Расчет намотки дросселя на кольце из феррита. Расчет дросселя бустерной схемы DC DC преобразователя

Дроссели для импульсных источников питания на ферритовых кольцах

При повторении импульсных вторичных источников питания и стабилизаторов напряжения или самостоятельной их разработке радиолюбители испытывают трудности при подборе магнитопроводов и расчете индуктивных элементов устройств. Публикуемая статья может помочь в решении таких задач.

В однотактных импульсных источниках питания и стабилизаторах напряжения важнейшим элементом является дроссель или импульсный трансформатор, в котором происходит накопление энергии. Обычно их наматывают на броневых или Ш-образных ферритовых магнитопроводах с зазором или кольцах из Мопермаллоя МП140 или МП160 . Магнитопроводы из прессованного пермаллоя (Мо-пермаллоя) достаточно дороги и дефицитны. В то же время в большинстве случаев индуктивные элементы таких устройств можно выполнить на широко распространенных кольцах из феррита с проницаемостью 600. .

6000, если в них ввести зазор.

Индуктивность L катушки, намотанной на кольцевом магнитопроводе, как известно, можно найти по формуле

L = AL N2 ,

где AL - так называемый коэффициент индуктивности, N - число витков катушки. Коэффициент AL соответствует индуктивности катушки в один виток и обычно приводится в справочных данных конкретных магнитопроводов , а для кольцевых магнитопроводов может быть легко рассчитан:

µ 0µ эффS эфф

l эфф

где µ0 = 1,257·10-3 мкГн/мм - абсолютная магнитная проницаемость вакуума, µэфф - эффективная начальная магнитная проницаемость материала магнитопровода, Sэфф - эффективная площадь сечения магнитопровода в мм2 ,l эфф - эффективная длина магнитопровода в мм.

Зная величину AL , нетрудно определить число витков катушки для получения необходимой индуктивности:

N = L/A L

Эффективное сечение и длина магнитопровода несколько меньше определяемых по его геометрическим параметрам и обычно приводятся в справочной литературе. В Табл. 1 в первых пяти столбцах приведены геометрические размеры, эффективные сечение и длина l эфф для ферритовых колец стандартного ряда с внешним диаметром D от 6 до 50 мм, внутренним d и высотой h .

В этой же таблице приведены расчетные значения площади окна магнитопроводов Sокн , периметра сечения p и коэффициента индуктивности AL для µэфф = 50. Данные позволяют рассчитать индуктивность любой катушки, намотанной на кольцевом магнитопроводе с табличными геометрическими размерами. Если µэфф используемого кольца отличается от 50, значение AL необходимо пропорционально изменить,

например, для µэфф = 2000 коэффициент AL следует увеличить в 40 раз. Следует иметь ввиду, что значе-

ния µэфф , Sэфф иl эфф определяются с большой погрешностью, и в справочниках для кольцевых магни-

топроводов указан обычно двукратный разброс значений AL . Поэтому величины AL , взятые изТаблицы 1 , следует принимать как ориентировочные и уточнять их при необходимости более точного расчета по результатам эксперимента.

Для этого следует намотать на магнитопроводе пробную катушку, например, из десяти витков и измерить ее индуктивность LПР . Здесь себя хорошо зарекомендовал прибор, описанный в . Разделив LПР на 100 = 102 , определим значение AL . Расчетное значение N следует увеличить на несколько витков (до N1 ), по результату измерения L1 уточнить необходи-

мое число витков N = N1 L/L 1 и отмотать лишние

Описанным выше образом можно рассчитать индуктивность катушки или необходимое число витков. Однако, как только речь заходит о дросселях для импульсных источников питания, сразу возникает вопрос, какой ток может выдержать дроссель без насыщения магнитопровода?

Магнитная индукция В в магнитопроводе при токе I может быть рассчитана по формуле

B = µ0 µэфф IN

l эфф

Максимально допустимая индукция Вmax для материалов магнитопроводов приводится в справочных данных и лежит в пределах 0, 25. ..0,5 Тл. Из этой формулы несложно получить выражение для максимального тока дросселя:

B maxl эфф

I max= µ 0 µ эфф N

Если в нее подставить формулу для определения числа витков по заданной индуктивности, получим

I max = Vэфф /(µ0 µэфф L)

где Vэфф = Sэфф l эфф - эффективный объем магнитопровода. Нетрудно видеть, что чем выше µэфф , тем меньший ток может пропустить дроссель при тех же геометрических размерах магнитопровода и заданной индуктивности. Более или менее приемлемые результаты при изготовлении дросселей для ИВЭП получаются при µэфф = 30... 50. Именно поэтому вТаблице 1 значение коэффициента AL приведено для


µэфф = 50. В той же таблице приведено максимальное значение тока lmax через дроссельс одним витком при Вmax = 0,3 Тл. Для определения допустимого тока реального дросселя достаточно табличное значение lmax разделить на число витков N.

Однако в радиолюбительской практике более доступны кольцевые магнитопроводы с большими значениями эффективной магнитной проницаемости µэфф = 600...6000. Понизить эффективную магнитную проницаемость таких магнитопроводов можно введением зазора, при этом

где µнач - начальная магнитная проницаемость материала магнитопровода, ∆эфф - эффективная ширина

зазора. При реальной ширине зазора µэфф =l эфф / ∆эфф . Для того, чтобы снизить µэфф примерно до 50. . . 100 (это значение исходя из опыта расчета и изготовления

дросселей близко к оптимальному), эффективная ширина зазора должна составлять ∆эфф =l эфф /(50…100) независимо от начальной магнитной проницаемости магнитопровода.

Если в вышеприведенную формулу для расчета AL подставить значение µэфф для магнитопровода с зазором, получим

µ 0S эффA L = ∆ эфф

Еще более простой получается формула для максимального тока через дроссель

т. е. допустимый ток определяется только эффективным зазором и числом витков.

Почти все приведенные выше формулы уже были опубликованы в журнале «Схемотехника» , однако ни в одной из известных автору статьи публикаций не отмечено, что эффективная ширина зазора, которую

надо применять в расчетах, меньше геометрической. Это различие возникает из-за того, что магнитное поле, существующее рядом с зазором (Рис. 1 ), шунтирует зазор и уменьшает его эффективную ширину. Для того, чтобы рассчитать влияние этого поля, можно обратиться к аналогии между магнитным и электрическим полями. Воспользуемся формулой для емкости конденсатора из двух цилиндров с близко расположенными торцами :

8ππD(+ b)

ln(1+

где C - емкость конденсатора в сантиметрах, D- диаметр цилиндров, b - их высота, d - зазор между их торцами.

Нетрудно заметить, что первое слагаемое соответствует емкости зазора между цилиндрами, а второе - емкости, вносимой боковыми поверхностями цилиндров. Будем считать, что высота цилиндров равна их удвоенному диаметру b = 2D. Это означает, что мы учтем только емкость ближайшей к зазору части боковой поверхности цилиндров, пренебрегая дальней. Расчеты при длине цилиндров в 3 или 4 диаметра дают практически тот же результат.

Для того, чтобы в дальнейшем перейти от емкости между цилиндрами к емкости между прямоугольными брусками (а это по форме ближе к сечению ферритового кольца), будем считать, что емкость, вносимая боковыми поверхностями, пропорциональна периметру зазора, и выразим в этой формуле диаметр цилиндров через периметр p их кругового сечения:

D = p/ π

высота цилиндров b = 2D = 2р/ π .

Если в формулу для емкости подставить эти выражения, можно определить из нее отношение полной емкости к емкости между торцами в функции от отношения зазора к периметру цилиндров β = d/b.

Формула эта, однако, получается довольно громоздкой и неудобной для применения.

Обозначим буквой α отношение эффективного зазора, обеспечивающего без емкости боковых поверхностей ту же емкость, что и емкость между торцами с учетом емкости боковых поверхностей, к геометрическому. На Рис. 2 приведена расчетная зависимость α от β. Из подобия уравнений, описывающих электрическое и магнитное поле, следует, что аналогично выглядит и зависимость отношения эффективного магнитного зазора к геометрическому от отношения геометрического магнитного зазора к периметру.

Из графика на Рис. 2 следует, что эффективная ширина зазора может существенно отличаться от геометрической. В реальном диапазоне β составляет от 0,01 до 0,1 эффективная ширина зазора меньше геометрической в 1,26...2,66 раза.

Таблица 1

Без зазора

AL , мкГн с зазором, мм

I2 L, А2 мкГн с зазором, мм

l эфф,

S эф-

S ОКН

(µэфф =50)

ф мм2

мм2

Imax ,A

В Таблице 1 приведены значения AL для кольце-

веденной ранее формуле можно найти максималь-

вых магнитопроводов с четырьмя различными зазо-

ный ток, не вызывающий насыщения сердечника.

рами, рассчитанные с учетом отличия эффективного

Однако существует еще одно обстоятельство,

зазора от геометрического.

влияющее на выбор магнитопровода - возможность

Вышесказанное позволяет сделать вывод, что

намотки на него требуемого числа витков проводом

необходимые число витков и зазор практически не

соответствующего сечения. Необходимая площадь

зависят от начальной магнитной проницаемости ма-

окна кольца составляет

териала магнитопровода, и поэтому можно применить

ферриты с любой проницаемостью, большей 600. Для

S ОКН= NS ПРОВ/ K ЗАП

любого имеющегося кольца с табличным зазором по

значению AL нетрудно вычислить индуктивность или

где Sпров - сечение провода, а kзап - коэффициент

необходимое число витков и рассчитав β = ∆/p, по

заполнения окна. Расчет Sпров производят по форму-

графику (рис. 2) определить значение α = ∆эфф /p и

ле Sпров = l/j, где j - допустимая плотность тока. Ти-

∆эфф = αp. По найденному значению ∆эфф и при-

повое значение kзап по меди составляет 0,3, а для j


при начальном расчете принимают значение 2,5 А/мм2 .

Подставив в формулу для расчета площади окна выражения для N и AL , получим следующую формулу:

I2 L = (Sокн jkзап )2 µ0 Sэфф /∆эфф

Подобное выражение можно получить и из формулы для максимального тока, который можно пропустить через дроссель без насыщения сердечника:

I 2 L = B max2 S эффl эфф/(µ 0µ эфф)

Однозначного расчета конструктивных параметров дросселя по заданной индуктивности и току не существует. Однако при подборе кольца и определении данных обмотки могут помочь последние восемь колонок табл. 1 . В них приведены максимальные значения произведения I2 L по насыщению и по заполнению, рассчитанные по приведенным выше формулам

для Bmax = 0,3 Тл, kзап = 0,3, j = 2,5 А/мм2 и четырех значений зазора.

Подбор колец и расчет конструктивных параметров дросселей продемонстрируем на двух примерах.

