Клетка ее составные части и функции. Клетки живых организмов. Способы питания клетки

Клетки нашего организма разнообразны по строению и функциям. Клетки крови, костной, нервной, мышечной и других тканей внешне и внутренне сильно различаются. Вместе с тем практически все они имеют общие черты, характерные для животных клеток.

Мембранная организация клетки

В основе строения клетки человека лежит мембрана. Она, подобно конструктору, образует мембранные органоиды клетки и ядерную оболочку, а также ограничивает собой весь объём клетки.

Мембрана построена из двойного слоя липидов. С внешней стороны клетки на липидах мозаично размещаются белковые молекулы.

Избирательная проницаемость - основное свойство мембраны. Оно означает, что одни вещества мембраной пропускаются, а другие нет.

Рис. 1. Схема строения цитоплазматической мембраны.

Функции цитоплазматической мембраны:

  • защитная;
  • регуляция обмена веществ между клеткой и внешней средой;
  • поддержание формы клеток.

Цитоплазма

Цитоплазма - это жидкая среда клетки. В цитоплазме располагаются органоиды и включения.

ТОП-4 статьи которые читают вместе с этой

Функции цитоплазмы:

  • резервуар воды для химических реакций;
  • объединяет все части клетки и обеспечивает взаимодействие между ними.

Рис. 2. Схема строения клетки человека.

Органоиды

  • Эндоплазматическая сеть (ЭПС)

Система каналов, пронизывающих цитоплазму. Участвует в обмене белков и липидов.

  • Аппарат Гольджи

Расположен вокруг ядра, имеет вид плоских цистерн. Функция: передача, сортировка и накопление белков, липидов и полисахаридов, а также образование лизосом.

  • Лизосомы

Имеют вид пузырьков. Содержат пищеварительные ферменты и осуществляют защитные и пищеварительные функции.

  • Митохондрии

Синтезируют АТФ, вещество, являющееся источником энергии.

  • Рибосомы

Осуществляют синтез белка.

  • Ядро

Основные компоненты:

  • ядерная мембрана;
  • ядрышко;
  • кариоплазма;
  • хромосомы.

Ядерная мембрана отделяет ядро от цитоплазмы. Ядерный сок (кариоплазма) - жидкая внутренняя среда ядра.

Число хромосом никак не указывает на уровень организации вида. Так, у человека 46 хромосом, у шимпанзе 48, у собаки 78, у индюка 82, у кролика 44, у кошки 38.

Функции ядра:

  • сохранение наследственной информации о клетке;
  • передача наследственной информации дочерним клеткам при делении;
  • реализация наследственной информации через синтез белков, характерных для этой клетки.

Органоиды специального назначения

Это органоиды, характерные не для всех клеток человека, а для клеток отдельных тканей или групп клеток. Например:

  • жгутики мужских половых клеток , обеспечивающие их движение;
  • миофибриллы мышечных клеток , обеспечивающие их сокращение;
  • нейрофибриллы нервных клеток - нити, обеспечивающие передачу нервного импульса;
  • фоторецепторы глаза и др.

Включения

Включения - это различные вещества, временно или постоянно находящиеся в клетке. Это:

  • пигментные включения , придающие окраску, (например, меланин - коричневый пигмент, защищающий от ультрафиолетовых лучей);
  • трофические включения , являющиеся запасом энергии;
  • секреторные включения , расположенные в клетках желёз;
  • экскреторные включения , например, капли пота в клетках потовых желёз.

Рис. 3. Клетки разных тканей человека.

Клетки человеческого тела размножаются путём деления.

Что мы узнали?

Строение и функции клетки человека аналогичны таковым клеткам животных. Они построены по общему принципу и содержат одинаковые компоненты. Строение клеток разных тканей весьма своеобразно. Некоторые из них имеют специальные органоиды.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 637.

Клетки, образующие ткани растений и животных, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Биологические превращения, происходящие в клетке, неразрывно связаны с теми структурами живой клетки, которые отвечают за выполнение гой или иной функции. Такие структуры получили название органоидов.

