Индуктивность: формула. Измерение индуктивности. Индуктивность контура. Расчет катушек индуктивности. Схема, описание

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу - индуктивности - является реальный элемент электрической цепи - .

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Рис. 1. Условное графическое обозначение индуктивности

Связь между напряжением и током в индуктивной катушке определяется , из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = - d ψ / dt

Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:

где N - число витков катушки.

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф - Фси + Фвп.

Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая - определяется магнитными полями, существование которых не связано с током катушки - магнитным полем Земли, магнитными полями других катушек и . Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ , так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: потокосцепления самоиндукции ψси , и потокосцепления внешних полей ψ вп

ψ= ψси + ψ вп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:

e = e си + e вп,

здесь еси - ЭДС самоиндукции, евп - ЭДС внешних полей.

Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только .

Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер - амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1 ).

В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).

Рис. 2. Вебер-амперные характеристики индуктивной катушки: 1 - нелинейная, 2 - линейная.

В системе единиц СИ индуктивность выражают в генри (Гн).

При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:

Идеализированный элемент электрической цепи - индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля .

Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.

Инструкция

Опираясь на определение термина индуктивность, нетрудно догадаться о расчете данной величины. Самая простая формула для вычисления индуктивности соленоида выглядит так: L=Ф/I, где L – индуктивность контура, Ф - магнитный поток охватывающего катушку магнитного поля, I- сила тока в катушке. Эта формула является определяющей единицу измерения индуктивности: 1 Вебер / 1 Ампер = 1 Генри или, сокращенно, 1 Вб / 1 А = 1 Гн.
Пример 1. По катушке течет ток силой 2 А, вокруг нее образовалось магнитное поле, магнитный поток которого составляет 0,012 Вб. Определите индуктивность данной катушки. Решение: L= 0,012 Вб / 2 А = 0,006 Гн = 6 мГн.

Индуктивность контура (L) зависит от размеров и формы катушки, от магнитных свойств среды, в которой находится данный проводник с током. Исходя из этого, индуктивность длинной катушки (соленоида) можно определить по формуле, указанной на рисунке 1, где µ0 – магнитная постоянная, равная 12,6*(10) в -7 степени Гн/м; µ - относительная магнитная проницаемость среды, в которой располагается катушка с током (табличная величина, указанная в физических справочниках); N – число витков в катушке, lкат – длина катушки, S – площадь одного витка.
Пример 2. Найти индуктивность катушки, имеющей характеристики: длина – 0.02 м, площадь витка – 0,02 кв.м., число витков = 200. Решение: Если среда, в которой находится соленоид, не указана, то по умолчанию берется воздух, магнитная проницаемость воздуха равна единице. Поэтому, L = 12,6*(10) в -7 степени *1*(40000/0,02)*0,02=50,4*(10) в -3 степени Гн = 50,4 мГн.

Также рассчитать магнитную индукцию соленоида можно, опираясь на формулу энергии магнитного поля тока (см. рисунок 2). Из нее видно, что индукцию можно рассчитать, зная энергию поля и силу тока в катушке: L = 2W/(I) в квадрате.
Пример 3. Катушка, в которой течет ток 1 А, создает вокруг себя магнитное поле энергией 5 Дж. Определите индуктивность такой катушки. Решение: L = 2* 5/1 = 10 Гн.

Катушка индуктивности способна накапливать магнитную энергию при протекании электрического тока. Основной ее характеристикой является ее индуктивность , которая обозначается буквой L и измеряется в Генри (Гн). Индуктивность катушки зависит от ее особенностей.

Вам понадобится

  • материал катушки и ее геометрические параметры

Инструкция

Индуктивность катушки пропорциональна линейным размерам катушки , магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки , намотанной на тороидальном сердечнике, равна: L = ?0*?r*s*(N^2)/l. В этой формуле?0 - магнитная постоянная, которая приближенно равна 1,26*(10^-6) Гн/м, ?r - относительная магнитная проницаемость материала сердечника, которая зависит от частоты), s - площадь сечения сердечника, l - длина средней линии сердечника, N - число витков катушки .
Относительная магнитная проницаемость и материала, а также число витков N являются безразмерными величинами.

Таким образом, индуктивность катушки тем больше, чем больше площадь ее сечения. Это условие увеличивает магнитный поток через катушку при одном и том же токе в ней.Индуктивность катушки индуктивности в мкГн можно рассчитать также по формуле: L = L0*(N^2)*D*(10^-3). Здесь N - это число витков, D - диаметр катушки в сантиметрах. Коэффициент L0 зависит от отношения длины катушки к ее диаметру. Для однослойной катушки он равен: L0 = 1/(0,1*((l/D)+0,45)).

