Энтальпия. Закон Гесса. Приложения закона Гесса. Тепловой эффект химической реакции. Термохимические уравнения. Расчеты теплового эффекта реакции

ПРИ V - const и р = const

Тепловой эффект химической реакции, протекающей при по­стоянном объеме, называется изохорным тепловым эффектом и обозначается Q V .

Подставив в уравнение (43) Q V , с учетом, что V = const , получим

Следовательно, изохорный тепловой эффект реакции (про­текающей при изохорно-изотермическом процессе) равен измене­нию внутренней энергии системы.

Тепловой эффект реакции, протекающей при постоянном дав­лении, называется изобарным тепловым эффектом Q p . Подставив в уравнение (43) значение Q p , получим

(45)

Заменяя выражение U 2 + pV 2 на Н 2 , а U 1 + pV 1 на Н 1 , получаем

Q p = ΔН = Н 2 -Н 1 . (46)

Следовательно, изобарный тепловой эффект реакции (проте­кающей при изобарно-изотермическом процессе) равен измене­нию энтальпии системы.

Таким образом, изобарный и изохорный тепловые эффекты равны изменениям функций состояния (44) и (46). Следовательно, они не зависят от пути перехода, а определяются начальным и конечным состояниями системы. В общем случае теплоты реак­ции зависят от характера протекания процесса.

§ 5. ЗАВИСИМОСТЬ МЕЖДУ ТЕПЛОВЫМИ ЭФФЕКТАМИ Q v И Q p

Для вывода уравнения зависимости между Q v и Q p восполь­зуемся соотношением

Q p = ΔН = ΔU p + Δ (pV),

где ΔU p - изменение внутренней энергии термодинамической системы при осуществлении изобарного процесса. В общем слу­чае это изменение отличается от изменения внутренней энергии в изохорном процессе, т. е. ΔU P ≠ ΔU V , так как

V≠ const . Следовательно, . Поэтому при за­мене ΔU V на Q V уравнение (45) можно переписать так:

.

В конденсированных системах разница между Q p и Q v незна­чительна и можно принять, что Q p = Q v . Однако при наличии в системе газообразных веществ разница значительная.

Если принять газы идеальными, то уравнение (45) можно записать в виде

Q P = Qv + pΔV= Q V + pV 2 - pV 1 .

Заменив в этом выражении pV 2 на n 2 RT и pV 1 на n 1 RT , где n 1 и п 2 - числа киломолей газообразных веществ до и после реакции, из уравнения (3) получим

Q p = Q v + Δ nRT (47)

Q v = Q p -Δ nRT, (48)

где Δn - изменение числа киломолей газообразных продуктов реакции. При Δn > 0

Q V < Q P .

Примером такой реакции может служить реакция образова­ния окиси углерода

2С + О 2 = 2СО , в которой Δn= 2 - 1 = 1 и Q v = Q p - RT, т. е. Q v < Q p . Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.

При Δn <0 Q V > Q p . Примером такой реакции могут слу­жить реакции: СО + 0,5О 2 = СО 2 или Н 2 + 0,5О 2 = Н 2 О , в ко­торых Δn = 1 - 1,5 = -0,5 , т. е. Δn < 0 . Тогда Q v = Q p + 0,5RT , т. е. Q v > Q p .

В этом случае над термодинамической системой совершается работа внешней средой и система получает дополнительную теп­лоту.

Когда Δn = 0 , тепловые эффекты Q v = Q p . Примером такой реакции может быть реакция СО + Н 2 О = СО 2 + Н 2 , в кото­рой Δn = 2 - 2 = 0 . Следовательно, Q v = Q p .

ЗАКОН ГЕССА

Независимость теплового эффекта реакции от промежуточных стадий химических процессов была установлена русским ученым академиком Г. И. Гессом в 1840 г. на основании эксперименталь­ных данных. Это справедливо для реакций, протекающих при V, Т = const или р, Т = const . Такое утверждение является, по существу, законом сохранения энергии применительно к хи­мическим реакциям. Следует заметить, что закон Гесса - основ­ной закон химической теплодинамики был открыт еще до того, как был сформулирован первый закон термодинамики. Закон Гесса устанавливает, что тепловой эффект химической реакции не зависит от пути перехода системы из одного состояния в дру­гое, а определяется лишь начальным и конечным ее состояниями.

Таким образом, выведенные ранее соотношения

Q V =U 2 -U 1 и Q p =H 2 - H 1

являются алгебраическими выражениями закона Гесса.

Расчеты тепловых эффектов химических реакций описаны в ра­ботах М. В. Ломоносова, Лавуазье, Лапласа. Значительный экспериментальный материал был получен Г. И. Гессом, Н. Н. Бекетовым, Бертло, Томсоном, И. А. Каблуковым и другими учеными. Обширные исследования по определению теп­ловых эффектов химических реакций проведены В. Ф. Лугининым и его учениками.

Для определения тепловых эффектов химических реакций применяются специальные приборы - калориметры.

Закон Гесса имеет большое практическое значение, так как с его помощью можно вычислить тепловые эффекты химических реакций, экспериментальное определение которых затруднительно или практически неосуществимо. Поясним это на примере

Предположим, что вещество А превращается в вещество В тремя путями: непосредственно из веще­ства А в вещество В с тепловым эффектом Q 1 ; через стадии С, D с тепловыми эффектами Q 2 , Q 3 , Q 4 , через стадии Е , N , М с тепловыми эффектами Q 5 , Q 6 , Q 7 и Q 8 . По закону Гесса суммарные тепловые эффекты одинаковы, поэтому

Q 1 =Q 2 +Q 3 +Q 4 ;

Q 1= Q 5 +Q 6 +Q 7 +Q 8 .

Q 2 +Q 3 +Q 4 =Q 5 +Q 6 +Q 7 +Q 8 .

Пользуясь этими соотношениями, легко вычислить тепловой эффект любой химической реакции, который невозможно полу­чить экспериментально. Например, тепловой эффект

Q 8 =Q 1 -Q 5 -Q 6 -Q 7 .