Клетки всех типов содержат три основных, неразрывно связанных между собой компонента:

  1. структуры, образующие ее поверхность: наружная мембрана клетки, или клеточная оболочка, или цитоплазматическая мембрана;
  2. цитоплазма с целым комплексом специализированных структур — органоидов (эндоплазматическая сеть, рибосомы, митохондрии и пластиды, комплекс Гольджи и лизосомы, клеточный центр), присутствующих в клетке постоянно, и временных образований, называемых включениями;
  3. ядро - отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко.

Строение клетки

Поверхностный аппарат клетки (цитоплазматическая мембрана) растений и животных имеет некоторые особенности.

У одноклеточных организмов и лейкоцитов наружная мембрана обеспечивает проникновение в клетку ионов, воды, мелких молекул других веществ. Процесс проникновения в клетку твердых частиц называется фагоцитозом, а попадание капель жидких веществ - пиноцитозом.

Наружная плазматическая мембрана регулирует обмен веществ между клеткой и внешней средой.

В клетках эукариот есть органоиды, покрытые двойной мембраной, - митохондрии и пластиды. Они содержат собственные ДНК и синтезирующий белок аппарат, размножаются делением, то есть имеют определенную автономию в клетке. Кроме АТФ, в митохондриях происходит синтез небольшого количества белка. Пластиды свойственны клеткам растений и размножаются путем деления.

Строение клеточной оболочки
Виды клеток Строение и функции наружного и внутреннего слоев клеточной оболочки
наружный слой (хим. состав, функции)

внутренний слой - плазматическая мембрана

химический состав функции
Клетки растений Состоят из клетчатки. Этотслой служит каркасом клетки и выполняет защитную функцию Два слоя белка, между ними - слой липидов Ограничивает внутреннюю среду клетки от внешней и поддерживает эти различия
Клетки животных Наружный слой (гликокаликс) очень тонкий и эластичный. Состоит из полисахаридов и белков. Выполняет защитную функцию. Тоже Специальные ферменты плазматической мембраны регулируют проникновение многих иононов и молекул в клетку и выход их во внешнюю среду

К одномембранным органоидам относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, различные типы вакуолей.

Современные средства исследования позволили биологам установить, что по строению клетки все живые существа следует делить на организмы «безъядерные» - прокариоты и «ядерные» - эукариоты.

У прокариот-бактерий и сине-зеленых водорослей, а также вирусов имеется всего одна хромосома, представленная молекулой ДНК (реже РНК), расположенной непосредственно в цитоплазме клетки.

Строение органоидов цитоплазмы клетки и их функции
Главные рганоиды Строение Функции
Цитоплазма Внутренняя полужидкая среда мелкозернистой структуры. Содержит ядро и органоиды
  1. Обеспечивает взаимодействие ядра и органоидов
  2. Регулирует скорость биохимических процессов
  3. Выполняет транспортную функцию
ЭПС - эндоплазматическая сеть Система мембран в цитоплазме» образующая каналы и более крупные полости, ЭПС бывает 2-х типов: гранулированная (шероховатая), на которой расположено множество рибосом, и гладкая
  1. Осуществляет реакции, связанные с синтезом белков, углеводов, жиров
  2. Способствует переносу и циркуляции питательных веществ в клетке
  3. Белок синтезируется на гранулированной ЭПС, углеводы и жиры — на гладкой ЭПС
Рибосомы Мелкие тельца диаметром 15-20 мм Осуществляют синтез белковых молекул, их сборку из аминокислот
Митохондрии Имеют сферическую, нитевидную, овальную и другие формы. Внутри митохондрий находятся складки (дл. от 0,2 до 0,7 мкм). Внешний покров митохондрий состоит из 2-х мембран: наружная - гладкая, и внутренняя - образует выросты-кресты, на которых расположены дыхательные ферменты
  1. Обеспечивают клетку энергией. Энергия освобождается при распаде аденозинтрифосфорной кислоты (АТФ)
  2. Синтез АТФ осуществляется ферментами на мембранах митохондрий
Пластиды - свойственны только клеткам раститений, бывают трех типов: Двумембранные органеллы клетки
хлоропласты Имеют зеленый цвет, овальную форму, ограничены от цитоплазмы двумя трехслойными мембранами. Внутри хлоропласта располагаются грани, где сосредоточен весь хлорофилл Используют световую энергию солнца и создают органические вещества из неорганических
хромопласты Желтые, оранжевые, красные или бурые, образуются в результате накопления каротина Придают различным частям растений красную и желтую окраску
лейкопласты Бесцветные пластиды (содержатся в корнях, клубнях, луковицах) В них откладываются запасные питательные вещества
Комплекс Гольджи Может иметь разную форму и состоит из отграниченных мембранами полостей и отходящих от них трубочек с пузырьками на конце
  1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети
  2. Образует лизосомы
Лизосомы Округлые тельца диаметром около 1 мкм. На поверхности имеют мембрану (кожицу), внутри которой находится комплекс ферментов Выполняют пищеварительную функцию - переваривают пищевые частицы и удаляют отмершие органоиды
Органоиды движения клеток
  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы - тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии
  1. Выполняют функцию движения
  2. За счет их происходит сокращение мышц
  3. Передвижение за счет сокращения особого сократительного белка
Клеточные включения Это непостоянные компоненты клетки — углеводы, жиры и белки Запасные питательные вещества, используемые в процессе жизнедеятельности клетки
Клеточный центр Состоит из двух маленьких телец - центриолей и центросферы - уплотненного участка цитоплазмы Играет важную роль при делении клеток