Пусть необходим дроссель индуктивностью 22 мкГн на рабочий ток 1,2 А. Для него значение I2 L = 1,22 х22 = 31,68. Среди колец минимального диаметра первым почти подходит кольцо К10x6x4, 5. При введении в него зазора 0,25 мм имеем возможность намотать дроссель с большим запасом по току (Таблица 1 , колонка «нас.»), но с некоторым превышением плотности тока относительно 2,5 А/мм2 (колонка «зап.»).

Определим параметры дросселя при зазоре 0,25 мм. Для него коэффициент индуктивности по Таблице 1 составит AL = 0,064, необходимое число витков

∆эфф =22/0,064 = 18,5

(округляем до 19), допустимый ток Для I = 1,2 А при j = 2,5 А/мм2 необходим провод сечением

Sпров = I/j = 1,2/2,5 = 0,48 мм2

При коэффициенте заполнения kзап = 0,3 необхо-

димая площадь окна составит Sокн = Sпров N/kзап = =0,48x19/ 0,3 = 30,4 мм2 . Площадь окна поТаблице 1

составляет 28,3 мм2 , что несколько меньше. Необходимо за счет увеличения плотности тока уменьшить сечение провода до

Sпров = Sокн kзап /N = 28,3x0,3/19 = 0,446 мм2

Плотность тока составит j = l/ Sпров = 1,2/0,446 = =2,68 А/мм2 , что вполне допустимо. Диаметр провода

d пров = 2 Sпров / π= 2 0,446 / 3,14= 0,75 мм

Пусть необходим дроссель 88 мкГн на ток 1,25 А. Для него I2 L = 137,5. Дроссель можно намотать на кольце К12x6x4,5 с тем же зазором, при этом насыще-

ния магнитопровода происходить не будет, но плотность тока существенно превысит норму. Поэтому необходимо перейти к кольцу большего размера. В распоряжении автора были кольца К12x8x3 из феррита М4000НМ. На одном кольце невозможно намотать необходимый дроссель, ни по насыщению сердечника, ни по заполнению окна. Можно сложить два кольца вместе. В этом случае эффективное сечение магнитопровода увеличивается в два раза, а допустимые значения I2 L вырастут по насыщению несколько более, а по заполнению несколько менее, чем в два раза. Поэтому необходимый дроссель при геометрическом зазоре 0,25 мм можно намотать с запасом по току насыщения и с небольшим превышением плотности тока.

Только табличными сведениями теперь не обойтись, необходим полный расчет. Для двух колец периметр сечения (при зазоре 0,25 мм):

p = D-d+4·h = 12-8+4·3 = 16 мм, β = ∆/p = 0,25/16 = 0,0156.

По графику на Рис. 2 находим α = 0,73, откуда эффективный зазор

∆эфф = ∆·α = 0,25·0,73 = 0,183 мм. Найденное значение

AL =µ 0 S эфф / ∆эфф = 1,257x10-3 х2х5,92/0,183 = =0,081.

Необходимое число витков

N = L/A L =88/0,081 = 32,9

округляем в большую сторону до 33 витков. Максимальный ток через дроссель

lmax = 240 ∆эфф /N = 240x0,183/33 = 1,33 А.

Максимальное сечение провода

Sпров = Sокн kзап /N = 50,3x0,3/33 = 0,457 мм2 ,

что соответствует плотности тока 1,25/0,457 = 2,74 А/мм2 . Сечению Sпров = 0,457 мм2 соответствует диаметр:

d пров = 2 Sпров / π= 2 0,457 / 3,14=0,76 мм.

Иногда удобнее ввести два одинаковых зазора. В этом случае табличное значение AL для половинного зазора следует уменьшить в два раза, а табличное значение I2 L для половинного зазора - удвоить.

Технология введения зазора такова. Небольшое кольцо перед намоткой разломить на две части, надпилив его надфилем, лучше алмазным. Половинки склеивают между собой эпоксидным клеем с наполнителем, в качестве которого удобно использовать тальк. При склеивании в один из зазоров или в оба на часть глубины вводят прокладку из гетинакса, текстолита или нескольких слоев бумаги. Можно считать, что толщина одного листа бумаги для ксероксов и лазерных принтеров составляет 0,1 мм. Для сохранения формы кольца в процессе полимеризации клея оно должно лежать на обрезке органического стекла, от которого затем легко отделяется при изгибе этого обрезка. Перед намоткой острые грани колец следует тщательно скруглить небольшим наждачным камнем.


У большого кольца зазор можно также выполнить ножовкой с алмазным полотном, однако его ширина при этом однозначно определяется толщиной полотна. В такой зазор для сохранения прочности кольца следует вклеить прокладку из жесткого диэлектрика.

Для экспериментальной проверки тока насыщения дросселей автором была изготовлена приставка к осциллографу, схема которой приведена на Рис. 3 .

Устройство представляет собой упрощенный вариант обратноходового преобразователя.

