипендию, и он отправился в Кембридж - научный центр Англии - для продолжения занятий.

В Кавендишской лаборатории Резерфорд создал передатчик для радиосвязи в радиусе 3 км, но отдал приоритет на его изобретение итальянскому инженеру Г. Маркони, а сам приступил к изучению ионизации газов и воздуха. Учёный заметил, что урановое излучение имеет две составляющие - альфа- и бета-лучи. Это было открытием.

В Монреале при изучении активности тория Резерфорд открыл новый газ - радон. В 1902 г. в работе «Причина и природа радиоактивности» учёный впервые высказал мысль о том, что причиной радиоактивности является самопроизвольный переход одних элементов в другие. Он установил, что альфа-частицы заряжены положительно, их масса больше массы атома водорода, а заряд приблизительно равен заряду двух электронов, и это напоминает атомы гелия.

В 1903 г. Резерфорд стал членом Лондонского королевского общества, а с 1925 по 1930 г. занимал пост его президента.

В 1904 г. вышел фундаментальный труд учёного «Радиоактивные вещества и их излучения», который стал энциклопедией для физиков-ядерщиков. В 1908 г. Резерфорд стал нобелевским лауреатом за исследования радиоактивных элементов. Руководитель физической лаборатории в Манчестерском университете, Резерфорд создал школу физиков-ядерщиков, своих учеников.

Вместе с ними он занимался исследованием атома ив 1911 г. окончательно пришёл к планетарной модели атома, о чём написал в статье, вышедшей в майском номере «Философского журнала». Модель приняли не сразу, она утвердилась только после её доработки учениками Резерфорда, в частности Н. Бором.

Умер учёный 19 октября 1937 г. в Кембридже. Как и многие великие люди Англии, Эрнест Резерфорд покоится в соборе Святого Павла, в «Уголке науки», рядом с Ньютоном, Фарадеем, Дарённом, Гершелем.