Эукариоты обладают большим богатством органоидов, имеют ядра, содержащие хромосомы в виде нуклеопротеидов (комплекс ДНК с белком гистоном). К эукариотам относятся большинство современных растений и животных как одноклеточных, так и многоклеточных.

Выделяют два уровня клеточной организации:

  • прокариотический - их организмы очень просто устроены - это одноклеточные или колониальные формы, составляющие царство дробянок, синезеленых водорослей и вирусов
  • эукариотический - одноклеточные колониальные и многоклеточные формы, от простейших - корненожки, жгутиковые, инфузории — до высших растений и животных, составляющие царство растений, царство грибов, царство животных

Строение и функции ядра клетки
Главные органоиды Строение Функции
Ядро растительной и животной клетки Округлой или овальной формы
Ядерная оболочка состоит из 2-х мембран с порами
  1. Отграничивает ядро от цитоплазмы
  2. Осуществляется обмен между ядром и цитоплазмой
Ядерный сок (кариоплазма) - полужидкое вещество Среда, в которой находятся ядрышки и хромосомы
Ядрышки сферической или неправильной формы В них синтезируется РНК, которая входит в состав рибосомы
Хромосомы - плотные удлиненные или нитевидные образования, видимые только при делении клетки Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Все органоиды клетки, несмотря на особенности их строения и функций, находятся во взаимосвязи и «работают» на клетку, как на единую систему, в которой связующим звеном является цитоплазма.

Особые биологические объекты, занимающие промежуточное положение между живой и неживой природой, представляют собой вирусы, открытые в 1892 г. Д. И. Ивановским, они составляют в настоящее время объект особой науки - вирусологии.

Вирусы размножаются только в клетках растений, животных и человека, вызывая различные заболевания. Вирусы имеют очень прослое строение и состоят из нуклеиновой кислоты (ДНК или РНК) и белковой оболочки. Вне клеток хозяина вирусная частица не проявляет никаких жизненных функций: не питается, не дышит, не растет, не размножается.

Клетка является основной элементарной единицей всего живого, поэтому ей присущи все свойства живых организмов: высокоупорядоченное строение, получение энергии извне и ее использование для выполнения работы и поддержания упорядоченности, обмен веществ, активная реакция на раздражения, рост, развитие, размножение, удвоение и передача биологической информации потомкам, регенерация (восстановление поврежденных структур), адаптация к окружающей среде.