Если в цепи катушки соединены последовательно, то их общая индуктивность
Если катушки соединены параллельно, то их общая индуктивность равна: L = 1/((1/L1)+(1/L2)+...+(1/Ln))

Обратите внимание

Основным параметром, характеризующим свойства катушек индуктивности и дросселей, является индуктивность. Индуктивность катушки зависит от её размеров и формы, количества витков и магнитной проницаемости среды. . Характеризует потери энергии в катушке и определяется отношением её индуктивного сопротивления к активному сопротивлению

Полезный совет

Физическая природа индуктивности. Катушки индуктивности обладают свойством оказывать реактивное сопротивление переменному току при незначительном сопротивлении постоянному току. Совместно с конденсаторами они используются для создания фильтров, осуществляющих частотную селекцию электрических сигналов, а так же для создания элементов задержки сигналов и запоминающих элементов...

Источники:

  • Катушка индуктивности

Катушка индуктивности может накапливать магнитную энергию при протекании электрического тока. Основным параметром катушки является ее индуктивность



Вам понадобится

  • Катушка индуктивности и ее параметры

Инструкция

Индуктивность короткого проводника определяется по формуле: L = 2l(ln(4l/d)-1)*(10^-3), где l - длина провода в сантиметрах, а d - диаметр провода в сантиметрах. Если провод намотан на каркас, то эта конструкция образует катушку индуктивности. Магнитный поток концентрируется, и величина индуктивности возрастает.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике, равна: L = ?0*?r*s*(N^2)/l. В этой формуле?0 - магнитная постоянная, ?r - относительная магнитная проницаемость материала сердечника, которая зависит от частоты, s - площадь сечения сердечника, l - длина средней линии сердечника, N - число витков катушки.

Индуктивность катушки индуктивности в мкГн можно рассчитать также по формуле: L = L0*(N^2)*D*(10^-3). Здесь N - это число витков, D - диаметр катушки в сантиметрах. Коэффициент L0 зависит от отношения длины катушки к ее диаметру. Для однослойной катушки он равен: L0 = 1/(0,1*((l/D)+0,45)).

Если в цепи катушки соединены последовательно, то их общая индуктивность равна сумме индуктивностей всех катушек: L = (L1+L2+...+Ln)
Если катушки соединены параллельно, то их общая индуктивность равна: L = 1/((1/L1)+(1/L2)+...+(1/Ln)).
Формулы расчета индуктивности для различных схем соединения катушек индуктивности аналогичны формулам расчета сопротивления при таком же соединении резисторов.

Катушка индуктивности способна накапливать магнитную энергию при протекании электрического тока. Основным параметром катушки является ее индуктивность . Индуктивность измеряется в Генри (Гн) и обозначается буквой L.



Вам понадобится

  • Параметры катушки индуктивности

Инструкция

Индуктивность короткого проводника определяется по формуле: L = 2l(ln(4l/d)-1)*(10^-3), где l - длина провода в сантиметрах, а d - диаметр провода в сантиметрах. Если провод намотан на каркас, то образуется катушка индуктивности. Магнитный поток концентрируется, и, в результате, величина индуктивности возрастает.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике, равна: L = μ0*μr*s*(N^2)/l. В этой формуле μ0 - магнитная постоянная, μr - относительная магнитная проницаемость материала сердечника, зависящая от частоты), s - площадь сечения сердечника, l - длина средней линии сердечника, N - число витков катушки.

3.2 Общие сведения о катушках индуктивности

Катушка индуктивности представляет собой свёрнутый в спираль изолированный проводник, обладающий значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении.

Катушка индуктивности состоит из одножильного, реже многожильного, изолированного провода, намотанного на каркас из диэлектрика цилиндрической, тороидальной или прямоугольной формы в соответствии с рисунком 3.1, существуют также бескаркасные катушки индуктивности.

Намотка бывает однослойная (рядовая и с шагом) и многослойная (рядовая, внавал, универсальная).

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали, пермаллоя, карбонильного железа, ферритов. Сердечники используют также для изменения индуктивности резонансных контуров в небольших пределах.

Значение индуктивности катушки индуктивности пропорционально линейным размерам катушки, квадрату числа витков намотки и магнитной проницаемости сердечника и изменяется от десятых долей мкгн до десятков гн.

К основным параметрам катушки индуктивности относятся сопротивление потерь, добротность, температурный коэффициент индуктивности, собственная ёмкость.

Катушки индуктивности широко применяют в качестве элементов фильтров и колебательных контуров, в трансформаторах, в качестве дросселей, в реле, магнитных усилителях, электромагнитах и др.


Рисунок 3.1 – Катушки индуктивности:

а) цилиндрическая однослойная;

б) тороидальная многослойная;

в) с цилиндрическим сердечником;

г) с П-образным сердечником;

д) образцовая индуктивность на керамическом тороиде;

1 – намотка (провод);

2 – каркас;

3 – сердечник;

h – длина намотки;

d – внутренний диаметр намотки;

D – наружный диаметр намотки.