Как правило, экспериментальное определение тепловых эффектов на всех стадиях проводится с большой тщательностью, соблюдаются все предпосылки, вытекающие из закона Гесса (усло­вия, к которым приводятся начальные и конечные продукты сго­рания, одинаковый химический состав исходных продуктов и т. д.), сведены до минимума ошибки и неточности, связанные с усло­виями теплообмена экспериментальной аппаратуры с окружаю­щей средой, способами измерения температур и др., т. е. необра­тимые потери, связанные с превращением механической энергии непосредственно в тепловую, практически отсутствуют.

С помощью закона Гесса можно производить расчеты, исполь­зуя так называемые термохимические уравнения, представляю­щие собой стехиометрические уравнения химических реакций, в которых наряду с химическими формулами веществ, участвую­щих в реакции, записываются тепловые эффекты (отнесенные к одинаковым условиям). С этими уравнениями можно произво­дить алгебраические действия так же, как с любыми алгебраи­ческими уравнениями.

Стехиометрическими уравнениями или соотношениями назы­ваются численные соотношения между количествами реагирую­щих веществ, отвечающие законам стехиометрии, основные поло­жения которой вытекают из законов Авогадро, Гей-Люссака, постоянства состава, кратных отношений и др.

Из стехиометрического соотношения, например,

2Н 2 + О 2 = 2Н 2 О

следует, что при образовании воды на две молекулы водорода Приходится одна молекула кислорода или в общем виде

x a A+x b B=x a D , при образовании x d молекул вещества D на x а молекул вещества А требуется x b молекул вещества В . Коэффициенты х а , x b и x d - число молекул исходных веществ и полученных в реакции назы­ваются стехиометрическими коэффициентами.

Количество киломолей исходных и полученных веществ в хи­мической реакции пропорционально стехиометрическим коэф­фициентам. В газовых реакциях объемы и парциальные давления реагирующих веществ и продуктов реакции также пропорцио­нальны стехиометрическим коэффициентам.

Так как тепловые эффекты зависят от физического состояния реагирующих веществ и условий, при которых протекает реак­ция, то для возможности проведения термохимических расче­тов, тепловые эффекты, вводимые в термохимические уравнения, должны быть отнесены к каким-то одинаковым условиям, в про­тивном случае они несопоставимы. За такие условия принимают условия, при которых реакция осуществляется между веществами, находящимися в определенных стандартных состояниях.

За стандартные состояния индивидуальных жидких и твер­дых веществ принимают их устойчивое состояние при данной тем­пературе и давлении р = 1 атм = 760 мм рт. ст., или 1,013- 10 5 Па, а для индивидуальных газов - такое их состояние, когда при давлении р = 760 мм рт. ст. и данной температуре они подчиняют­ся уравнению состояния идеального газа.

Широко приводимые в справочниках тепловые эффекты обычно относят к давлению р = 1 физической атмосфере (1,013·10 5 Па) и температуре t = 25° С (298,15 К) и обозначают Q 0 V 298 и Q 0 P 298

или ΔQ 0 298 и ΔH 0 298 .

Из закона Гесса вытекают следствия, имеющие большое прак­тическое значение.

1. Тепловой эффект реакции разложения Q pa з химического соединения по величине равен и противоположен по знаку тепло­вому эффекту образования Q o 6p этого соединения из продуктов разложения:

Q разл =-Q обр

2. Если из двух химических систем образуются одни и те же конечные продукты двумя различными путями, то разность между значениями тепловых эффектов химических реакций равна теп­ловому эффекту превращения одной химической системы в дру­гую. Так, например, для реакции образования вещества В из веществ А и С (рис. 7), согласно закону Гесса,

Q 1 = Q 2 + Q 3 ,

откуда тепловой эффект превращения вещества А в С

Q 3 = Q 1 - Q 2

3. Если одинаковые по химическому составу системы двумя путями превращаются в различные конечные продукты, то разность между значениями тепловых эффектов, равна теплоте, по­лученной при превращении одного конечного продукта химиче­ской реакции в другой. Так, при образовании из вещества А ве­ществ В и С (рис. 8), согласно закону Гесса, Q 1 = Q 2 + Q 3 , откуда тепловой эффект перехода вещества С в вещество В

Q 3 =Q 1 - Q 2 .

При термохимических расчетах особое значение имеют два вида тепловых эффектов химических реакций: теплота образова­ния соединений и теплота сгорания.

Теплотой образования принято называть тепловой эффект реакции образования данного соединения из соответствующих простых веществ в стандартных условиях.

За стандартное состояние простых веществ принимают их стабильное состояние при давлении, равном одной физической атмосфере (760 мм рт. ст., или 1,013- 10 5 Па) и температуре 298,15 К.

В качестве примера можно привести реакцию образования бензола: из веществ в стандартных состояниях -"■ твердого угле­рода и газообразного водорода получается жидкий бензол

6С ТВ + ЗН 2 = С 6 Н 6ж .

Индексы соответственно «ж» и «тв» относятся к жидкой и твердой фазам. Индекс «г» относится к газообразному веществу, однако в расчетных уравнениях его обычно опускают.

Теплота образования, соответствующая стандартным усло­виям, называется стандартной. Данные по теплоте образования наряду с другими физико-химическими величинами приводятся в справочниках.

Так как при термодинамических расчетах определяют не аб­солютные значения внутренней энергии и энтальпии, а их изме­нение, то при определении теплоты образования какого-либо соединения начало отсчёта внутренней энергии или энтальпии можно выбрать произвольно. Так, например, в справочниках Для различных простых веществ при стандартных условиях при­нимают, что энтальпия равна нулю. К таким веществам отно­сятся С, Н 2 , О 2 , Cl 2(г) ,F 2(г) и др.

Таким образом, тепловой эффект образования соединений из этих веществ, например, Q p оказывается равным энтальпии соеди­нения при искомых условиях.

Теплоту образования можно относить к любому количеству вещества. В справочниках, как правило, ее относят к 1 кмоль или 1 кг соединения.