Немецкий ученый Т. Шванн в середине XIX века создал клеточную теорию, основные положения которой свидетельствовали о том, что все ткани и органы состоят из клеток; клетки растений и животных принципиально сходны между собой, все они возникают одинаково; деятельность организмов - сумма жизнедеятельности отдельных клеток. Большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке оказал великий немецкий ученый Р. Вирхов. Он не только свел воедино все многочисленные разрозненные факты, но и убедительно показал, что клетки являются постоянной структурой и возникают только путем размножения.

Клеточная теория в современной интерпретации включает в себя следующие главные положения: клетка является универсальной элементарной единицей живого; клетки всех организмов принципиально сходны по своему строению, функции и химическому составу; клетки размножаются только путем деления исходной клетки; многоклеточные организмы являются сложными клеточными ансамблями, образующими целостные системы.

Благодаря современным методам исследования были выявлены два основных типа клеток : более сложно организованные, высокодифференцированные эукариотические клетки (растения, животные и некоторые простейшие, водоросли, грибы и лишайники) и менее сложно организованные прокариотические клетки (сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии, хламидии).

В отличие от прокариотической эукариотическая клетка имеет ядро, ограниченное двойной ядерной мембраной, и большое количество мембранных органелл.

ВНИМАНИЕ!

Клетка является основной структурной и функциональной единицей живых организмов, осуществляющей рост, развитие, обмен веществ и энергии, хранящей, перерабатывающей и реализующей генетическую информацию. С точки зрения морфологии клетка представляет собой сложную систему биополимеров, отделенную от внешней среды плазматической мембраной (плазмолеммой) и состоящую из ядра и цитоплазмы, в которой располагаются органеллы и включения (гранулы).

Какие бывают клетки?

Клетки разнообразны по своей форме, строению, химическому составу и характеру обмена веществ.

Все клетки гомологичны, т.е. имеют ряд общих структурных признаков, от которых зависит выполнение основных функций. Клеткам присуще единство строения, метаболизма (обмена веществ) и химического состава.

Вместе с тем различные клетки имеют и специфические структуры. Это связано с выполнением ими специальных функций.

Строение клетки

Ультрамикроскопическое строение клетки:

1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома клеточный центр (цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть: а - мембрана зернистой сети; б - рибосомы; 6 - связь перинуклеарного пространства с полостями эндоплазматической сети; 7 - ядро; 8 - ядерные поры; 9 - незернистая (гладкая) эндоплазматическая сеть; 10 - ядрышко; 11 - внутренний сетчатый аппарат (комплекс Гольджи); 12 - секреторные вакуоли; 13 - митохондрия; 14 - липосомы; 15 - три последовательные стадии фагоцитоза; 16 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети.

Химический состав клетки

В состав клетки входит более 100 химических элементов, на долю четырех из них приходится около 98% массы, это органогены: кислород (65–75%), углерод (15–18%), водород (8–10%) и азот (1,5–3,0%). Остальные элементы подразделяются на три группы: макроэлементы - их содержание в организме превышает 0,01%); микроэлементы (0,00001–0,01%) и ультрамикроэлементы (менее 0,00001).

К макроэлементам относятся сера, фосфор, хлор, калий, натрий, магний, кальций.

К микроэлемен-там - железо, цинк, медь, йод, фтор, алюминий, медь, марганец, кобальт и др.

К ультрамикроэлементам - селен, ванадий, кремний, никель, литий, серебро и до. Несмотря на очень малое содержание, микроэлементы и ультрамикроэлементы играют очень важную роль. Они влияют, главным образом, на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки и организма как целого.

Клетка состоит из неорганических и органических веществ. Среди неорганических наибольшее количество воды. Относительное количество воды в клетке составляет от 70 до 80%. Вода - универсальный растворитель, в ней происходит все биохимические реакции в клетке. При участии воды осуществляется теплорегуляция. Вещества, растворяющиеся в воде (соли, основания, кислоты, белки, углеводы, спирты и др.), называются гидрофильными. Гидрофобные вещества (жиры и жироподобные) не растворяются в воде. Другие неорганические вещества (соли, кислоты, основания, положительные и отрицательные ионы) составляют от 1,0 до 1,5%.