3.3 Соленоид

Соленоид – катушка индуктивности, выполненная в виде намотанного на цилиндрический каркас изолированного проводника, по которому течет электрический ток. Соленоид представляет собой систему круговых токов одинакового радиуса, имеющих общую ось в соответствии с рисунком 3.2-а.

Рисунок 3.2 – Соленоид и его магнитное поле

Если мысленно разрезать витки соленоида поперек, обозначить направление тока в них, как было указано выше, и определить направление магнитных индукционных линий по «правилу буравчика», то магнитное поле всего соленоида будет иметь такой вид, как показано на рисунке 3.2-б.

На оси бесконечно длинного соленоида, на каждой единице длины которого намотано n 0 витков, напряженность поля определяется формулой:

В том месте, где магнитные линии входят в соленоид, образуется южный полюс, где они выходят – северный полюс.

Для определения полюсов соленоида пользуются «правилом буравчика», применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках соленоида, то поступательное движение буравчика покажет направление магнитного поля в соответствии с рисунком 3.3.


Рисунок 3.3 – Применение правила буравчика

Соленоид, внутри которого находится стальной (железный) сердечник в соответствии с рисунком 3.4, называется электромагнитом. Магнитное поле у электромагнита сильнее, чем у соленоида, так как кусок стали, вложенный в соленоид, намагничивается и результирующее магнитное поле усиливается.

Полюсы у электромагнита можно определить, так же как и у соленоида, по «правилу буравчика».

Рисунок 3.4 – Полюса соленоида

Магнитный поток соленоида (электромагнита) увеличивается с увеличением числа витков и тока в нем. Намагничивающая сила зависит от произведения тока на число витков (числа ампер-витков).

Если, например, взять соленоид, по обмотке которого проходит ток 5А, и число витков которого равно 150, то число ампер-витков будет 5 150=750. Тот же магнитный поток получится, если взять 1500 витков и пропустить по ним ток 0,5А, так как 0,5 1500 = 750 ампер-витков.

Увеличить магнитный поток соленоида можно следующими путями:

а) вложить в соленоид стальной сердечник, превратив его в электромагнит;

б) увеличить сечение стального сердечника электромагнита (так как при данных токе, напряженности магнитного поля, и стало быть, магнитной индукции увеличение сечения ведет к росту магнитного потока);

в) уменьшить воздушный зазор электромагнита (так как при уменьшении пути магнитных линий по воздуху уменьшается магнитное сопротивление).

Индуктивность соленоида. Индуктивность соленоида выражается следующим образом:

где V – объём соленоида.

Без использования магнитного материала плотность магнитного потока B в пределах катушки является фактически постоянной и равна

B = μ0Ni / l (3.9)

N – число витков;

l – длина катушки.

Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока B, умноженному на площадь поперечного сечения S и число витков N:

(3.10)


Отсюда следует формула для индуктивности соленоида эквивалентная предыдущим двум формулам

(3.11)

Соленоид на постоянном токе. Если длина соленоида намного больше его диаметра и не используется магнитный материал, то при протекании тока по обмотке внутри катушки создаётся магнитное поле, направленное вдоль оси, которое однородно и для постоянного тока по величине равно

где μ 0 – магнитная проницаемость вакуума;

n = N / l – число витков на единицу длины;

I – ток в обмотке.

При протекании тока соленоид запасает энергию, равную работе, которую необходимо совершить для установления текущего тока I. Величина этой энергии равна

(3.6)

При изменении тока в соленоиде возникает ЭДС самоиндукции, значение которой

Соленоид на переменном токе. При переменном токе соленоид создаёт переменное магнитное поле. Если соленоид используется как электромагнит, то на переменном токе величина силы притяжения изменяется. В случае якоря из магнитомягкого материала направление силы притяжения не изменяется.

В случае магнитного якоря направление силы меняется. На переменном токе соленоид имеет комплексное сопротивление, активная составляющая которого определяется активным сопротивлением обмотки, а реактивная составляющая определяется индуктивностью обмотки.

Применение соленоидов. Соленоиды постоянного тока чаще всего применяются как поступательный силовой электропривод. В отличие от обычных электромагнитов обеспечивает большой ход. Силовая характеристика зависит от строения магнитной системы (сердечника и корпуса) и может быть близка к линейной. Соленоиды приводят в движение ножницы для отрезания билетов и чеков в кассовых аппаратах, язычки замков, клапаны в двигателях, гидравлических системах и проч.

Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.

4. Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля

Исходные данные для расчета:

1 Соленоид круглого сечения диаметром 30 мм и длиной 200 мм;

2 Материал сердечника – Сталь 20;

3 Провод обмотки соленоида – медный;

4 Напряженность магнитного поля в центре соленоида – 100 А/см при постоянном токе 1А.