На микросхеме DD1 собран генератор импульсов положительной полярности длительностью, регулируемой в пределах 10...300 мкс с периодом повторения около 10 мс. Импульсы с его выхода поданы на затвор мощного, но низковольтного и относительно недорогого полевого транзистора VT2. Транзистор открывается и через проверяемую катушку индуктивности L1 начинает течь линейно нарастающий ток. Когда импульс заканчивается, накопленная энергия передается через диод VD2 в нагрузку, которой служат стабилитроны VD3 и VD4. Напряжение с резистора R7, пропорциональное току через катушку L1, подается на осциллограф. Для синхронизации осциллографа лучше использовать сигнал с выхода DD1.4. Если ток превысит 6А, откроется транзистор VT1 и оборвет формирование импульса. Пока сердечник катушки не входит в насыщение, зависимость тока от времени, как указывалось выше, носит линейный характер. При плавном увеличении длительности им-

пульсов и подходе максимального тока через дроссель к току насыщения на экране осциллографа хорошо видно резкое отклонение зависимости от линейной. Источник напряжением 20 В должен допускать выходной ток не менее 1 А. Для упрощения пользования приставкой можно цепь +6 В питать от цепи +20 В через микросхемный стабилизатор КР145ЕН5Б(Г), либо КР1157ЕН6 с любыми суффиксами (7806 или 78L06). Экспериментальная проверка изготовленных дросселей подтвердила точность расчета необходимого числа витков и тока насыщения порядка ±10 %, что можно считать неплохим результатом, учитывая ошибки установки ширины зазора и множество допущений при выводе формул.

Литература:

1. И. Н. Сидоров, А. А. Христинин, С. В. Скорняков. Малогабаритные магнитопроводы и сердечники. Справочник. - М.: Радио и связь, 1989, с. .384,

2. А. Миронов. Магнитные материалы и магнитопроводы для импульсных источников питания. - Радио, 2000, №6, с. 53, 54.

3. Ферритовые магнитопроводы серии RM фирмы EPCOS. -

Радио, 2001, №3, с. 49-51, №10, с. 48-50.

4. А. Кузнецов. Трансформаторы и дроссели для импульсных источников питания. - Схемотехника, 2000, №1, с. 30-33, №2, с. 48, 49, 2001, №1, с. 32-34.

5. С. Бирюков. Цифровой измеритель RCL. - Радио, 1996, №3, с. 38-41, №7, с. 62, 1997, №7, с. 32, 1998, №5, с. 63, 2001, №5, с. 44.

6. Г. Г. Гинкин. Справочник по радиотехнике. Изд. 4-е, перера-

ботанное. - М.: Госэнергоиздат, 1948, с. 816.

Сергей Бирюков, [email protected]

Самодельные дроссели на основе резисторов МЛТ и ферритовых сердечников 2,8мм. Изготовление дросселя, намотав проводник на резисторе МЛТ является недорогим и простым способом получения малогабаритного электронного компонента, который часто можно встретить в схемах радиопередатчиков, радиоприемников, трансиверов, телевизоров и другой радиоэлектронной техники.

Рис. 1. Самодельные дроссели на основе резисторов МЛТ.

Ниже будет представлена простая форма-калькулятор для расчета индуктивности и количества витков провода для дросселей которые изготавливаются намоткой на резисторы МЛТ-0,125, МЛТ-0,25, МЛТ-1, МЛТ-2, таким образом мы получаем дроссель без сердечника, удобным каркасом которому служит корпус высокоомного резистора.

Формула для расчета

В большинстве случаев очень точная индуктивность дросселя не является критическим фактором, поэтому дроссель без сердечника можно намотать на корпусе резистора МЛТ. Для того чтобы рассчитать необходимое количество витков можно воспользоваться формулой:

N = 32 * SQR (L / d)

  • N - необходимое количество витков,
  • L - нужная индуктивность дросселя в мкГн,
  • d - диаметр каркаса (в данном случае каркаса резистора) в мм.

Для проведения расчетов вы можете воспользоваться нашим онлайн-калькулятором:

Тип резистора Необходимая
индуктивность
дросселя
Количество витков
для намотки
Расчет
МЛТ-0,125 (d=1.7мм) (мкГн)
МЛТ-0,25 (d=2мм) (мкГн)
МЛТ-0,5 (d=3мм) (мкГн)
МЛТ-1 (d=5.5мм) (мкГн)
МЛТ-2 (d=7.2мм) (мкГн)

Изготовление дросселя

Для изготовления дросселя нужно выбрать подходящий каркас - в нашем случае это резистор определенной мощности и соответственно габаритов. Ниже приведены фото отечественных и зарубежных резисторов с обозначением их мощности.



Рис. 2. Резисторы МЛТ и зарубежные резисторы по мощности.


Рис. 3. Пример намотки дросселя на резисторе МЛТ-0,5.

Для намотки дросселя подойдут резисторы с высоким сопротивлением, например: 100кОм, 200кОм и т.д. Важно чтобы сопротивление резистора было большим, иначе добротность вашего самодельного дросселя может получиться плохой.

Пример намотки равномерными слоями приведен на рисунке 3.

Для намотки можно использовать тонкий эмалированный провод (ПЭТВ) или же провод в шелковой изоляции (ПЭЛШО) диаметром 0,1-0,2мм, важно чтобы все витки намотанные таким проводом вместились на нашем каркасе из резистора.

После намотки каждый из концов провода припаивают к выводам резистора, а на катушку сверху можно капнуть немножко клея чтобы витки потом не расползались.

Дроссели с ферритовыми сердечниками 2,8мм

Также миниатюрный дроссель можно изготовить намотав провод на малогабаритный ферритовый сердечник 400Н, 600Н диаметром 2,8 мм и длиной примерно 12...14 мм. Форма для расчета дросселя на сердечнике 2,8мм приведена ниже.


Рис. 4. Самодельные дроссели на ферритовых сердечниках диаметром 2,8мм.

В последнее время резко увеличился темп технического прогресса, научно-технической революции во многих областях современной техники и прежде всего в радиоэлектронике и автоматике.

Радиоэлектронная аппаратура и приборы автоматики предъявляют весьма жёсткие требования к качеству потребляемой ими электроэнергии, а в ряде случаев требует обязательного преобразования энергии первичного источника. Поэтому одновременно с прогрессом в автоматике и радиоэлектронике происходило бурное развитие преобразовательной техники и статистических средств вторичного электропитания РЭА, которые осуществляют необходимые преобразования электроэнергии (часто многократные), при этом обеспечивая требуемые значения питающих напряжений, как постоянного, так и переменного – однофазного или многофазного – токов; электроизоляцию цепей питания друг от друга и от первичного источника; высокую стабильность вторичных питающих напряжений в условиях значительного изменения первичного питающего напряжения и нагрузок; эффективное подавление пульсаций во вторичных питающих цепях постоянного тока.

Рассматриваемая в данном курсовом проекте бустерная схема DC – DC преобразователя используется в подвижных и стационарных автономных объектах различного назначения, снабжённых автономными первичными источниками электрической энергии типа аккумуляторных или солнечных батарей и т.д.

1. Теоретическая часть

1.1. Бустерная схема и основы ее проектирования

1.1.1. Что такое бустерная схема

В чопперной схеме стабилизатора невозможно принципиально получить выходное напряжение, которое по величине будет выше входного. Тем не менее, построить повышающий стабилизатор можно. Для этого необходимо воспользоваться так называемой бустерной схемой, схематическое изображение которой приведено на рис.1.

Рис.1. Базовая схема бустерного стабилизатора.

Ключевой элемент Кл, в качестве которого используется знакомый нам транзистор, подключен параллельно нагрузке RH и работает в импульсном режиме, то есть попеременно замыкается и размыкается с частотой преобразования. Диод VD блокирует нагрузку и конденсатор фильтра С от ключевого элемента в нужные моменты времени. Когда ключ замкнут, ток i3 от источника питания Un протекает через дроссель L, запасая в нем энергию. Диод VD при этом отсекает (блокирует) нагрузку и не позволяет конденсатору фильтра разряжаться через замкнутый ключ. Ток в нагрузку в этот промежуток времени поступает только от конденсатора С. Далее, когда ключ закрывается, ЭДС самоиндукции дросселя суммируется с выходным напряжением и энергия тока дросселя отдается в нагрузку. При этом выходное напряжение UH оказывается больше входного Un.

Следует обратить внимание на то, что, в отличие от чопперной схемы, дроссель L не является элементом фильтра, а выходное напряжение становится больше входного на величину, определяемую индуктивностью дросселя L и скважностью работы ключа. Рабочий цикл бустерной схемы также состоит из двух фаз: фазы заряда дросселя и фазы его разряда на нагрузку.

1.1.2. Фаза заряда дросселя

В данной фазе, схематически показанной на рис.2, ключевой элемент коммутирует нижний вывод индуктивного элемента к общему проводу схемы.

Рис.2. Зарядная фаза бустерного преобразователя.

Соотношение между напряжением на дросселе и током через него в общем случае определяется:

Поскольку в данном случае UL = U П а напряжение питания является постоянной величиной, то оба вывода дросселя оказываются подключенными к источнику питания с низким внутренним сопротивлением. Мы получаем очень интересный результат.

а, проинтегрировав, получим простое выражение для тока заряда дросселя:

Давайте осмыслим полученную формулу. Предположим, что в момент замыкания ключа ток в индуктивном элементе Lвообще отсутствует. После замыкания ключа ток i3 появляется в обмотке дросселя не скачкообразно, а начинает нарастать по линейному закону. Нарастание тока в дросселе будет происходить до тех пор, пока ключ не разомкнётся.

При прочих равных условиях (напряжении питания и времени заряда) ток в индуктивном элементе к моменту окончания времени заряда будет тем больше, чем меньше индуктивность L. Этот простой, но очень важный вывод мы сделали исходя из того, что в полученном выражении индуктивность Lстоит в знаменателе. Понятно, что чем меньше индуктивность, тем легче дросселю "набирать" ток. Зависимость скорости нарастания от величины индуктивности показана на рис.3.

Рис.3. Влияние величины индуктивности на скорость нарастания зарядного тока.

1.1.3. Фаза разряда дросселя

Мы уже хорошо знаем, что основное свойство индуктивного элемента - стремление к поддержанию величины и направления протекающего через него тока. Поэтому при размыкании ключа направление разрядного тока ipсовпадет по направлению с зарядным током i. Разрядный ток замыкается через диод VDна нагрузку и подзаряжает конденсатор С, как показано на рис.4.



Рис.4. Разрядная фаза бустерного преобразователя.

Теперь нам станет понятно, что напряжение на нагрузке может быть больше напряжения питания. Согласно теории электрических цепей, напряжение на обкладках конденсатора и ток, протекающий через него, связаны следующим соотношением:

где Uo - напряжение на конденсаторе к моменту окончания заряда дросселя (заряд дросселя L и разряд конденсатора С происходят одновременно).

Добавка напряжения ΔU3, компенсирующая убыль энергии дросселя за счет разряда на нагрузку, будет:

Последовательно, за несколько циклов "заряд-разряд" можно увеличивать напряжение на нагрузке, причем, на первый взгляд, никаких ограничений на его потолок найти не удастся. Важно лишь, чтобы показанная на рисунке 5 добавка ΔUp < ΔU3.

