Разница между одноклеточными и многоклеточными

Ответы на тесты «Клетка» 10 класс

Чем отличаются клетки одноклеточных организмов от клеток многоклеточных организмов?

Клетки всех организмов представляют собой самостоятельные живые системы, сходные по химическому составу и строению, осуществляющие обмен веществ и энергии и способные к саморегуляции. Однако между клетками одноклеточных и многоклеточных организмов имеются и существенные различия.

Клетки одноклеточных организмов представляют собой самостоятельные организмы. Они осуществляют все функции, присущие организму: добывание пищи, движение, размножение и др. Клетки одноклеточных — это одновременно и клеточный, и организменный уровни организации жизни.

У многоклеточного организма клетка является его частью. Клетки многоклеточных специализируются по выполняемым функциям. Существовать самостоятельно клетки многоклеточных не способны, но все вместе они обеспечивают существование организма.

Почему бактерии относят к прокариотам?

Бактерии относят к прокариотам, потому что в их клетках отсутствует оформленное ядро.

Какие функции выполняет ядро в клетке?

Функции ядра:

1. В ядре содержится основная наследственная информация, которая необходима для развития целого организма с разнообразием его признаков и свойств.

2. В нем происходит воспроизведение (редупликация) молекул ДНК, что дает возможность при мейозе двум дочерним клеткам получить одинаковый в качественном и количественном отношении генетический материал.

3. Ядро обеспечивает синтез на молекулах ДНК различных и-РНК, т-РНК, р-РНК.

Как функционирует лизосома?

Лизосома функционирует следующим образом:

1. Лизосома перемещается к пищевой частице, сливается с ней, образуя пищеварительную вакуоль.

2.Частицы пищи или отмершие части клетки окружаются ферментами и перевариваются, при этом сложные органические вещества превращаются в менее сложные, например, биополимеры в мономеры.

3. Мономеры проступают в цитоплазму и используются клеткой.

Каковы различия в наборе органоидов в клетках растений и животных?

Элементы ответа:

1) в клетках растений, но не в клетках животных, имеются пластиды;

2) в клетках растений, но не в клетках животных, имеются цитоплазматические вакуоли с клеточным соком;

3) в клетках животных, но не в клетках растений, имеются центриоли.

В чем состоит отличие цианобактерий от остальных организмов?

Элементы ответа:

1) цианобактерии, или, как их называли ранее, синезеленые водоросли, — прокариоты;

2) цианобактерии способны к фотосинтезу в отличие от большинства прокариот.

Какие черты сходства митохондрий с прокариотами позволили выдвинуть симбиотическую теорию происхождения эукариотической клетки?

Элементы ответа:

1) наличие кольцевой хромосомы, сходной с бактериальной;

2) наличие собственной системы биосинтеза белка, которая близка по своим свойствам к прокариотической;

3) способность размножаться делением.

Назовите одну-две основные функции клеточной мембраны?

Защитная и транспортная.

Как в настоящее время формулируется клеточная теория?

1) Все живые организмы состоят из клеток.

2) Клетки животных и растений сходны по строению, химическому составу, принципам обмена веществ.

3) Клетка — единица строения, функции, развития, размножения организмов.

4) Клетка — функциональная часть многоклеточного организма.

5) Клетка способна к самообновлению, саморегуляции и самовоспроизведению

Укажите признаки, характерные для вирусов

Элементы ответа:

1) неклеточные формы жизни

2) генетический материал (ДНК или РНК) окружен белковой оболочкой

Каково строение и функции оболочки ядра?

Элементы ответа:

1) отграничивает содержимое ядра от цитоплазмы

2) состоит из наружной и внутренней мембран, сходных по строению с плазматической мембраной

3) имеет многочисленные поры, через которые происходит обмен веществ между ядром и цитоплазмой

Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе — 7,9 %, в печени - 18,4 %, в сердце - 35,8 %. Почему в клетках этих органов различное содержание митохондрий?