В табл. 1 приведены значения теплоты образования веществ для некоторых распространенных химических соединений.

Теплота сгорания. Горение представляет собой сложное, быстро протекающее химическое превращение, сопровождающееся выде­лением значительного количества теплоты и, как правило, ярким свечением.

Таблица 1. Тепловые эффекты образования соединений из простых веществ при стандартных условиях

Вещество Вещество Q 0 P 298 = ΔH 0 298 ·10 -6 Джfкмоль Q 0 P 298 = ΔH 0 298 ·10 -3 Ккалfкмоль
С (графит) С 2 Н 4г - этилен 52,28 12,492
Н г 217,98 52,098 С 2 Н 6г - этан -84,67 -20,236
H 2г С 3 Н 8г - пропан -103,9 -24,820
N 2 г С 6 Н вг - бензол 82,93 19,82
429,18 59,56 С 6 Н 6ж - бензол 49,04 11,718
OH г 38,96 9,31 С в Н 12г - цикло- -123,1 -29,43
OH 2г 0 - гексан
142,3 34,0 С 7 Н 8г - толуол 50,00 11,95
CO г -110,5 -26,41 С 7 Н 8ж - толуол 8,08 1,93
CO 2г -393,51 -94,05 C 10 H 8кр - нафта- 75,44 18,03
СаСО 3 (кальцит) -1206 -288,2 лин
СаО (кристалл) -635,1 -151,8 СН 4 О ж - метило- -238,7 -57,05
Н 2 О Г -241,84 -57,80 вый спирт
H 2 O ж -285,84 -68,32 СН 4 О Г - метило- -202,2 -48,09
NH 3 г -46,19 -11,04 вый спирт
NH 3 ж -69,87 -16,7 С 2 Н 6 О Ж - этило- -277,6 -66,35
NO г 90,37 21,60 вый спирт
NO 2 г 33,89 8,09 С 2 Н в О г - этило- -235,3 -56,24
N 2 O г 81,55 19,5 вый спирт
N 2 O 4r 9,37 2,24 CH 5 N r - метил- -28,03 -6,70
N a O 5 (12,5) (3,06) амин
CH 4r - метан -74,85 -17,889 C 2 H 7 N r - диметил- -27,61 -6,60
QH 2r - ацетилен 226,75 54,194 амин

Рис. 9. Схема калориметрической «бомбы»:

1 – цилиндр; 2 – крышка; 3 – чашечка; 4 - спираль

Тепловой эффект реакции горе­ния, называемый теплотой сгорания, обычно измеряют калориметрическим способом.

Теплотой сгорания соединения называется тепловой эффект реакции окисления данного соединения кис­лородом с образованием предельных высших окислов соответствующих элементов. Так, например, в орга­нических соединениях, являющихся основным топливом в тепловых двигателях, углерод окисляется до углекислого газа, водород - до водяных паров, другие вещества, входящие в соединение в незначительных количествах - до их конечных продуктов окисления.

На теплоту сгорания существенное влияние оказывают темпе­ратура и давление. Для возможности использования теплоты сго­рания в термохимических соотношениях ее нужно приводить к стандартным условиям. Теплота сгорания в этом случае назы­вается стандартной. Значение теплоты сгорания, найденное по справочнику, используется для определения тепловых эффектов реакций.

На рис. 9 приведена схема калориметрической бомбы, в кото­рой экспериментально определяют теплоту сгорания. Калориме­трическая бомба представляет собой толстостенный стальной цилиндр 1, покрытый изнутри платиной. На цилиндр навинчи­вают крышку 2. Внутри цилиндра предусмотрена чашечка 3 для навески исследуемого вещества. В цилиндр под высоким давлением нагнетают кислород. С помощью проволочки 4, нагре­ваемой электрическим током, поджигают исследуемое вещество. Бомбу помещают в калориметр, посредством которого и опре­деляют теплоту сгорания исследуемого вещества. Температуру про­дуктов сгорания «приводят» к температуре в бомбе до поджигания.

Теплота сгорания органических соединений, часто называемая теплотой сгорания топлива, является исходной величиной в рас­четах рабочих процессов тепловых двигателей. Она определяется как количество теплоты (в Дж или ккал), выделяющееся при пол­ном сгорании 1 кг массы, 1 м 3 объема или 1 кмоль топлива.

Теплота сгорания топлива, если ее определить описанным выше способом, в калориметрической бомбе будет теплотой сгорания для процесса при V = const, т. е. это будет тепловой эффект Q V .

Различают высшую и низшую теплоту сгорания топлива.

Высшей теплотой сгорания топлива Q B называется полное количество теплоты, выделившееся при сгорании горючих частей топлива при условии конденсации водяных паров.

Низшей теплотой сгорания топлива Q H называют разницу между полным количеством выделившейся теплоты и скрытой теп­лотой парообразования воды как имеющейся в топливе в виде примеси, так и получающейся в результате сгорания водорода.

Высшая Q B и низшая Q H теплоты сгорания топлива связаны между собой соотношением

-Q h = -Q B +r b (9H + W) = -Q b + 2,512·10 6 (9H+W) , Джfкг, (49)

где r b - скрытая теплота парообразования (для технических расчетов принято r b ≈ 2,512· 10 6 Джfкг); 9H - количество во­дяного пара, образующегося при сжигании H (кг) водорода, со­держащегося в 1 кг топлива; W - количество влаги, содержа­щейся в 1 кг топлива, кг.

В расчетах рабочих процессов ДВС за теплоту сгорания при­нимают низшую теплоту сгорания, так как продукты сгорания, удаляющиеся из двигателя через выпускную систему, обычно имеют температуру, превышающую температуру конденсации содержащихся в них водяных паров.

В табл. 2 приведены значения низшей теплоты сгорания топлив.

На основании закона Гесса и его следствий можно составить термохимическое уравнение для определения теплового эффекта реакции через тепловые эффекты образования реагирующих веществ.