Рис.5. График нарастания выходного напряжения.

Казалось бы, с помощью столь простых средств можно создать повышающий стабилизатор, имеющий на входе 1,5 В (напряжение одного гальванического элемента) и выдающий на нагрузку 1,5 кВ! К сожалению, максимальный коэффициент преобразования (даже при наличии очень хороших элементов схемы) существенно ограничен. Его значение не превышает в типичных реальных схемах 3...5. Почему так происходит, мы объясним в отдельном разделе. Пока же определим вид регулировочной характеристики (зависимости выходного напряжения от входного и режима работы стабилизатора).

В фазе заряда максимальное значение тока дросселя:

где i0 - добавка тока, определяемая режимом, в котором ключ Кл постоянно разомкнут:

В фазе разряда дросселя к нему прикладывается разность напряжений (Uн – Un) и происходит спад тока дросселя, как показано на Рис.6.

Рис.6. К определению вида регулировочной характеристики бустерного преобразователя.

В установившемся режиме "добавка" зарядного тока равна убыли разрядного, поэтому мы можем записать:

Хорошо видно, что чем меньшее разрядное время tpнам удастся сделать, тем большее напряжение мы можем получить на нагрузке. Конечно, такая ситуация может быть только в идеальной схеме. Реальная схема имеет существенные отличия.

1.2. Определение параметров бустерной схемы

1.2.1. Индуктивность дросселя L

Как было отмечено выше, цикл работы бустерной схемы состоит из двух фаз: фазы заряда дросселя и фазы его разряда на нагрузку. Кроме того, стабилизатор должен иметь возможность передавать от источника в нагрузку достаточную, мощность, которая определяется из выражения:

где iH - ток нагрузки, А.

В то же время ток нагрузки определяется током заряда дросселя и не может стать больше i3. Ранее мы также выяснили, что ток i3 в индуктивности нарастает по линейному закону:

После несложных преобразований получим:

Мы получили еще один интересный результат-нельзя бесконечно увеличивать величину индуктивности. Если L будет слишком большой, мы не сможем передать в нагрузку необходимую мощность. Казалось бы, если мы ограничены в выборе индуктивности "сверху", почему бы нам не сделать ее сколь угодно малой и тем самым, повысив ток заряда, повысить передаваемую мощность? Увы, нижняя граница величины индуктивности тоже существует, и к определению Lminследует отнестись даже более внимательно, чем к оценке Zmax. Выбрав индуктивность слишком большой, мы рискуем лишь тем, что не получим требуемой мощности в нагрузке. А вот если индуктивность окажется слишком маленькой, это может стоить нам необратимого разрушения всей схемы стабилизатора. Дело в том, что транзистор, используемый в качестве ключевого элемента Кл, может пропустить через себя ток, сила которого ограничена цифрой, приведенной в технических условиях на данный элемент (максимальный ток коллектора или стока). Поскольку ток в индуктивном элементе нарастает линейно, его максимальное значение (которое появится в момент, соответствующий переходу схемы из фазы I в фазу 2) ни в коем случае не должно превысить допустимых для транзистора значений, что показано на рис.8. Определим критическое значение индуктивности.



Поскольку ток i0 течет всегда, максимальный ток через индуктивный элемент будет:

Устремляя к нулю ток i0 (минимальный режим), получаем:

На рисунке 8 индуктивность L2 является минимально допустимой, L3 безопасна для схемы, L, может привести к разрушению стабилизатора.

Максимальный ток, допускаемый для силового ключа, можно найти в технических условиях на данный элемент (транзистор, микросхему). Следует также учесть, что современный разработчик импульсной техники едва ли предпочтет схему, построенную на дискретных элементах, интегральной схеме с такими же параметрами. Скорее, он выберет уже готовую микросборку. Если в составе микросборки уже содержится силовой транзистор, нужно найти в технических условиях на данный элемент значение параметра swithcurrent (ток переключения). Мы уже знаем, что мощность, рассеиваемая транзистором, определяется формой тока через транзистор. Поскольку ток в бустерной схеме носит линейно-нарастающий характер, действующее значение тока в этом случае будет:

Для максимального режима при коэффициенте заполнения 0,9:

Максимальная мощность, которая может быть передана в нагрузку, таким образом, определяется максимальным током через ключевой элемент.

Методика расчета индуктивного элемента следующая:

1) по заданным параметрам t3max, Uн, f, Pн, Unmin определяем Lmax;

2) по заданным параметрам Unmin, t3max, in определяем Lmin;

3) расчетное значение Lmaxдолжно получиться больше Lmin, в противном случае преобразователь просто не сможет выполнить предъявленные к нему требования по току или по мощности;

1.2.2. Емкость конденсатора С

Поскольку выходное напряжение стабилизатора всегда характеризуется наличием пульсаций, важно принять меры по их снижению. Для этого в бустерной схеме предусматривается фильтровой конденсатор С, емкость которого рассчитывается следующим образом.

Величина зарядной добавки конденсатора, обусловленной разрядом дросселя L:

где Q - заряд, накопленный индуктивностью в первой фазе и передаваемый конденсатору; С - емкость фильтрующего конденсатора; Q = tр iр.

С другой стороны, как мы уже выяснили, величина зарядного тока определяется по формуле:

При равенстве зарядного и разрядного токов абсолютный уровень пульсаций в нагрузке:

Физически это означает, что энергия, накапливаемая в индуктивности, переходит в энергию заряженного конденсатора без потерь, что вполне допустимо считать в практических расчетах.