Элементы ответа:

1) митохондрии являются энергетическими станциями клетки, в них синтезируются и накапливаются молекулы АТФ;

2) для интенсивной работы сердечной мышцы необходимо много энергии, поэтому содержание митохондрий в ее клетках наиболее высокое;

3) в печени количество митохондрий по сравнению с поджелудочной железой выше, так как в ней идет более интенсивный обмен веществ.

Все живые организмы на нашей планете состоят из особо природного «строительного материала» — клетки. В зависимости от количества клеток выделяют одноклеточные и многоклеточные организмы.

Что такое одноклеточные организмы

Одноклеточные или по-другому простейшие организмы – самые маленькие существа, которые состоят всего из 1 клетки. Несмотря на это они способны вести полноценную жизнедеятельность, а именно питаться, двигаться, размножаться. Такие организмы были открыты знаменитым ученым Антони ван Левенгуком , после того как он создал световой микроскоп.

Инфузория туфелька — строение

Типы одноклеточных

Все одноклеточные подразделяются на прокариоты , у которых нет ядра, а вместо этого внутри оболочки находится крупная клетка ДНК и эукариоты , у которых есть ядро. Например, бактерии являются прокариотами, а общеизвестными представителями эукариотов считаются инфузория-туфелька, амеба, эвглена зеленая.

С первого взгляда кажется, что строение одноклеточных довольно простое — оболочка, цитоплазма (жидкость, которой заполнена клетка) и ядро (несет в себе информацию об организме), однако, на деле они имеют дополнительные органоиды:

  • Рибосомы – находятся в цитоплазме и осуществляют синтез белка.
  • Митохондрии – с помощью них в клетке происходят окислительно-восстановительные реакции и расщепление органических соединений.
  • Аппарат Гольджи – органоид состоящий из одной мембраны, расположен чаще всего около клеточного ядра. С помощью этого аппарат поступающие в клетку вещества проходят химическую модификацию и транспортируются дальше.
  • Реснички, жгутики и ложноножки – органоиды, которые помогают клеткам передвигаться.
  • Вакуоль – органоид, который может иметь разные функции: сократительную (выводит лишнее из клетки), пищеварительную (переваривает питательные вещества), запасающую (в ней откладывается запас воды с питательными веществами).

У простейших эукариотов существует 2 способа питания: фотосинтез и фагоцитоз (когда клетка захватывает частицы, для дальнейшего переваривания с помощью вакуоли).

Размножаются одноклеточные организмы также двумя способами:

  1. Делением – когда ядро расщепляется и образуется 2 подобных одноклеточных организма;
  2. Псевдополовое размножение (копуляция или конъюгация) – это такой вид размножения, когда клетки могут обмениваться ядрами или частями своей ДНК.

В случае если наступают неблагоприятные условия, одноклеточные организмы способны покрыться надежной оболочкой под названием циста. С помощью нее они могут дождаться более приемлемых условий для питания, роста и размножения.

Вопреки заблуждениям, простейшие организмы могут обитать не только в водной среде, но также в почве и даже в организмах животных и людей, вызывая серьезные заболевания.

Что такое многоклеточные организмы

Многоклеточные организмы – это группа живых существ, объединенная общим признаком, они имеют больше одной клетки в своем строении. К многоклеточным относятся:

  • Подавляющее большинство грибов.
  • Растения.
  • Насекомые.
  • Амфибии.
  • Птицы.
  • Животные и, естественно, человек.

Все эти организмы состоят из множества клеток, которые объединяются в группы и образуют те или иные ткани и органы . При этом само строение клетки похоже на строение клетки у простейших, имеется ядро, цитоплазма, оболочка, некоторые органоиды.

Жизнь высших многоклеточных организмов начинается с 1 клетки – зиготы, которая образуется за счет слияния двух родительских клеток. В других случаях многоклеточные размножаются:

  1. Спорами.
  2. Вегетативным методом.
  3. Почкованием.
  4. Фрагментацией – когда из отдельных частей одного организма могут вырасти полноценные новые.