Магнитная индукция поля В связанна с напряженностью магнитного поля Н соотношением , для воздуха , поэтому формула представляется в виде

Если витки соленоида расположены вплотную или очень близко друг к другу, то соленоид можно рассматривать, как систему последовательно соединенных круговых токов одинакового радиуса с общей осью.

Рассмотрим поле кругового витка с током. В центре О кругового витка радиуса R с электрическим током I векторы dB магнитных полей всех малых элементов витка направлены одинаково – перпендикулярно плоскости витка (за чертеж) в соответствии с рисунком 4.1.

Рисунок 4.1 – Магнитная индукция кругового витка с током


Также направлен и вектор В результирующего поля всего витка. По закону Био – Савара – Лапласа:

где - угол, под которым из очки О виден элемент dl витка.

Интегрируя это выражение по всем элементам витка, т.е. по l от 0 до 2πR или по α от 0 до 2π, получаем:

Определим теперь магнитную индукцию поля витка с током в точке, лежащей на оси витка, т.е. на прямой ОО", проходящей через центр витка перпендикулярно его плоскости в соответствии с рисунком 4.2.

Рисунок 4.2 – Магнитная индукция поля витка с током в произвольной точке

На рисунке показан круговой виток радиуса R, плоскость которого перпендикулярна плоскости чертежа, а ось ОО" лежит в этой плоскости. В точке А на оси ОО" векторы для полей различных малых элементов dl витка с током I не совпадают по направлению. Векторы dВ 1 и dВ 2 для полей двух диаметрально противоположных элементов витка dl 1 и dl 2 , имеющих одинаковую длину (dl 1 = dl 2 = dl), равны по модулю:

Результирующий вектор dВ 1 + dВ 2 направлен в точке А по оси ОО" витка, причем

(4.5)

Вектор В индукции в точке А для магнитного поля всего витка направлен также вдоль оси ОО", а его модуль

(4.6)

Если воспользоваться понятием вектора p m магнитного момента витка с током I

(4.7)

где S – площадь поверхности, ограниченной контуром,

то выражение (4.6) можно переписать в форме

(4.8)


Рисунок 4.3 – Сечение соленоида

На рисунке 4.3 показано сечение соленоида радиуса R и длины L с током I. Пусть n – число витков, приходящихся на единицу длины соленоида.

Магнитная индукция В поля соленоида равна геометрической сумме магнитных индукций B i полей всех витков этого соленоида. В точке А, лежащей на оси соленоида О 1 О 2 , все векторы B i и результирующий вектор В направлены по оси О 1 О 2 в ту сторону, куда перемещается буравчик с правой резьбой при вращении его рукоятки в направлении электрического тока в витках соленоида. На малый участок соленоида длиной dl вдоль оси приходится ndl витков. Если l – расстояние от этих витков до точки А, то согласно формуле (4.8), магнитная индукция поля этих витков

(4.9)

Так как и , то

В нашем случае , поэтому


(4.12)

Учитывая формулу (4.1) приравняем значения магнитной индукции и получим выражение для напряженности магнитного поля:

(4.13)

Из этой формулы найдем число витков намотки, приходящихся на единицу длины соленоида:

(4.14)

Подставив известные нам значения в формулу (4.14) получим n=102 витка в 1 см.

Число витков намотки находится по формуле:

Получаем N=2040 витков.

Для обмотки соленоида в соответствии с током, проходящим по ней, выбираем медную проволоку в соответствии с таблицей 4.1.


Таблица 4.1 – Основные параметры медных обмоточных проводов

Таким образом, выбираем провод марки ПЭВ-1 с диаметром сечения 0,86 мм.

Число витков проволоки данного сечения, укладывающихся в длину соленоида определяется по формуле:


Подставив известные данные получаем N=233 витка. То есть в нашем случае получена девятислойная катушка.

Рассчитаем массу соленоида. Для этого сначала рассчитаем массу его обмотки. Для этого нам нужно вычислить длину проволоки обмотки. Ее можно вычислить зная количество витков и длину каждого витка. Учитывая, что радиус витка в каждом слое намотки будет меняться в соответствии с рисунком 4.4, рассчитаем длину проволоки намотки каждого слоя отдельно.

Рисунок 4.4 – Сечение соленоида

Для первого слоя обмотки радиус витка будет равен сумме диаметра соленоида и двух радиусов проволоки.

(4.17)

Получаем D 1 =30,86 мм.

Длину витка обмотки рассчитываем по формуле


Длина витка обмотки первого слоя С 1 =96,9 мм.

Длину обмотки первого слоя вычисляем как произведение числа витков и длину одного витка:

Получаем l 1 =22,6 м.

Проводя подобные вычисления получим длины всех поледующих обмоток:

Длина всей проволоки представляется как сумма длин обмотки каждого слоя:

Получаем l=248,5 м.