Коэффициент пульсаций:

Из этой формулы мы можем определить величину С.

1.2.3. Диод VD

В качестве блокирующего диода рекомендуется использовать диоды Шоттки, обладающие, по сравнению с обычными диодами, меньшим падением напряжения в прямом направлении, повышенным быстродействием. Все эти достоинства повышают КПД схемы. Разработчику необходимо выбрать подходящий по прямому току, обратному напряжению и конструкции корпуса диод Шоттки.

1.2.4. Ключевой элемент

В качестве ключевого элемента бустерной схемы в последнее время все чаще используют силовые полевые транзисторы MOSFET.

1.3. Отличие реальной схемы от идеальной

До сих пор мы рассматривали идеализированную схему бустерного преобразователя, полагая, что ключевой элемент, источник питания, дроссель и диод имеют нулевое активное сопротивление. В реальных схемах это не так.

Рис.9. Реальная схема бустерного преобразователя.

rдр – активное сопротивление обмотки дросселя;

ru – внутреннее сопротивление источника питания;

rкл – активное сопротивление ключевого элемента в состоянии "замкнут";

rvd – активное сопротивление блокирующего диода.

Предположим, что rкл ~ rvd. Тогда сопротивления разрядной и зарядной цепей дросселя окажутся также одинаковыми, что и отражено на рис.10: r = ru + rдр + rкл = ru + rдр + rvd.

Давайте выясним характер регулировочной характеристики в случае реальной схемы. В зарядной и разрядной фазах теперь необходимо учесть падение напряжения на сопротивлении r. Составим уравнение баланса токов через индуктивность в фазе заряда и разряда:

После несложных преобразований получаем:

Считаем, что iн = iL /2.

Окончательно выражение для реальной регулировочной характеристики:

Рис.11. Семейство регулировочных характеристик бустерных преобразователей.

Критический коэффициент заполнения определяется из выражения:

Чтобы получить достаточно протяженный начальный участок и, следовательно, расширить диапазон регулирования выходного напряжения, необходимо уменьшать сопротивление зарядной цепи r. Из рисунка 11. хорошо видно, что невозможно получить бесконечно большие значения напряжений UHпри ограниченном напряжении Un. Практически в стабилизаторах коэффициент заполнения выбирается не более 0,8...0,9, а коэффициент повышения напряжения для самых высоковольтных вариантов - не более 5.

1.4. Проектирование дросселя для бустерной схемы

1) иметь минимально возможные габариты при достаточной для передачи мощности в нагрузку энергоемкости;

2) обладать минимальными потерями в сердечнике и в обмоточных проводах;

3) обладать близкой к нулевой остаточной индукцией.

Всем этим условиям неплохо удовлетворяют индуктивные элементы, изготовленные на основе стержневых ферритовых сердечников.

В технической документации на микросхемы, как мы уже говорили, приводятся типы и номиналы индуктивных элементов. Зарубежные производители микросхем, стремясь подчеркнуть высокий технический уровень своих разработок, приводят в документации так называемую тестовую схему, изготовив которую, разработчик электронной аппаратуры сможет несложными средствами проверить все режимы работы микросхемы. Тестовая плата, чертеж которой бычно публикуется здесь же, разработана так, что при необходимости можно будет ввести дополнительные элементы или исключить штатные. Рекомендуемые для тестовой схемы типы комплектующих приводятся в сводной таблице.

Казалось бы, остается только приобрести необходимые элементы и изготовить печатную плату... К сожалению, и профессиональные отечественные разработчики, и радиолюбители, занимающиеся конструированием собственной, а также ремонтом чужой аппаратуры, далеко не всегда имеют возможность использовать указанные на схеме компоненты,-зачастую их просто нет в продаже. Поэтому приходится либо выбирать индуктивный элемент из тех запасов, что имеются, либо самостоятельно изготавливать его. Качество работы бустерной схемы во многом зависит от качества индуктивного элемента. Знание вопросов расчета индуктивных элементов для бустерной схемы пригодится не только тем, кто намеревается их проектировать, но также и тем, кому необходимо оценить электрические параметры готовых элементов.

Конструктивно индуктивный элемент для бустерной схемы представляет собой круглый (реже - прямоугольный или квадратный) ферритовый стержень, на который намотан в один или несколько слоев изолированный медный провод. Сверху нанесена защитная водостойкая краска. Дроссель имеет два контактных вывода, расположенных в торцах.

Физически стержневой индуктивный элемент представляет собой магнитную цепь с воздушным участком большой протяженности, как показано на рис.12.

Рис.12. Расчетная модель индуктивности с разомкнутым магнитопроводом (сердечником).

Когда мы говорили о вычислении поля в магнетиках, мы упомянули о размагничивающем поле, которое надо учитывать при расчете индуктивных элементов с соразмеримыми линейными размерами. Стержневой сердечник - как раз тот самый случай. Не пугайтесь, автор не будет приводить здесь методику вывода формул для определения индуктивности дросселей, намотанных на сердечниках конечной длины. Эти методики сложны и отнимают много времени для понимания. В конце концов, нам важен результат. В приводимых ниже формулах используются обозначения конструктивных и магнитных величин индуктивного элемента, расчетная модель которого изображена на рис.13:



Рис.13. Конструктивные параметры индуктивности со стержневым сердечником.

l – длина сердечника;

lk – длина намотки;

d – диаметр сердечника;

μс - относительная эквивалентная проницаемость сердечника;

μ - начальная проницаемость материала сердечника;

μ0 - магнитная постоянная;

a, b - стороны поперечного сечения сердечника прямоугольного вида;

k = l/ lk – коэффициент заполнения сердечника обмоткой.

Следует также учесть, что в подавляющем большинстве случаев сердечник изготавливается из феррита марок НН, НМ НМС с начальной магнитной проницаемостью μ > 600, что позволяет значительно упростить первоначальные расчетные формулы. Итак, индуктивность дросселя:

а) при к ~ 1

для сердечника круглого сечения:

для сердечника прямоугольного сечения:

б) при к >> 1

для стержня круглого сечения:

для стержня прямоугольного сечения:

в) при k >> l и l/d ≥ 20

для стержня круглого или квадратного сечения:

L = 0,75 μ0 w2 l.

Очень важным обстоятельством является прогнозирование состояния сердечника. Если сердечник будет работать с заходом в область насыщения, это обстоятельство может привести к значительному снижению КПД стабилизатора или даже к выгоранию силового транзистора из-за резкого увеличения тока накачки. Поэтому необходимо спроектировать индуктивный элемент так, чтобы магнитная индукция в сердечнике не превышала определенного значения. Типичная величина индукции насыщения Вrдля ферритов, как мы знаем, составляет 0,2...0,3 Тл. На эту цифру и следует ориентироваться, разрабатывая индуктивный элемент.

Из-за большого размагничивающего эффекта, благодаря большому воздушному промежутку на пути магнитных силовых линий, эквивалентная проницаемость сердечника μс может оказаться на порядок ниже начальной проницаемости замкнутого сердечника μ, изготовленного из того же материала. Однако соответственно снижается и величина остаточной индукции, что необходимо, поскольку через дроссель протекает ток в одном направлении.

Приближенно эквивалентную проницаемость сердечника μс можно оценить по следующей формуле:

для круглого сечения

для прямоугольного сечения:

Минимальный объем сердечника с учетом потерь в нем и перегрева до заданной температуры:

где - в см3;

а - температурный коэффициент теплоотдачи

(α =1,2 * 103 Вт/см2*°С);

ΔT - нагрев магнитопровода (типично ΔТ= 40 °С).

Значение магнитной индукции в сердечнике:

для круглого сечения:

для прямоугольного сечения:

Методика расчета:

1) по известному Lи определяем минимальный объем магнитопровода и геометрические размеры сердечника;

2) по известному Lи геометрическим размерам сердечника вычисляем количество витков w;

3) проверяем значение магнитной индукции в сердечнике;

4) при необходимости (если значение индукции превышает допустимое значение) выбираем сердечник с большими габаритными размерами (диаметром и длиной), повторяем расчет w и В;

5) толщину намоточного провода определяем из условия 4-5 А/мм2.

В заключение этого раздела небольшой технологический совет для радиолюбителей. Желательно разместить обмотку в центральной части стержня в один слой, как показано на рис.14. Если все-таки разместить ее в один слой не удается, можно изготовить две круглые обечайки и намотать провод в 2-3 слоя с тонкой прокладкой между слоями. После намотки индуктивный элемент желательно покрыть термостойким лаком и надежно укрепить выводы.

Рис.14. Вариант изготовления индуктивного элемента.

2. Практическая часть

2.1. Алгоритм расчета параметров дросселя

Исходные данные:

3) Ток на выходе: I вых. = 5А;

4) Частота: f = 70кГц;

5) Коэффициент скважности: γ = 0,8;

6) Коэффициент пульсации: К п. = 0,25;

Ток через дроссель (Y1) получаем следующим образом: сначала собираем бустерную схему, после чего в ней подбираем сопротивление дросселя, так, чтобы получить нужные значения выходных тока и напряжения. Это можно сделать в программе Electronic Work Bench. Результат приведен на рисунке 16.



Рис.16. Бустерная схема.

После расчетов мы знаем все параметры дросселя. Чертежи приведены в приложении А.

2.2. Выбор материалов

Материал для сердечника, в подавляющем большинстве случаев, это феррит марок НН, НМ НМС с начальной магнитной проницаемостью μ > 600. Каркас катушки изготавливается из пластмассы. Обмотка – медный эмалированный провод.

Заключение

В данном курсовом проекте был спроектирован дроссель для бустерной схемы DC – DC преобразователя. В ходе расчётов, помимо специального программного средства, были использованы следующие программы:

КОМПАС-3D V7 (для создания чертежей изделия);

Electronics Workbench (для составления принципиальной электрической схемы с целью проверки правильности расчётов).

В ходе выполнения курсового проекта мы спроектировали дроссель бустерной схемы DC – DC преобразователя, полностью удовлетворяющий техническому заданию.

Библиографический список

1. Семёнов Б.Ю. Силовая электроника для любителей и профессионалов. М.: Солон-Р, 2001

2. Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электроэлементы: Учебник для ВУЗов. – 2-е издание, М.: Радио и связь, 1989

3. Ромаш Э.М. Источники вторичного электропитания радиоэлектронной аппаратуры. – М.: Радио и связь, 1981

4. Грязнов Н.М. Трансформаторы и дроссели в импульсных устройствах. – М.: Радио и связь, 1986

5. Свитенко В.Н. Электроэлементы: Курсовое проектирование: учеб. пособие. – М.: высшая школа, 1987