Клетки многоклеточных организмов не способны существовать и функционировать самостоятельно . При этом скопления различных типов клеток в организме выполняют соответствующие задачи.

Многоклеточные организмы способны получать питание для своего роста и развития различными способами. Так, растения получают все необходимое из почвы, для роста им также нужны свет и вода. У животных и людей развитие и рост происходят за счет увеличения клеток и молекул. Клетки получают необходимые вещества через кровеносную систему, а нужные элементы попадают в кровь благодаря пище и воде, которую употребляют животные и люди.

Несмотря на то, что клетки многоклеточных способны увеличивать свое количество, этот процесс все-таки ограничен.

Что общего между одноклеточными и многоклеточными

  • И те и другие организмы в своей основе имеют простую клетку.
  • У обоих организмов в клетке имеется ядро.
  • И тем и другим организмам для роста и развития нужны благоприятные условия (свет, вода, питательные вещества).

Чем отличаются простейшие от многоклеточных организмов

  1. У простейших организмов клетка выполняет функции всего организма, тогда как у многоклеточных такое невозможно.
  2. Простейшие появились первыми и уже из них эволюционировали многоклеточные.
  3. У простейших, в отличие от многоклеточных организмов имеются органоиды движения.
  4. Деление клетки у простейших ведет к увеличению их популяции, в то время как деление клеток у многоклеточных ведет к росту тканей.
  5. Многоклеточные организмы более устойчивы к различным воздействиям внешней среды.

Развитие живой природы на земле привело к образованию двух основных групп организмов - растений и животных. Между животными и растениями, несмотря на внешние различия, существует много общего. Сходство растительных и животных клеток обнаруживается на элементарном химическом уровне. Современными методами химического анализа в составе живых организмов обнаружено около 90 элементов периодической системы. На молекулярном уровне сходство проявляется в том, что во всех клетках найдены белки, жиры, углеводы, нуклеиновые кислоты, витамины и т. д.

Особенность молекулярной организации растительных клеток состоит в том, что в них находится фотосинтезирующий пигмент - хлорофилл. Благодаря фотосинтезу в атмосфере Земли накапливается - кислород и ежегодно образуются сотни миллиардов тонн органических веществ. Растениям, как и животным, присущи такие свойства живого, как рост (деление клеток за счет митоза - прим. biofile.ru), развитие, обмен веществ, раздражимость, движение, размножение, причем половые клетки животных и растений формируются путем мейоза и в отличие от соматических имеют гаплоидный (n) набор хромосом. Клетки и растений, и животных окружены тонкой цитоплазматической мембраной. Однако у растений имеется еще толстая целлюлозная клеточная стенка. Клетки, окруженные твердой оболочкой, могут воспринимать из окружающей среды необходимые им вещества только в растворенном состоянии. Поэтому растения питаются осмотически. Интенсивность же питания зависит от величины поверхности тела растения, соприкасающейся с окружающей средой. Вследствие этого у большинства растений наблюдается значительно более высокая степень расчлененности, чем у животных, за счет ветвления побегов и корней. Существование у растений твердых клеточных оболочек обусловливает еще одну особенность растительных организмов - их неподвижность, в то время как у животных мало форм, ведущих прикрепленный образ жизни. Именно поэтому распространение животных и растений происходит в разные периоды онтогенеза: животные расселяются в личиночном или во взрослом состоянии; растения осваивают новые местообитания путем переноса ветром или животными зачатков (спор, семян), находящихся в состоянии покоя. Растительные клетки отличаются от клеток животных особыми органоидами-пластидами, а также развитой сетью вакуолей, в значительной мере обусловливающих осмотические свойства клеток. Животные клетки изолированы друг от друга, а у клеток растений каналы эндоплазматической сети через поры в клеточной стенке сообщаются друг с другом. В качестве запасных питательных веществ в клетках животных накапливается гликоген, а в растительных - крахмал. Форма раздражимости у многоклеточных животных - рефлекс, у растений – тропизмы и настии. У растений встречается как половое, так и бесполое размножение и у подавляющего большинства их существует чередование полового и бесполого поколений. У животных определяющей формой воспроизводства потомков служит половое размножение.