Так, например, если имеет место реакция bВ + dD = еЕ + gG , где В, D, Е, G, b, d,e, g - исходные вещества и продукты реакции

Таблица 2

Низшая теплота сгорания топлив

Топливо Молекуляр- ная масса Низшая теплота сгорания
μ г, кгfмоль Джfкг · 10 -6 ккалfкг
Бензин (элементарный состав по массе 110-120 -44,0 -10 500
С = 0,855: Н = 0,145)
Дизельное топливо (элементарный со- 180-200 -42,50 -10 150
став по массе С = 0,870; Н = 0,126;
О = 0,004)
Керосин типа Т-1 -42,845 -10 230
СН 4г - метан 16,042 -49,80 -11 860
С 3 Н 8г - пропан 44,094 -46,05 -11 000
CH 5 N r - метиламин 31,058 -31,20 -7 446
СгН 7 Н г - этиламин 45,084 -35,15 -8 340
CH e N 2}K - металгидразин 46,084 -25,44 -^-6 070
C 2 H 8 N 2}K - несимметричный диметил- 60,100 -32,90 -7 850
Гидразин

и их стехиометрические коэффициенты соответственно, то тепло­вой эффект этой реакции

Q p =(eQ обр +gQ обрG) – (bQ обрB +dQ обрD)

Отсюда уравнение в общем виде

(50)

где Q обрB , Q обрD , Q обрE и Q o 6pG -теплота образования соот­ветственно исходных веществ и продуктов реакдии; n i - числа киломолей (от 1 до т), пропорциональные стехиометрическим ко­эффициентам реагирующих веществ.

Следовательно, тепловой эффект реакции равен разности теплоты образования продуктов реакции и теплоты образования исходных веществ, взятых с соответствующими стехиометрическими коэффициентами.

С помощью закона Гесса и его следствий можно также соста­вить термохимическое уравнение для расчета теплового эффекта, если известна теплота сгорания веществ, участвующих в ре­акции.

В общем виде

т. е. тепловой эффект реакции равен разности между теплотой сгорания исходных веществ и теплотой сгорания продуктов реак­ции (с учетом их стехиометрических коэффициентов).

Это можно проиллюстрировать на примере сгорания метило­вого спирта СН 3 ОН (рис. 10). Теплота сгорания 1 кмоля метилового жидкого спирта

Q 2сг = - 726,49·10 6 Дж/кмоль;

теплоты сгорания С в СО 2 и Н 2 в Н 2 О Ж соответственно равны

Q" 1 c г = -393,51·10 6 Дж/кмоль;

Q" 1 c г = -285,84·10 6 Дж/кмоль;

Q lc г = -965,19 ·10 6 Дж/кмоль.

Рис. 10. Схема определения теп­лов ого эффекта при сгорании ме­тилового спирта

Запишем термохимические уравнения реакций горения:

C +O 2 = CO 2 + Q" 1 c г;

2Н 2 + О 2 = 2Н 2 О Ж + 2Q" 1 c г;

СН 3 ОН Ж + 1,5О 2 = СО 2 + 2Н 2 О + Q 2 .

Для определения теплоты образования метилового спирта из уравнения С + 2Н 2 + 0,5О 2 = СН 3 ОН + Q 3 сложим два напи­санных выше уравнения и вычтем третье. После некоторых пре­образований получим

С + 2Н 2 + 0,5О 2 = СН 3 ОН + (Q lcr - Q 2cr),

сравнивая два последних уравнения, заключаем, что искомая теплота образования 1 кмоля жидкого метилового спирта

Q 3обр = -238,7·10 6 Джfкмоль.


Похожая информация.


I. Горение и медленное окисление

Горение – это первая химическая реакция, с которой познакомился человек. Огонь… Можно ли представить наше существование без огня? Он вошел в нашу жизнь, стал неотделим от нее. Без огня человек не сварит пищу, сталь, без него невозможно движение транспорта. Огонь стал нашим другом и союзником, символом славных дел, добрых свершений, памятью о минувшем.


Мемориал славы в г. Сыктывкаре

Пламя, огонь, как одно из проявлений реакции горения, имеет и свое монументальное отражение. Яркий пример – мемориал славы в г. Сыктывкаре.

Раз в четыре года в мире происходит событие, сопровождающееся переносом «живого» огня. В знак уважения к основателям олимпиад огонь доставляют из Греции. По традиции один из выдающихся спортсменов доставляет этот факел на главную арену олимпиады.

Об огне сложены сказки, легенды. В старину люди думали, что в огне живут маленькие ящерицы – духи огня. А были и такие, которые считали огонь божеством и строили в его честь храмы. Сотни лет горели в этих храмах, не угасая, светильники, посвященные богу огня. Поклонение огню было следствием незнания людьми процесса горения.


Олимпийский огонь

М.В.Ломоносов говорил: «Изучение природы огня и без химии предпринимать отнюдь невозможно».

Горение - реакция окисления, протекающая с достаточно большой скоростью , сопровождающаяся выделением тепла и света.

Схематически этот процесс окисления можно выразить следующим образом:


Реакции, протекающие с выделением теплоты, называются экзотермическими (от греч. «экзо» - наружу).

При горении идет интенсивное окисление, в процессе горения появляется огонь, следовательно, такое окисление протекает очень быстро. Если скорость реакции окажется достаточно большой? Может произойти взрыв. Так взрываются смеси горючих веществ с воздухом или кислородом. К сожалению, известны случаи взрывов смесей воздуха с метаном, водородом, парами бензина, эфира, мучной и сахарной пылью и т.п., приводящие к разрушениям и даже человеческим жертвам.

Для возникновениягорениянеобходимы:

  • горючее вещество
  • окислитель (кислород)
  • нагревание горючего вещества до температуры воспламенения

Температура воспламенения у каждого вещества различна.

В то время как эфир может воспламениться от горячей проволоки, для того чтобы поджечь дрова, нужно нагреть их до нескольких сот градусов. Температура воспламенения веществ различна. Сера и дерево воспламеняются при температуре около 270 °С, уголь – около 350 °С, а белый фосфор – около 40 °С.

Однако не всякое окисление непременно должно сопровождаться появлением света.

Существует значительное число случаев окисления, которые мы не можем назвать процессами горения, ибо они протекают столь медленно, что остаются незаметными для наших органов чувств. Лишь по прошествии определенного, часто весьма продолжительного времени мы можем уловить продукты окисления. Так, например, обстоит дело при весьма медленном окислении (ржавлении) металлов


или при процессах гниения.

Разумеется, при медленном окислении выделяется теплота, но это выделение вследствие продолжительности процесса протекает медленно. Однако сгорит ли кусок дерева быстро или подвергнется медленному окислению на воздухе в течение многих лет, все равно – в обоих случаях при этом выделится одинаковое количество теплоты.

Медленное окисление – это процесс медленного взаимодействия веществ с кислородом с медленным выделением теплоты (энергии).

Примеры взаимодействия веществ с кислородом без выделения света : гниение навоза, листьев, прогоркание масла, окисление металлов (железные форсунки при длительном употреблении становятся тоньше и меньше), дыхание аэробных существ, т. е. дышащих кислородом, сопровождается выделением теплоты, образованием углекислого газа и воды.

Познакомимся с характеристикой процессов горения и медленного окисления приведённой в таблице.

Характеристика процессов горения и медленного окисления

Признаки реакции

Процесс

Горение

Медленное окисление

Образование новых веществ

Да
(оксиды)

Да
(оксиды)

Выделение теплоты

Да

Да

Скорость выделения теплоты

Большая

Небольшая
(идет медленно)

Появление света

Да

Нет

Вывод : реакции горения и медленного окисления – это экзотермические реакции, отличающиеся скоростью протекания этих процессов.

II. Тепловой эффект химической реакции.

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного МОЛЯ реагента или (реже) для моля продукта реакции. Количество теплоты, выделяющееся или поглощающееся при химической реакции, называется тепловым эффектом реакции (Q ) . Например, тепловой эффект реакции сгорания водорода в кислороде можно выразить любым из двух уравнений:

2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) + 572 кДж

2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) + Q

Это уравнение реакции называется термохимическимуравнением . Здесь символ "+ Q " означает, что при сжигании водорода выделяется теплота. Эта теплота называется тепловым эффектом реакции . В термохимических уравнениях часто указывают агрегатные состояния веществ.

Реакции протекающие с выделением энергии называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского "экзо" – наружу). Например, горение метана:


CH 4 + 2O 2 = CO 2 + 2H 2 O + Q

Реакции протекающиес поглощением энергии называются ЭНДОТЕРМИЧЕСКИМИ (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании.

C + H 2 O = CO + H 2 – Q

Тепловые эффекты химических реакций нужны для многих технических расчетов.

Тепловые эффекты химических реакций нужны для многих технических расчетов. Представьте себя на минуту конструктором мощной ракеты, способной выводить на орбиту космические корабли и другие полезные грузы (рис.).


Рис. Самая мощная в мире российская ракета "Энергия" перед стартом на космодроме Байконур. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, вам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

№2. Головоломка «Не повторяющиеся буквы».

Для решения этой головоломки внимательно просмотри каждую строчку. Выбери из них ни разу не повторяющиеся буквы. Если ты сделаешь это правильно, то сможешь из этих букв составить пословицу о правилах обращения с огнем.


ДОПОЛНИТЕЛЬНО:

Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внутренней энергии систем. Термохимия – это раздел химии, который занимается изучением изменения количества теплоты в ходе протекания процесса. Одним из основоположников термохимии является русский ученый Г. И. Гесс.

Тепловым эффектом химической реакции называется теплота, которая выделяется или поглощается в ходе химической реакции. Стандартным тепловым эффектом химической реакции называется теплота, которая выделяется или поглощается в ходе химической реакции при стандартных условиях. Все химические процессы можно разделить на две группы: экзотермические и эндотермические.

Экзотермические – это реакции, при которых происходит выделение теплоты в окружающую среду. При этом запас внутренней энергии исходных веществ (U 1) больше, чем образующихся продуктов (U 2). Следовательно, ∆U< 0, а это приводит к образованию термодинамически устойчивых веществ.

Эндотермические это реакции, при которых происходит поглощение теплоты из окружающей среды. При этом запас внутренней энергии исходных веществ (U 1) меньше, чем образующихся продуктов (U 2). Следовательно, ∆U > 0, а это приводит к образованию термодинамически неустойчивых веществ. В отличие от термодинамики, в термохимии выделяемую теплоту считают положительной, а поглощаемую – отрицательной. Теплота в термохимии обозначается Q. Единица измерения теплоты – Дж/моль или кДж/моль. В зависимости от условий протекания процесса, различают изохорный и изобарный тепловые эффекты.

Изохорным (Q V) тепловым эффектом называют количество теплоты, которое выделяется или поглощается в ходе данного процесса при постоянном объеме (V = const) и равенстве температур конечного и начального состояния (Т 1 = Т 2).

Изобарным (Q р) тепловым эффектом называют количество теплоты, которое выделяется или поглощается в ходе данного процесса при постоянном давлении (р = const) и равенстве температур конечного и начального состояния (Т 1 = Т 2).

Для жидких и твердых систем изменение объема мало и можно принять, что Q р » Q V . Для газообразных систем

Q р = Q V – ∆nRТ, (4.3)

где ∆n – изменение числа молей газообразных участников реакции

∆n = ån прод. реакции – ån исх. веществ. (4.4)

Во всех случаях преобразование части внутренней (химической) энергии в тепловую (или другие виды) и наоборот, тепловой в химическую происходит в строгом соответствии с законом сохранения энергии и первым законом термодинамики.

В термохимии принято использовать термохимические уравнения это уравнения химических реакций, в которых в левой части равенства приведены исходные вещества, а в правой – продукты реакции плюс (или минус), тепловой эффект, а также показано агрегатное состояние веществ и их кристаллические формы. Например,


С графит + О 2 = СО 2 (г) + 393,77 кДж

Н 2 + 1/2О 2 = Н 2 О (ж) + 289,95 кДж

С (алмаз) + 2S (ромб) = CS 2 (г) – 87,9 кДж

С термохимическими уравнениями можно производить все алгебраические действия: складывать, вычитать, умножать, переносить члены и т.д.

Тепловые эффекты многих химических и физических процессов определяют опытным путем (калориметрия) или рассчитывают теоретически, используя величины теплот образования (разложения) и теплот сгорания тех или иных химических соединений.

Теплотой образования данного соединения называется количество выделяющейся или поглотившейся теплоты при образовании 1 моля его из простых веществ в кДж. Теплоты образования простых веществ, находящихся при стандартных условиях в устойчивом состоянии, принимают за нуль. В реакциях

К (тв) + 1/2Сl (г) = КС1 (тв) + 442,13 кДж

С (тв) + 1/2Н 2(г) + 1/2N (г) = HCN (г) – 125,60 кДж

тепловые эффекты 442,13 кДж и -125,60 кДж представляют собой теплоты образования соответственно КСl и HCN. Теплоты разложения указанных соединений на простые вещества, согласно закону сохране­ния энергии, равны по абсолютной величине, но противоположны по знаку, т. е. для КСl теплота разложения равна -442,13 кДж, а для HCN она составляет +125,60 кДж.

Чем больше выделяется теплоты при образовании соединения, тем, следовательно, больше теплоты необходимо затратить на разложение его, и тем прочнее данное соединение при обычных условиях. Химически устойчивыми и прочными веществами являются: SiO 2 , А1 2 О 3 , Р 2 О 5 , КСl, NaCl и др. Вещества же, образующиеся с поглощением тепла, малоустойчивы (например, NO, CS 2 , С 2 Н 2 , HCN и все взрывчатые вещества). Теплоты образования органических соединений невоз­можно определить на опыте. Их рассчитывают теоретически по величинам теплот сгорания данных соединений, найденным опытным путем.

Теплотой сгорания называется теплота, выделяющаяся при полном сгорании 1 моля вещества в токе кислорода. Теплоты сгорания определяют на калориметрической установке, основными частями которой являются: баллон с кислородом, калориметрическая бомба, калориметр с отвешенным количеством воды и мешалкой и зажигающее электрическое устройство.

Величины тепловых эффектов химических реакций зависят от многих факторов: от природы реагирующих веществ, агрегатного состояния начальных и конечных веществ, условий проведения реакции (температуры, давления, объема систем, концентрации).

Тепловой эффект химической реакции

При протекании химической реакции происходит перестройка химических связей в молекулах, переход из одного агрегатного состояния в другое и т.д. Все это приводит к изменению внутренней энергии системы. При этом система может совершать работу и обмениваться энергией с окружающей средой. Поскольку все виды энергии можно свести к эквивалентному количеству теплоты, то в химической термодинамике говорят о тепловом эффекте химической реакции.

Тепловой эффект химической реакции – количество теплоты, которое выделяется или поглощается в ходе реакции при выполнении следующих условий:

Процесс протекает необратимо при постоянном объеме или давлении;

В системе не совершается никаких работ, кроме работы расширения;

Продукты реакции имеют ту же температуру, что и исходные вещества.

Согласно первому началу термодинамики тепловой эффект реакции равен: DQ =DU + p× DV. Поскольку теплота не является функцией состояния, то величина теплового эффекта химической реакции зависит от условий осуществления (пути) процесса. Различают тепловой эффект химической реакции, проведенной в изохорных условиях (DQ V =DU V ) и в изобарных (DQ p =DU p + p× DV =DН ).

Очевидно, что DQ p –DQ V =DV . Для реакций, протекающих в конденсированной фазе (жидкости, твердые вещества), DV »0, а DQ p » DQ V .

Чаще всего химические реакции проводят при постоянном давлении, поэтому при проведении термодинамических расчетов обычно используют тепловой эффект при постоянном давлении DQ p . В этом случае он соответствует изменению энтальпии системы в ходе реакции DQ p =D r Н (индекс r указывает на изменение термодинамической функции, в данном случае энтальпии, в ходе химической реакции).

Реакции, протекающие с выделением теплоты в окружающую среду, называются экзотермическими , а реакции, протекающие с поглощением теплоты из окружающей среды, – эндотермическими . Так как тепловой эффект реакции соответствует изменению энтальпии системы, то очевидно, что для экзотермических процессов D r Н <0, а для эндотермических D r Н >0.

Поскольку для химических реакций, протекающих в изобарных или изохорных условиях, теплота приобретает свойства функции состояния , то можно утверждать, что тепловой эффект реакции зависит только от вида и состояния исходных веществ и конечных продуктов и не зависит от пути превращения одних веществ в другие (промежуточных стадий). Это утверждение можно рассматривать как приложение первого начала термодинамики к химическим реакциям. Оно называется законом Гесса и является основным законом термохимии.

Г.И. Гесс (СПб Академия наук) опытным путем установил, что «если из одних исходных веществ можно получить некоторые другие вещества несколькими способами, то суммарное количество тепла, выделившееся при образовании этих веществ, будет всегда одним и тем же, независимо от способа получения».

Пример. Рассмотрим реакцию взаимодействия одного моля углерода (графит) и кислорода с образованием диоксида углерода при температуре Т =298 К.

Данный процесс можно осуществить двумя путями:

1) C(графит) + O 2 = CO 2 ; D r Н 1 = –393,51 кДж;

2) C(графит) + 0,5O 2 = CO; D r Н 2 = –110,53 кДж;

CO + 0,5O 2 = CO 2 ; D r Н 3 = –282,98 кДж.

Рис. 5‑3 Диаграмма изменения энтальпии системы при взаимодействии одного моля углерода с кислородом с образованием диоксида углерода

Диаграмма изменения энтальпии системы приведена на рис.5.3. Из нее видно, что D r Н 1 =D r Н 2 + D r Н 3 . Если неизвестен тепловой эффект одной из реакций, то его можно вычислить, зная остальные. Например, если известны D r Н 1 и D r Н 3 , то D r Н 2 =D r Н 1 –D r Н 3 .