В соответствии с таблицей 3.1 на 100 м проволоки приходится 455г.

Получаем массу обмотки m обм =1,13 кг.

Рассчитаем массу сердечника. Для этого нужно вычислить его объем по формуле:


Получаем объем соленоида V=141,3 см 3 .

Зная плотность вещества, из которого изготовлен сердечник соленоида, в нашем случае это сталь-20, можно вычислить массу сердечника по формуле:

Плотность вещества ρ=7859 кг/м 3 .

Таким образом масса сердечника равна m серд =1,1 кг.

Масса всего соленоида является суммой масс обмотки и сердечника.

m=m обм + m серд (4.23)

Тогда масса соленоида равна m=2,23 кг.

Мы получили соленоид с сердечником из материала сталь-20 с девятислойной обмоткой медной проволокой марки ПЭВ-1 массой 2,23 кг.


Заключение

В данном курсовом проекте было рассчитано намагничивающее устройство для магнитопорошкового метода неразрушающего контроля.

В настоящее время магнитопорошковый метод неразрушающего контроля широко распространен. Магнитный контроль используется для обнаружения дефектов в объектах с самыми различными размерами и формами. С его помощью можно довольно быстро обнаружить волосовины, трещины различного происхождения, закаты и непровары сварных соединений.

Магнитный метод неразрушающего контроля активно применяется сегодня при поиске микродефектов в различных изделиях из ферромагнитных материалов.

Магнитопорошковый контроль нашел очень широкое применение на железнодорожном транспорте, в авиации, судостроении, химическом машиностроении, автомобилестроении, нефтедобывающей и газодобывающей отраслях (контроль трубопроводов). Магнитно порошковый контроль имеет очень высокую производительность, чувствительность, также удобную наглядность результатов контроля. При грамотном использовании данного метода могут быть обнаружены дефекты даже в начальной стадии их появления.

В ходе работы над курсовым проектом были рассмотрены природа магнитного поля, его основные характеристики; магнитные свойства различных веществ и источники магнитного поля.

Также рассмотрено устройство электромагнитов, их классификация, применение и примеры использования.

Рассмотрены катушки индуктивности и их частный случай – соленоид, а также его применение.

По заданным параметрам сердечника и провода обмотки был рассчитан соленоид круглого сечения, который является составной частью намагничивающего устройства для магнитопорошкового метода неразрушающего контроля.


Список использованной литературы

1 Бессонов Л.А., Теоретические основы электротехники – М., 1989;

2 Волгов В.А. Детали и узлы радиоэлектронной аппаратуры – М.: Энергия, 1992;

3 Вонсовский С.В., Магнетизм – Москва: Наука. – 1971;

4 Гершензон Е.М., Радиотехника / Е.М. Гершензон, Г.Д. Полянина, Н.В. Соина – М.: Просвещение, 2001;

5 Грабовский Р.И., Курс физики – М.: Высш. школа, 1992;

6 Детлаф А.А., Курс физики / А.А. Детлаф, Б.М. Яворский – М.: Высшая школа, 1989;

7 Дмитриева В.Ф., Прокофьев В.Л., Основы физики – М.: Высшая школа, 2001;

8 Зисман Г.А., Курс общей физики: В 3 т. Т. 2. / Г.А. Зисман, О.М. Тодес – М.: Наука, 1979;

9 Иванов Б.С., Энциклопедия начинающего радиолюбителя: Описания практических конструкций – М.: Патриот, 1992;

10 Иродов И.Е., Основные законы электромагнетизма – М.: Высш. шк., 1991;

11 Калантаров П.Л., Цейтлин А.А., Расчет индуктивностей. Справочная книга – М.: Энергоатомиздат, 1986;

12 Карпов Р.Г., Карпов Н.Р., Электрорадиоизмерения – М.: Высш. школа, 2004;

13 Клюев В.В., Неразрушающий контроль: Справочник: В 8 т. Т. 4 – М.: Машиностроение, 2006;

14 Коваль А.В., Радиодетали, радиокомпоненты и их расчет – М.: Сов.радио, 2003;

15 Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике – М.: Наука, 1988;

16 Немцов М.В., Справочник по расчету параметров катушек индуктивности – М.: Энергоатомиздат, 1992;

17 Поляков В.Т., Посвящение в радиоэлектронику – М.: Радио и связь, 1988;

18 Рычина Т.А. Электрорадиоэлементы – М.: Сов. Радио, 2001;

19 Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы – М.: Радио и связь, 1989;

Участка. Принимаем процент узлов и деталей, поступающих в ремонт на условиях кооперации из эксплуатационного депо для тележечного участка =30% Принимаем программу для тележечного участка 1000 ед. 2. Совершенствование технологии контроля автосцепочного устройства 2.1 Виды и порядок осмотра автосцепочного устройства Автосцепное устройство подвижного состава должно постоянно находиться...






Шт. 12. Футляр укладочный 3. Капиллярный метод Различают три основных метода капиллярной дефектоскопии: люминесцентный, цветной и люминесцентно-цветной. Капиллярный метод неразрушающсго контроля качества сварных соединений основан на капиллярном проникновении дефектоскопических материалов в дефекты и их контрастном изображении в оптическом излучении. На сварной шов наносят специальную...

(от лат. inductio - наведение, побуждение), величина, характеризующая магн. св-ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр-ве магн. , причём Ф, пронизывающий контур (сцепленный с ним), прямо пропорционален току I:Ф=LI. Коэфф. пропорциональности L наз. И. или коэфф. самоиндукции контура. И. зависит от размеров и формы контура, а также от магнитной проницаемости окружающей среды. В СИ И. измеряется в , в Гаусса системе единиц она имеет длины (1 Гн=109 см).

Через И. выражается эдс самоиндукции? в контуре, возникающая при изменении в нём тока:

Если провести аналогию между электрич. и механич. явлениями, то магн. энергию следует сопоставить с кинетич. энергией тела T=mv2/2 (m - тела, v - его ), при этом И. будет играть роль массы, а - скорости. Т. о., И. определяет инерц. св-ва тока.

Для увеличения И. применяют катушки индуктивности с железными сердечниками; в результате зависимости магн. проницаемости m ферромагнетиков от напряжённости магн. поля (а следовательно, и от тока) И. таких катушек зависит от I. И. длинного соленоида из N витков с площадью поперечного сечения S и длиной l в среде с магн. проницаемостью m равна (в ед. СИ):

где m0- магн. проницаемость вакуума.

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

В электродинамике (коэффициент самоиндукции) (от лат. inductio - наведение, побуждение) - параметр электрич. цепи, определяющий величину эдс самоиндукции, наводимой в цепи при изменении протекающего по ней тока и (или) при её деформации. Термин "И." употребляется также для обозначения элемента цени (двухполюсника), определяющего её индуктивные свойства (синоним - катушка самоиндукции).И. является количеств. характеристикой эффекта самоиндукции, открытого независимо Дж. Генри (J. Henry) в 1832 и М. Фарадеем (М. Faraday) в 1835. При изменении тока в цепи и (или) при её деформации происходит изменение магн. поля, к-рое, в соответствии с законом индукции, приводит к возникновениювихревого электрич. поля E(r, t )с отличной от нуля циркуляцией

по замкнутым контурам l i ;пронизываемым магн. потоком Ф i . Внутри проводника вихревое поле Е взаимодействует с порождающим его током и оказывает противодействие изменению магн. потока (Ленца правило). Циркуляция E i и магн. поток Ф i существенно зависят от выбора контура l i внутри проводника конечной толщины. Однако при медленных движениях и квазистацнонарных процессах, когда полный ток

(j - плотностьтока) одинаков для всех нормальных сечений провода S пр, допустим переход к усреднённым характеристикам: эдс самоиндукции E си =< E i > )и сцепленному с проводящим контуром магн. потоку Ф=<Ф i > . В предположении о том, что линии тока замыкаются сами на себя при одном обходе по контуру,

где r ^ , - радиус-векторы точек нормального сечения провода, Ф j (r ^) - магн. поток через , ограниченную линией тока, проходящей через точку r ^ , E j (r ^) - циркуляция вектора E вдоль этой линии тока, j n - нормальная к S np составляющая j. В более сложных ситуациях, когда линии тока замыкаются после неск. обходов по контуру или вообще не являются замкнутыми кривыми, процедура усреднения требует уточнений, однако во всех случаях она должнаудовлетворять энергетич. соотношению: =E си I ( Р - суммарная взаимодействия поля с током).Усреднённый магн. поток в случае квазистацнонарных процессов пропорц. току:

Ф=L.I (в СИ), Ф= 1 / c (LI)(в системе СГС). (1)

Коэф. L и Lназ. И. Величина L измеряется в генри, L - в см.

E си =-d/dt(LI) (в СИ), E cи = -(1/с 2)(d/dt)(LI)(2) (в системе СГС).

Производная по времени от И. определяет ту часть E си, к-рая связана с деформацией проводящего контура; в случае недеформируемых цепей и квазистационарных процессов И. может быть вынесена из-под знака дифференцирования. энергия, запасённая в создаваемом им магн. поле, записывается в форме, аналогичной выражению для кинетич. энергии.

W m = 1 / 2 LI 2 (в СИ), W m = 1 / 2 c 2 LI 2 (в системе СГС). (3)

Соотношение (3) позволяет различать И. внутреннюю L i , определяющую энергию магн. поля, сосредоточенного в проводниках, и внешнюю L e , связанную с внеш. магн. полем (L=L i +L e , L= L i + L e). В важном частном случае токовой цепи, выполненной из проводов, толщина к-рых мала по сравнению с радиусамиих изгибов или расстояниями между соседними проводами, можно считать, что структура токов и ближнего магн. поля такая же, как и для прямого провода того же сечения (подобные наз. квазилинейными). В приближении заданной структуры токов, не зависящей от способа их возбуждения, И. определяется только геометрией проводящей цепи (толщиной и длиной проводов и их формой). Для квазилинейного провода кругового сечения L i =(m 0 /8p)m i l (l - длина провода, m i - магн. проницаемость проводника), а внешняя И. может быть представлена как индуктивность взаимная двух параллельных бесконечно тонких проводящих нитей, одна из к-рых (l 1) совпадает с осевой линией проводника, а другая (l 2) совмещена с его поверхностью:

где r 1 , r 2 - радиус-векторы точек на контурах l l , l 2 , m е - магн. проницаемость окружающей среды [для аналогия, соотношений в системе СГС L "(m 0 /4p)L]. Из (4) видно, что L e логарифмически расходится при стремлении радиуса провода к нулю, поэтому идеализацией бесконечно тонкого провода нельзя пользоваться при описании явлений самоиндукции. Приближённые вычисления интеграла в (4) с учётом внутренней И. дают:

где l и а - длина и радиус провода. Это выражение обладает логарифмич. точностью - его относит. погрешность порядка величины l/ln(l/a). Примеры типичных электрич. цепей и выражения для их И. приведены на рис. 1 и 2.

Рис. 1. Круговой виток. Индуктивность витка (проводящего тора): L=m 0 R(ln(8R/r)-2+ 1 / 4 m i ), Гн, r<

Особое значение в электротехнике и радиотехнике имеют проволочные катушки с достаточно плотной намоткой - соленоиды (рис. 3), применяемые для увеличения И. Поскольку И. цепей, в к-рые включены соленоиды, ими в основном и определяются, принято говорить об И. соленоида. Под величиной И. идеальногосоленоида понимают И. эфф. проводящей поверхности (совпадающей с его каркасом), по к-рой протекают азимутальные токи с плотностью j пов =Ik (I - ток в соленоиде, k - число витков на единице длины).



Понятие И. допускает обобщение на быстропеременные гармонич. ехр(iwt)-процессы, при описании к-рых нельзя пренебрегать запаздыванием эл.-магп. взаимодействий, скин-эффектом в проводниках, дисперсией среды. Комплексные амплитуды тока I w и эдс самоиндукции E w связаны соотношением:

И. L(w) зависит от частоты (как правило, уменьшается с её ростом). Эфф. сопротивление R L (w) определяет часть энергетич. потерь, в т. ч. потери на , и связано с L(w) Крамерса - Кронига соотношением:



где интеграл берётся в смысле гл. значения. На низких частотах сопротивлением R L (w) можно пренебречь, тогда E w и I w сдвинуты по фазе на p/2. Соотношение (3) для высокочастотных процессов преобразуется к виду:

где W m w - усреднённая по периоду колебаний энергия ближних (квазистационарных) магн. полей (полная магн. энергия поля не определена из-за линейно растущей во времени энергии поля излучения).Если в цепи действует гармонич. сторонняя эдс , то во втором законе Кирхгофа величина E w может быть перенесена (со сменой знака) в правую часть равенства:

где С - ёмкость, включённая в цепь. Соотношение (9) позволяет трактовать величину Z L =iwLкак индуктивную часть импеданса цепи (при Z C =-i/ w С - ёмкостная, a Z R =R - активная части полного импеданса Z=Z L +Z C +Z R ). Принято считать, что двухполюсника имеет индуктивный характер, если его мнимая часть больше нуля [если рассматриваются ехр (-iwt)-процессы, то меньше нуля]. В технике довольно часто И. наз. любой двухполюсник, импеданс к-рого имеет индуктивный характер п в опредсл. диапазоне частот линейно зависит от w. Если индуктивные выполнены в виде катушек самоиндукции, то считать их двухполюсниками можно, вообще говоря, только в том случае, когда через магн. поля между ними и с др. элементами цепи пренебрежимо мало. Тогда их импедансы можно складывать в соответствии с правилами Кирхгофа: при последовательном соединении , а при параллельном При описании сильноточных цепей часто требуется обобщение понятия И. на случай нелинейных систем. Если неподвижный проводящий контур помещён всреду, в к-рой вектор магн. индукции В и напряжённость магн. поля Н связаны нелинейным локальным соотношением: B(r, t)=B, то сцепленный с контуром магн. поток можно считать однозначной ф-цией тока Ф=Ф(I). В соответствии с законом индукции Фарадея, эдс самоиндукции в контуре равна:

Величина L Д (I)=d Ф /d Iназ. дифференциальной (или иногда динамической) И. Выражение для запасённой энергии пост. тока приобретает вид:

B линейном приближении (при I "0) L Д "L и выражения (10), (11) переходят в (2) и (3) соответственно. Лит.: Тамм И. Е., Основы теории электричества9 изд., М., 1976; Калантаров П. Л., Цейтлин Л. А. Расчет индуктивностей, 3 изд., Л., 1986; Ландау Л. Д. Лифшиц Е. М., Электродинамика сплошных сред, 2 изд. М., 1982. М. А. Миллер, Г. В. Пермитин

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Википедия - Скалярная величина, равная отношению потокосцепления самоиндукции элемента электрической цепи к электрическому току в нем. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия Синонимы собственная индуктивность … Справочник технического переводчика

Факторы, влияющие на индуктивность катушки

На индуктивность катушки оказывают влияние следующие основные факторы:

Число витков провода в катушке: При прочих равных условиях, увеличение числа витков приводит к увеличению индуктивности ; уменьшение числа витков приводит к уменьшению индуктивности.

Пояснение: чем больше количество витков, тем больше будет магнитодвижущая сила для заданной величины тока.

Площадь поперечного сечения катушки: При прочих равных условиях , катушка с большей площадью поперечного сечения будет иметь большую индуктивность ; а катушка с меньшей площадью поперечного сечения - меньшую индуктивность.

Пояснение: Катушка с большей площадью поперечного сечения оказывает меньшее сопротивление формированию магнитного потока для заданной величины магнитодвижущей силы .

Длина катушки: При прочих равных условиях, чем больше длина катушки, тем меньше ее индуктивность; чем меньше длина катушки, тем больше ее индуктивность.

Пояснение: Чем больше длина катушки, тем большее сопротивление она оказывает формированию магнитного потока для заданной величины магнитодвижущей силы.

Материал сердечника: При прочих равных условиях, чем больше магнитная проницаемость сердечника, вокруг которого намотана катушка, тем больше индуктивность; чем меньше магнитная проницаемость сердечника - тем меньше индуктивность.

Пояснение: Материал сердечника с большей магнитной проницаемостью способствует формированию большего магнитного потока для заданной величины магнитодвижущей силы.



Приблизительное значение индуктивности любой катушки можно найти по следующей формуле:



Следует понимать , что данная формула дает только приблизительные цифры . Одной из причин такого положения дел является изменение величины магнитной проницаемости при изменении напряженности магнитного поля (вспомните нелинейность кривой В/Н для разных материалов). Очевидно, если проницаемость (µ) в уравнении будет непостоянна, то и индуктивность (L) также будет в некоторой степени непостоянна. Если гистерезис материала сердечника будет существенным, то это непременно отразится на индуктивности катушки. Разработчики катушек индуктивности пытаются минимизировать эти эффекты, проектируя сердечник таким образом, чтобы его намагниченность никогда не приближалась к уровням насыщения, и катушка работала в более линейной части кривой B/H.

Если катушку сделать таким образом, что любой из вышеперечисленных факторов у нее можно механически изменить, то получится катушка с регулируемой величиной индуктивности или вариометр. Наиболее часто встречаются вариометры, индуктивность которых регулируется количеством витков или положением сердечника (который перемещается внутри катушки). Пример вариометра с изменяемым количеством витков можно увидеть на следующей фотографии:



Это устройство использует подвижные медные контакты , которые подключаются к катушке в различных точках ее длины. Подобные катушки, имеющие воздушный сердечник, применялись в разработке самых первых радиоприемных устройств.

Катушка с фиксированными значениями индуктивности, показанная на следующей фотографии, представляет собой еще одно раритетное устройство, использовавшееся в первых радиостанциях. Здесь вы можете увидеть несколько витков относительно толстого провода, а так же соединительные выводы:



А это еще одна катушка индуктивности, так же предназначенная для радиостанций. Для большей жесткости ее провод намотан на керамический каркас:



Многие катушки индуктивности обладают небольшими размерами, что позволяет монтировать их непосредственно на печатные платы. Посмотрев внимательно на следующую фотографию, можно увидеть две расположенные рядом катушки:



Две катушки индуктивности расположены справа в центре этой платы и имеют обозначения L 1 и L 2 . В непосредственной близости от них находятся резистор R 3 и конденсатор С 16 . Показанные на плате катушки называются "торроидальными", так как их провод намотан вокруг сердечника, имеющего форму тора.

Как резисторы и конденсаторы, катушки индуктивности могут выполняться в корпусе для поверхностного монтажа (SMD). На следующей фотографии представлено несколько таких катушек:



Две индуктивности здесь расположены справа в центре платы. Они представляют собой маленькие черные чипы с номером "100", а над одной из них можно увидеть обозначение L 5 .