Низшие одноклеточные растения и одноклеточные простейшие животные трудно различимы не только внешне. Например, у эвглены зеленой – организма, стоящего как бы на границе растительного и животного мира, питание смешанное: на свету она синтезирует органические вещества с помощью хлоропластов, а в темноте питается гетеротрофно, как животное. Рост растений почти непрерывен, а у большинства животных он ограничен определенным периодом онтогенеза, после прохождения которого рост прекращается. Бесспорно то, что у современных растений и животных были общие предки. Именно они и послужили общим корнем для эволюционного развития и дивергенции растений и животных.

Растения

Животные

1 Клетки имеют целлюлозную оболочку и пластиды, вакуоли наполнены клеточным соком.

1. Клетки лишены твердых оболочек, пластид, вакуолей.

2 Растения автотрофы, способные к фотосинтезу (из неорганических веществ создавать органические вещества).

2 Животные - гетеротрофы, способны питаться готовыми органическими веществами (но это не абсолютно - эвглена зеленая может фотосинтезировать на свету).

3 Растения неподвижны (исключение: росянка, мимоза - свойственно движение отдельных частей организма).

3 Животные передвигаются с помощью специальных органов: жгутиков, ресничек, конечностей. (Но некоторые ведут неподвижный образ жизни - это вторичное явление).

4 Растения растут в течение всей своей жизни.

4 У животных рост происходит только на определенных стадиях развития.

5 Таких органов и систем органов, как у животных, у растений нет.

5 В ходе эволюции возникли разнообразные органы и системы органов: движения, пищеварения, выделения, дыхания, кровообращения, нервная система и органы чувств.

Различия в строении клеток растений и животных

В процессе эволюции, в связи с неодинаковыми условиями существования клеток представителей различных царств живых существ, возникло множество отличий. Сравним строение и жизнедеятельность клеток растений и животных.

Главное отличие между клетками этих двух царств заключается в способе их питания. Клетки растений, содержащие хлоропласты, являются автотрофами, т. е. сами синтезируют необходимые для жизнедеятельности органические вещества за счет энергии света в процессе фотосинтеза. Клетки животных - гетеротрофы, т. е. источником углерода для синтеза собственных органических веществ для них являются органические вещества, поступающие с пищей. Эти же пищевые вещества, например углеводы, служат для животных источником энергии.

Есть и исключения, такие как зеленые жгутиконосцы, которые на свету способны к фотосинтезу, а в темноте питаются готовыми органическими веществами. Для обеспечения фотосинтеза в клетках растений содержатся пластиды, несущие хлорофилл и другие пигменты.

Так как растительная клетка имеет клеточную стенку, защищающую ее содержимое и обеспечивающую постоянную ее форму, то при делении между дочерними клетками образуется перегородка, а животная клетка, не имеющая такой стенки, делится с образованием перетяжки.

Резкую границу между животными и растениями провести нельзя. Если высшие, сложно организованные животные и растения всегда резко отличаются друг от друга многими признаками, то их низшие формы, особенно одноклеточные животные и растения, нередко имеют черты сходства. Это свидетельствует об общности происхождения животных и растений.

    Какие свойства характерны для высших растений?

Первое и, пожалуй, самое главное свойство растений - это способность к фотосинтезу. Организмы, использующие для питания синтезируемые ими же вещества, называются автотрофами, т.е. питание у растений автотрофное. Однако, как все в мире природы, подобное свойство есть не только у растений, но и у некоторых бактерий и протистов. Тем не менее, именно растения являются самыми главными фотосинтезирующими организмами на Земле. Благодаря сложным биохимическим процессам в зелёных клетках растений из воды и углекислого газа образуются органические соединения - углеводы (глюкоза). При этом от воды отщепляется кислород и выделяется в атмосферу. Второй , вытекающий отсюда признак - это свойственные только растениям пигменты: хлорофилл (зелёный), присутствующий во всех зеленых частях растений и выполняющий основную долю фотосинтеза, различные каратиноиды (красный, оранжевый, желтый), также фотосинтезирующие, благодаря которым листья осенью приобретают соответствующую окраску. Кроме того, существует множество других пигментов, обуславливающих разнообразие окраски цветков плодов и прочих частей растений.