Таким образом, используя закон Гесса, можно рассчитывать тепловые эффекты химических реакций в тех случаях, когда их экспериментальное определение невозможно или затруднено. Более того, на основе имеющихся экспериментальных данных для относительно небольшого числа химических реакций можно проводить термодинамические расчеты как реально протекающих, так и гипотетических процессов.

Тепловой эффект реакции в общем случае учитывает переход определенного числа молей исходного вещества в определенное число молей конечного вещества, согласно уравнению реакции. В этом случае численное значение теплового эффекта относится к уравнению конкретной химической реакции и его размерность [кДж]. Уравнение химической реакции, включающее в себя ее тепловой эффект, называется термохимическим уравнением .

Часто тепловой эффект реакции относят к превращениям одного моля какого-либо вещества. Стехиометрический коэффициент в уравнении реакции у данного вещества равен единице, а коэффициенты у других веществ могут быть как целыми, так и дробными. В этом случае размерность теплового эффекта [кДж/моль]. Принято тепловые эффекты реакций образования одного моля вещества обозначать D f Н , а тепловые эффекты реакций сгорания одного моля вещества – D c Н .

Термохимия изучает тепловые эффекты химических реакций. Во многих случаях эти реакции протекают при постоянном объеме или постоянном давлении. Из первого закона термодинамики следует, что при этих условиях теплота является функцией состояния. При постоянном объеме теплота равна изменению внутренней энергии:

а при постоянном давлении - изменению энтальпии:

Эти равенства в применении к химическим реакциям составляют суть закона Гесса :

Тепловой эффект химической реакции, протекающей при постоянном давлении или постоянном объеме, не зависит от пути реакции, а определяется только состоянием реагентов и продуктов реакции.

Другими словами, тепловой эффект химической реакции равен изменению функции состояния.
В термохимии, в отличие от других приложений термодинамики, теплота считается положительной, если она выделяется в окружающую среду, т.е. если H < 0 или U < 0. Под тепловым эффектом химической реакции понимают значение H (которое называют просто "энтальпией реакции") или U реакции.

Если реакция протекает в растворе или в твердой фазе, где изменение объема незначительно, то

H = U + (pV ) U . (3.3)

Если же в реакции участвуют идеальные газы, то при постоянной температуре

H = U + (pV ) = U + n . RT , (3.4)

где n - изменение числа молей газов в реакции.

Для того, чтобы облегчить сравнение энтальпий различных реакций, используют понятие "стандартного состояния". Стандартное состояние - это состояние чистого вещества при давлении 1 бар (= 10 5 Па) и заданной температуре . Для газов - это гипотетическое состояние при давлении 1 бар, обладающее свойствами бесконечно разреженного газа. Энтальпию реакции между веществами, находящимися в стандартных состояниях при температуре T , обозначают (r означает "reaction"). В термохимических уравнениях указывают не только формулы веществ, но и их агрегатные состояния или кристаллические модификации.

Из закона Гесса вытекают важные следствия, которые позволяют рассчитывать энтальпии химических реакций.

Следствие 1.

равна разности стандартных энтальпий образования продуктов реакции и реагентов (с учетом стехиометрических коэффициентов):

Стандартной энтальпией (теплотой) образования вещества (f означает "formation") при заданной температуре называют энтальпию реакции образования одного моля этого вещества из элементов , находящихся в наиболее устойчивом стандартном состоянии. Согласно этому определению, энтальпия образования наиболее устойчивых простых веществ в стандартном состоянии равна 0 при любой температуре. Стандартные энтальпии образования веществ при температуре 298 К приведены в справочниках.

Понятия "энтальпия образования" используют не только для обычных веществ, но и для ионов в растворе. При этом за точку отсчета принят ион H + , для которого стандартная энтальпия образования в водном растворе полагается равной нулю:

Следствие 2. Стандартная энтальпия химической реакции

равна разности энтальпий сгорания реагентов и продуктов реакции (с учетом стехиометрических коэффициентов):

(c означает "combustion"). Стандартной энтальпией (теплотой) сгорания вещества называют энтальпию реакции полного окисления одного моля вещества. Это следствие обычно используют для расчета тепловых эффектов органических реакций.

Следствие 3. Энтальпия химической реакции равна разности энергий разрываемых и образующихся химических связей.

Энергией связи A- B называют энергию, необходимую для разрыва связи и разведения образующихся частиц на бесконечное расстояние:

AB (г) A (г) + B (г) .

Энергия связи всегда положительна.

Большинство термохимических данных в справочниках приведено при температуре 298 К. Для расчета тепловых эффектов при других температурах используют уравнение Кирхгофа :

(дифференциальная форма) (3.7)

(интегральная форма) (3.8)

где C p - разность изобарных теплоемкостей продуктов реакции и исходных веществ. Если разница T 2 - T 1 невелика, то можно принять C p = const. При большой разнице температур необходимо использовать температурную зависимость C p (T ) типа:

где коэффициенты a , b , c и т.д. для отдельных веществ берут из справочника, а знак обозначает разность между продуктами и реагентами (с учетом коэффициентов).

ПРИМЕРЫ

Пример 3-1. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285.8 и -241.8 кДж/моль, соответственно. Рассчитайте энтальпию испарения воды при этой температуре.

Решение . Энтальпии образования соответствуют следующим реакциям:

H 2(г) + ЅO 2(г) = H 2 O (ж) , H 1 0 = -285.8;

H 2(г) + ЅO 2(г) = H 2 O (г) , H 2 0 = -241.8.

Вторую реакцию можно провести в две стадии: сначала сжечь водород с образованием жидкой воды по первой реакции, а затем испарить воду:

H 2 O (ж) = H 2 O (г) , H 0 исп = ?

Тогда, согласно закону Гесса,

H 1 0 + H 0 исп = H 2 0 ,

откуда H 0 исп = -241.8 - (-285.8) = 44.0 кДж/моль.

Ответ. 44.0 кДж/моль.

Пример 3-2. Рассчитайте энтальпию реакции

6C (г) + 6H (г) = C 6 H 6(г)

а) по энтальпиям образования; б) по энергиям связи, в предположении, что двойные связи в молекуле C 6 H 6 фиксированы.

Решение . а) Энтальпии образования (в кДж/моль) находим в справочнике (например, P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15): f H 0 (C 6 H 6(г)) = 82.93, f H 0 (C (г)) = 716.68, f H 0 (H (г)) = 217.97. Энтальпия реакции равна:

r H 0 = 82.93 - 6 716.68 - 6 217.97 = -5525 кДж/моль.

б) В данной реакции химические связи не разрываются, а только образуются. В приближении фиксированных двойных связей молекула C 6 H 6 содержит 6 связей C- H, 3 связи C- C и 3 связи C=C. Энергии связей (в кДж/моль) (P.W.Atkins, Physical Chemistry, 5th edition, p. C7): E (C- H) = 412, E (C- C) = 348, E (C=C) = 612. Энтальпия реакции равна:

r H 0 = -(6 412 + 3 348 + 3 612) = -5352 кДж/моль.

Разница с точным результатом -5525 кДж/моль обусловлена тем, что в молекуле бензола нет одинарных связей C- C и двойных связей C=C, а есть 6 ароматических связей C C.

Ответ. а) -5525 кДж/моль; б) -5352 кДж/моль.

Пример 3-3. Пользуясь справочными данными, рассчитайте энтальпию реакции

3Cu (тв) + 8HNO 3(aq) = 3Cu(NO 3) 2(aq) + 2NO (г) + 4H 2 O (ж)

Решение . Сокращенное ионное уравнение реакции имеет вид:

3Cu (тв) + 8H + (aq) + 2NO 3 - (aq) = 3Cu 2+ (aq) + 2NO (г) + 4H 2 O (ж) .

По закону Гесса, энтальпия реакции равна:

r H 0 = 4 f H 0 (H 2 O (ж)) + 2 f H 0 (NO (г)) + 3 f H 0 (Cu 2+ (aq)) - 2 f H 0 (NO 3 - (aq))

(энтальпии образования меди и иона H + равны, по определению, 0). Подставляя значения энтальпий образования (P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15), находим:

r H 0 = 4 (-285.8) + 2 90.25 + 3 64.77 - 2 (-205.0) = -358.4 кДж

(в расчете на три моля меди).

Ответ. -358.4 кДж.

Пример 3-4. Рассчитайте энтальпию сгорания метана при 1000 К, если даны энтальпии образования при 298 К: f H 0 (CH 4) = -17.9 ккал/моль, f H 0 (CO 2) = -94.1 ккал/моль, f H 0 (H 2 O (г)) = -57.8 ккал/моль. Теплоемкости газов (в кал/(моль. К)) в интервале от 298 до 1000 К равны:

C p (CH 4) = 3.422 + 0.0178 . T , C p (O 2) = 6.095 + 0.0033 . T ,

C p (CO 2) = 6.396 + 0.0102 . T , C p (H 2 O (г)) = 7.188 + 0.0024 . T .

Решение . Энтальпия реакции сгорания метана

CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г)

при 298 К равна:

94.1 + 2 (-57.8) - (-17.9) = -191.8 ккал/моль.

Найдем разность теплоемкостей как функцию температуры:

C p = C p (CO 2) + 2C p (H 2 O (г)) - C p (CH 4) - 2C p (O 2) =
= 5.16 - 0.0094T (кал/(моль. К)).

Энтальпию реакции при 1000 К рассчитаем по уравнению Кирхгофа:

= + = -191800 + 5.16
(1000-298) - 0.0094 (1000 2 -298 2)/2 = -192500 кал/моль.

Ответ. -192.5 ккал/моль.

ЗАДАЧИ

3-1. Сколько тепла потребуется на перевод 500 г Al (т.пл. 658 о С, H 0 пл = 92.4 кал/г), взятого при комнатной температуре, в расплавленное состояние, если C p (Al тв) = 0.183 + 1.096 10 -4 T кал/(г К)?

3-2. Стандартная энтальпия реакции CaCO 3(тв) = CaO (тв) + CO 2(г) , протекающей в открытом сосуде при температуре 1000 К, равна 169 кДж/моль. Чему равна теплота этой реакции, протекающей при той же температуре, но в закрытом сосуде?

3-3. Рассчитайте стандартную внутреннюю энергию образования жидкого бензола при 298 К, если стандартная энтальпия его образования равна 49.0 кДж/моль.

3-4. Рассчитайте энтальпию образования N 2 O 5 (г) при T = 298 К на основании следующих данных:

2NO(г) + O 2 (г) = 2NO 2 (г), H 1 0 = -114.2 кДж/моль,

4NO 2 (г) + O 2 (г) = 2N 2 O 5 (г), H 2 0 = -110.2 кДж/моль,

N 2 (г) + O 2 (г) = 2NO(г), H 3 0 = 182.6 кДж/моль.

3-5. Энтальпии сгорания -глюкозы, -фруктозы и сахарозы при 25 о С равны -2802,
-2810 и -5644 кДж/моль, соответственно. Рассчитайте теплоту гидролиза сахарозы.

3-6. Определите энтальпию образования диборана B 2 H 6 (г) при T = 298 К из следующих данных:

B 2 H 6 (г) + 3O 2 (г) = B 2 O 3 (тв) + 3H 2 O(г), H 1 0 = -2035.6 кДж/моль,

2B(тв) + 3/2 O 2 (г) = B 2 O 3 (тв), H 2 0 = -1273.5 кДж/моль,

H 2 (г) + 1/2 O 2 (г) = H 2 O(г), H 3 0 = -241.8 кДж/моль.

3-7. Рассчитайте теплоту образования сульфата цинка из простых веществ при T = 298 К на основании следующих данных.