Среди органических веществ преобладают белки (10–20%), жиры, или липиды (1–5%), углеводы (0,2–2,0%), нуклеиновые кислоты (1–2%). Содержание низкомолекулярных веществ не превышает 0,5%.

Молекула белка является полимером, который состоит из большого количества повторяющихся единиц мономеров. Мономеры белка аминокислоты (их 20) соединены между собой пептидными связями, образуя полипептидную цепь (первичную структуру белка). Она закручивается в спираль, образуя, в свою очередь, вторичную структуру белка. Благодаря определенной пространственной ориентации полипептидной цепи возникает третичная структура белка, которая определяет специфичность и биологическую активность молекулы белка. Несколько третичных структур, объединяясь между собой, образуют четвертичную структуру.

Белки выполняют важнейшие функции. Ферменты - биологические катализаторы, увеличивающие скорость химических реакций в клетке в сотни тысяч миллионы раз, являются белками. Белки, входя в состав всех клеточных структур, выполняют пластическую (строительную) функцию. Движения клеток также осуществляют белки. Они обеспечивают транспорт веществ в клетку, из клетки и внутри клетки. Важной является защитная функция белков (антитела). Белки являются одним из источников энергии.Углеводы подразделяются на моносахариды и полисахариды. Последние построены из моносахаридов, являющихся, подобно аминокислотам, мономерами. Среди моносахаридов в клетке наиболее важны глюкоза, фруктоза (содержит шесть атомов углерода) и пентоза (пять атомов углерода). Пентозы входят в состав нуклеиновых кислот. Моносахариды хорошо растворяются в воде. Полисахариды плохо растворяются в воде (в животных клетках гликоген, в растительных - крахмал и целлюлоза. Углеводы являются источником энергии, сложные углеводы, соединенные с белками (гликопротеиды), жирами (гликолипиды), участвуют в образовании клеточных поверхностей и взаимодействиях клеток.

К липидам относятся жиры и жироподобные вещества. Молекулы жиров построены из глицерина и жирных кислот. К жироподобным веществам относятся холестерин, некоторые гормоны, лецитин. Липиды, являющиеся основным компонентом клеточных мембран, выполняют тем самым строительную функцию. Липиды - важнейшие источники энергии. Так, если при полном окислении 1 г белка или углеводов освобождается 17,6 кДж энергии, то при полном окислении 1 г жира - 38,9 кДж. Липиды осуществляют терморегуляцию, защищают органы (жировые капсулы).

ДНК и РНК

Нуклеиновые кислоты являются полимерными молекулами, образованными мономерами нуклеотидами. Нуклеотид состоит из пуринового или пиримидинового основания, сахара (пентозы) и остатка фосфорной кислоты. Во всех клетках существует два типа нуклеиновых кислот: дезоксирибонулеиновая (ДНК) и рибонуклеиновая (РНК), которые отличаются по составу оснований и сахаров.

Пространственная структура нуклеиновых кислот:

(по Б. Албертсу и соавт., с изм.).I - РНК; II - ДНК; ленты - сахарофосфатные остовы; A, C, G, T, U - азотистые основания, решетки между ними - водородные связи.

Молекула ДНК

Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в виде двойной спирали. Азотистые основания обеих цепей соединены между собой комплементарно водородными связями. Аденин соединяется только с тимином, а цитозин - с гуанином (А - Т, Г - Ц). В ДНК записана генетическая информация, которая определяет специфичность синтезируемых клеткой белков, т. е. последовательность аминокислот в полипептидной цепи. ДНК передает по наследству все свойства клетки. ДНК содержится в ядре и митохондриях.

Молекула РНК

Молекула РНК образована одной полинуклеотидной цепью. В клетках существует три типа РНК. Информационная, или мессенджер РНК тРНК (от англ. messenger - «посредник»), которая переносит информацию о нуклеотидной последовательности ДНК в рибосомы (см. ниже). Транспортная РНК (тРНК), которая переносит аминокислоты в рибосомы. Рибосомальная РНК (рРНК), которая участвует в образовании рибосом. РНК содержится в ядре, рибосомах, цитоплазме, митохондриях, хлоропластах.