Третий признак - это неограниченный рост. Растения, в отличие от животных, способны расти в течение всей своей жизни (с перерывами на зимний период). Здесь опять же нужно сказать о том, что расти в течение всей жизни способны и грибы.

Четвертый признак - особенность клеточного строения. У растений клетка снаружи помимо мембраны покрыта так называемой клеточной стенкой, состоящей из целлюлозы, которая является своеобразным каркасом клетки. У животных подобной клеточной стенки нет, а у грибов она состоит из хитина. В совокупности клеточные стенки придают тканям растений большую прочность.

Глава 2

Явления и закономерности жизни на клеточном уровне

Изучив главу, вы сможете характеризовать :

Состав и строение клетки;

Свойства клеточных органоидов;

Процессы жизнедеятельности клетки.

Вы сумеете:

Определять различия в строении клеток эукариот и прокариот;

Оценивать роль автотрофов и гетеротрофов в природе;

Объяснять значение обмена веществ в жизнедеятельности клетки;

Сравнивать механизмы протекания процессов биосинтеза белка, фотосинтеза и дыхания.

Параграф 5. Многообразие клеток

Вспомните

Какой структурный уровень организации жизни характеризует клетка;

Что существуют одноклеточные и многоклеточные организмы.

Из истории изучения многообразия клеток. История изучения клетки неразрывно связана с развитием микроскопической техники. О существовании клеток стало известно лишь в XVII в. В 1665 г. английский естествоиспытатель Р. Гук, оценив значение увеличительного прибора, впервые применил его для исследования срезов некоторых растительных и животных тканей. Под микроскопом он обнаружил структуры, похожие по строению на пчелиные соты, и назвал их «ячейками», или «клетками». С тех пор этот термин прочно утвердился в биологии.

В 1674 г. голландский натуралист А. ван Левенгук впервые рассмотрел под самодельным микроскопом некоторых простейших и отдельные клетки животных (эритроциты, сперматозоиды).

В 30-х г. XIX в. шотландский учёный Р. Браун обнаружил в клетках растений круглое плотное образование, которое он назвал ядром.

В 1838 г., обобщая имевшиеся к тому времени сведения о клетке, немецкий ботаник М.Я. Шлейден первым пришёл к заключению о том, что ядро является обязательным структурным элементом всех растительных клеток. В 1839 г. немецкий физиолог Т. Шванн, основываясь на работах Шлейдена, изложил основы клеточной теории, согласно которой все ткани животных и растительных организмов состоят из клеток, клетки растений и животных имеют общий принцип строения, каждая отдельная клетка самостоятельна, а жизнедеятельность всего организма проявляется как совокупность жизнедеятельности отдельных групп клеток.

Появление клеточной теории Шлейдена и Шванна обусловило дальнейшее развитие учения о клетке. В 1858 г. немецкий патолог Р. Вирхов доказал, что клетки возникают только путём воспроизведения себе подобных. Ему принадлежит афористическое утверждение: «Каждая клетка - от клетки». В конце XIX в. была выдвинута гипотеза о том, что информация о наследственных свойствах организмов заключена в ядре.

Крупный вклад в развитие учения о клетке внесли русские учёные. В 1892 г. И.И. Мечников открыл явление фагоцитоза (от греч. phagos - «пожиратель», kytos - «клетка») - активного захватывания и поглощения различных частиц одноклеточными организмами и даже клетками многоклеточных организмов. В 1898 г. С.Г. Навашин описал особый тип оплодотворения - двойное оплодотворение, свойственное всем цветковым растениям.

В начале XX в. были разработаны методы культивирования клеток в пробирке и сконструирован первый электронный микроскоп. В результате наука обогатилась сведениями о мельчайших, ранее не известных клеточных структурах. Было доказано, что клетки всех организмов, несмотря на их разнообразие, сходны по строению, химическому составу и проявлениям своей жизнедеятельности.

Дальнейшие исследования показали, что ядерные структуры клетки служат основой передачи наследственных свойств организмов.

Мир клеток живой природы

Клетки чрезвычайно разнообразны. Они различаются по своим размерам, структуре, форме и функциям. Размеры клеток варьируют от 0,1-0,25 мкм (некоторые бактерии) до 15-21 см (яйцо страуса в скорлупе).

Есть свободноживущие клетки, которые ведут себя как особи популяций и видов. Их жизнедеятельность зависит не только от слаженной работы внутриклеточных структур, но и от особенностей существования клетки как самостоятельного организма (добывание пищи, способ питания, размножение, подвижность в окружающей среде, активное и неактивное переживание неблагоприятных условий и пр.).


Клетки свободноживущие (1) и образующие ткани (2)

Одноклеточных организмов чрезвычайно много. Их представители встречаются среди всех царств живой природы и населяют все среды жизни на нашей планете.

У многоклеточных организмов разные клетки выполняют различные функции. Клетки, сходные по строению, расположенные рядом, объединённые межклеточным веществом и предназначенные для выполнения определённых (специализированных) функций в организме, образуют ткани. Ткани возникли в ходе эволюционного развития одновременно с появлением многоклеточности, так как специализация клеток и, следовательно, тканей способствовала лучшему обеспечению процессов жизнедеятельности целостного организма.

У животных различают четыре типа (группы) тканей: эпителиальную, соединительную, мышечную и нервную; у растений - пять типов (групп) тканей: образовательную, покровную, проводящую, механическую, основную.

Клетки всех организмов на Земле принципиально сходны по своему строению, химическому составу и основным проявлениям жизни. При этом процессы жизнедеятельности (дыхание, биосинтез, обмен веществ) происходят в клетках независимо от того, являются они одноклеточными организмами или составными частями многоклеточного организма.

Жизнь многоклеточного организма зависит от жизнедеятельности его отдельных клеток и их групп, выполняющих особые, специализированные функции.

Свойства клетки. Особенность клетки определяется специфичностью её составных компонентов, упорядоченностью происходящих в ней как в целостной системе процессов. Живая клетка осуществляет процессы, от которых зависит её жизнь: она поглощает пищу, извлекает из неё энергию, избавляется от отходов обмена веществ, поддерживает постоянство своего химического состава и воспроизводит саму себя. Всё это позволяет рассматривать клетку как особую единицу живой материи, как элементарную живую систему - биосистему клеточного уровня организации жизни.

Клетка - основная структурная и функциональная единица жизни.

Из клеток состоят все живые существа - от одноклеточных до крупных растений, животных и человека. У всех организмов клетки функционируют, с одной стороны, как самостоятельные биосистемы, а с другой - как взаимосвязанные части целого.

Два типа клеток.

В первой половине XX в. было обнаружено, что в клетках бактерий нет оформленного ядра, отделённого от цитоплазмы мембраной, хотя присутствует само ядерное вещество, несущее наследственную информацию. В клетках растений, животных и грибов ядро хорошо сформировано и отграничено от цитоплазмы.

Клетки, не имеющие оформленного ядра, называют прокариотическими (лат. pro - «перед», «раньше» и греч. karyon - «ядро»), а имеющие ядро - эукариотическими (лат. ей - «полностью» и греч. karyon - «ядро»). По этому признаку все организмы делят на две группы: доядерные (прокариоты) и ядерные (эукариоты).

Клетки прокариот имеют достаточно простое строение, так как сохраняют черты первых организмов, возникших на Земле. Эукариоты могут быть одноклеточными и многоклеточными, их клетки имеют более сложное строение, чем у прокариот, и отличаются большим разнообразием.