Состав нуклеиновых кислот.

Тело и весь организм человека имеет клеточное строение. По своему строению клетки человека имеет общие черты между собой. Ониобъединены между собой межклеточным веществом, которое снабжает клетку питанием и кислородом. Клетки соединяются в ткани, ткани - в органы, а органы - в целые структуры (кости, кожу, мозг и так далее). В организме клетки выполняют различные функции и задачи: рост и деление, обмен веществ, раздражимость, передача генетической информации, приспособление к изменениям в окружающей среде…

Строение клетки человека. Основа основ

Каждую клетку окружает тоненькая клеточная мембрана, которая изолирует ее от внешней среды и регулирует проникновение в нее разных веществ. Клетказаполненная топкой цитоплазмой, в которую погружены клеточные органеллы (или органоиды): митохондрии - генераторы энергии; комплекс Гольджи, где происходят разнообразные биохимические реакции; вакуоли и эндоплазматическая сетка, что транспортируют вещества; рибосомы, в которых происходит синтез белка. В центре цитоплазмы содержится ядро с длинными молекулами ДНК (дезоксирибонуклеиновая кислота), что несет информацию обо всем организме.

Человеческая клетка:

  • Где содержится ДНК?

Какие организмы называются многоклеточными?

В одноклеточных организмах (например бактерий) все жизненные процессы - от питания к размножению - происходят внутри одной клетки, а в многоклеточных организмах (растения, животные, люди) тело состоит с огромного количества клеток, которые выполняют разные функции и взаимодействуют друг с другом.Строение клетки человека имеет единый план, в которомвиднаобщность всех процессов жизнедеятельности.Увзрослого человека более 200 различных типов клеток. Все они являются потомками одной зиготы и приобретают различие в результате процесса дифференциации (процесс возникновения и развития различий между первоначально однородными эмбриональными клетками).

Как клетки различаются за формой?

Строение клетки человекаопределяется ее основными органоидами, а форма каждого типа клетки, определяется ее функциями. Эритроциты, например, имеют форму двояковогнутого диска: их поверхность должна поглощать как можно больше кислорода. Клетки эпидермиса выполняют защитную функцию, они среднего размера, продолговато-угловатой формы. Нейроны имеют длинные отростки для передачи нервных сигналов, сперматозоиды— подвижный хвостик, а яйцеклеткибольшой и шаровидной формы.Форма клеток, что выстилают кровеносные сосуды, а также клеток многих других тканей - уплощенная. Некоторые клетки, например лейкоциты, что поглощают болезнетворные микробы, могут изменять форму.

Где содержится ДНК?

Строение клетки человека невозможно без дезоксирибонуклеиновой кислоты. ДНК содержится в ядре каждой клетки. Эта молекула сохраняет всю наследственную информацию, или генетический код. Она представляет собой две длинные, закрученные в двойную спираль, молекулярные цепи.

Они связаны водородными соединениями, что образуются между парами азотистых оснований - аденина и тимина, цитозина и гуанина. Плотно скрученные цепи ДНК образуют хромосомы - палочковидные структуры, число которых у представителей одного вида строго постоянно. ДНК необходима для поддержки жизни и играет огромную роль в размножении: она передает наследственные признаки от родителей к детям.

Делит все клетки (или живые организмы ) на два типа: прокариоты и эукариоты . Прокариоты - это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома - молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро , в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды . К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Название органоида

Строение органоида

Функции органоида

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

  1. Выполняет транспортную функцию.
  2. Регулирует скорость протекания обменных биохимических процессов.
  3. Обеспечивает взаимодействие органоидов.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму - от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

  1. Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
  2. Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

  1. Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
  2. На гранулированной ЭПС синтезируются белки, на гладкой - жиры и углеводы.
  3. Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Двухмембранные органоиды

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри - комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

  1. Образует лизосомы.
  2. Собирает и выводит синтезируемые в ЭПС органические вещества.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей - двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим