Жидкие вещества и их свойства. Жидкое состояние вещества. Употребление жидкости сверх нормы. — Пинтовый бокал —

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)].

Рис. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато).

Рис. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо.

Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.
Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо. Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.

Рис. Упрощение опыта Плато.

Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58).
За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин].

Жидкость принимает форму емкости, в которой она находится – одно из основных агрегатных состояний вещества наряду с газом и твердым телом. От газа жидкость отличается тем, что сохраняет свой объем, а от твердого тела тем, что не сохраняет форму.
Движение жидкостей и тел в жидкостях изучает раздел физики гидродинамика, строение и физические свойства жидкостей – физика жидкостей, составляющая частнина молекулярной физики.
Жидкость – конденсированный агрегатное состояние вещества, промежуточный между твердым и газообразным. Физическое тело, которому присуща:
Сохранения объема, плотность, показатель преломления, теплота плавления, вязкость – свойства, сближающие жидкости с твердыми телами, а несохранение формы – с газами. Для жидкостей характерно ближний порядок расположения молекул (относительная упорядоченность в расположении молекул ближайшего окружения произвольной молекулы, подобная порядка в кристаллических телах, но на расстоянии нескольких атомных диаметров эта упорядоченность нарушается). Взаимодействие между молекулами жидкости осуществляется Ван дер ваальсовыми и водородными связями. Жидкости, кроме рассолов и сжиженных металлов, плохие проводники электрического тока.
Текучесть жидкостей связана с периодическим "перепрыгиванием" их молекул из одного равновесного положения в другое. Большую часть времени отдельная молекула жидкости находится во временной ассоциации с соседними молекулами (близкая упорядоченность), где она осуществляет тепловые колебания. Иногда жидкостью в широком смысле слова называют и газ, при этом жидкость в узком смысле слова, которая удовлетворяет предыдущим двум условиям, называют капельной жидкостью.
Форма, которую принимает жидкость определяется формой емкости, в которой она находится. Частицы жидкости (обычно молекулы или группы молекул) могут свободно перемещаться по всему ее объему, но сила взаимного притяжения не позволяет частицам оставлять этот объем. Объем жидкости зависит от температуры и давления и является постоянным при данных условиях.
Если объем жидкости меньше объем емкости, в которой она содержится, то можно наблюдать поверхность жидкости. Поверхность должна качества эластичной мембраны с поверхностным натяжением, что позволяет формироваться каплям и пузырькам. Еще одним следствием действия поверхностного натяжения является капиллярность. Обычно жидкости не поддаются сжатию: например, чтобы заметно сжать воду, необходимо давление порядка гигапаскалей.
Жидкости в гравитационном поле создают давление, как на стенки и дно емкости, так и на любые тела внутри самой жидкости. Это давление действует во всех направлениях (Закон Паскаля) и растет с глубиной.
Если жидкость находится в состоянии покоя в однородном гравитационном поле, давление на любую точку определяется барометрической формуле:

Где:
Согласно этой формуле, давление на поверхности равна нулю, то есть считается, что сосуд достаточно широка, и поверхностное натяжение можно не учитывать.
Обычно жидкости расширяются при нагревании и сужаются при охлаждении. Вода между 0 и 4 ° C составляет один из немногих исключений.
Жидкость при температуре кипения превращается в газ, а при температуре замерзания – в твердое вещество. Но даже при температуре ниже температуры кипения, жидкость испаряется. Этот процесс продолжается, пока не будет достигнуто равновесия парциального давления паров жидкости и давления на поверхности жидкости. Именно поэтому ни одна жидкость не может существовать длительное время в вакууме.
Все жидкости можно разделить на чистые жидкости, состоящие из молекул одного вещества, и смеси, состоящие из молекул разного сорта. Различные жидкие компоненты смеси можно разделить с помощью фракцийонои дистилляции. Не все жидкости образуют однородную смесь, если поместить их в один сосуд. Часто жидкости не смешиваются, образуя поверхность между собой. В поле тяготения одна жидкость может плавать на поверхности другой.
Основном жидкости – изотропные вещества. Исключение составляют жидкие кристаллы, которые можно отнести к жидкостям учитывая свойство перетекать и занимать объем сосуда, но в которых хранятся свойственные кристаллическим телам анизотропные свойства.
В жидкости молекулы основном сохраняют свою целостность, хотя многие жидкостей являются растворителями, в которых молекулы до некоторой степени диссоциируют. При диссоциации в жидкостях образуются положительно и отрицательно заряженные ионы. Такие жидкости проводят электрический ток (см. Электролиты).
С микроскопической точки зрения жидкости отличаются от твердых тел отсутствием дальнего порядка, а от газов – ближним порядком. Это означает, что атомы и молекулы жидкостей основном находятся относительно своих соседей в тех же положениях, что и в твердом состоянии, однако этот порядок сохраняется для последующего слоя соседей хуже, а в дальнейшем совсем исчезает. Ближний порядок в жидкостях характеризуют радиальной корреляционной функцией.
Молекулы жидкостей основном колеблются вокруг временного положения равновесия, которое образуется благодаря взаимодействию с другими молекулами. Для жидкостей потенциальная энергия взаимодействия молекулы с соседями больше, чем кинетическая энергия теплового движения. Однако жидкости характеризуются также высоким коэффициентом самодиффузии – со временем каждая молекула удаляется от своего первоначального положения. Средний квадрат смещения от исходного положения молекулы пропорционален времени.
Благодаря взаимодействию молекулы в жидкости расположены не совсем хаотично. Для характеристики взаимного положения молекул используется понятие радиальной функции распределения, которая пропорциональна вероятности того, что на определенном расстоянии от какой произвольно-выбранной молекулы, находиться другая молекула. Для идеального газа радиальная функция распределения не зависит от расстояния и везде доривное единицы – движение молекул газа нескорельований, вероятность найти другую молекулу на определенном расстоянии одинакова. Для кристалла такая функция распределения состоит из выразительных максимумов, высота которых практически не уменьшается с расстоянием. Говорят, что в кристаллах сохраняется дальний порядок. В жидкостях радиальная функция распределения имеет несколько максимумов, высота которых уменьшается с расстоянием и через несколько средних межмолекулярных расстояний становится равной единице. Говорят, что в жидкостях сохраняется ближний порядок, и не сохраняется дальний порядок.
Экспериментально радиальную функцию распределения можно получить, проанализировав данные экспериментов с рассеяния рентгеновских лучей или нейтронов.
Малая сжимаемость жидкостей объясняется большим ростом сил отталкивания между частицами жидкости при незначительном приближении одной частицы к другой..
Все реальные жидкости в той или иной степени сжимаются, то есть под действием внешнего давления уменьшают свой объем. Сжимаемость – это способность жидкости изменять свой объем при изменении давления.
Сжимаемость жидкости определяется уравнением состояния и, как правило, имела по величине. Малая сжимаемость жидкости обусловлена тем, что жидкость характеризуется сильной молекулярной взаимодействием, а изменения величин давления в технических процессах сравнительно невелики.
Учитывая относительную малость давлений, встречающихся в реалиях допускают, что жидкость сжимается по закону Гука (по линейной зависимости). Степени сжимаемости жидкостей служит коэффициент объемного сжатия жидкости ? S, представляющий собой относительное уменьшение объема V при повышении давления p на единицу:

Знак «минус» в формуле означает, что при увеличении давления объем уменьшается. Если считать, что единицей давления является Паскаль, то коэффициент объемного сжатия будет измеряться в Па -1 (м 2 / Н).
Упругость – это способность жидкости восстанавливать свой объем после прекращения действия внешних силовых воздействий.
Для качественной характеристики упругих свойств используют понятие модуля объемной упругости К, который, по сути, является обратной величиной к коэффициенту сжимаемости, т.е. К = 1 / ? S. Например, для воды ? S = 0,51 · 10 -9 Па -1, что указывает на достаточно малую сжимаемость воды.
Гипотетическую жидкость, для которой ? S = 0, называют несжимаемой.
Во многих случаях с достаточной для практики точностью в гидравлике можно пренебречь сжимаемостью жидкости и сопротивлением растяжению и рассматривать жидкость как абсолютно несжимаема с отсутствием сопротивления растяжению.
В гидрогазодинамике встречается ряд задач, когда можно пренебречь и вязкостью, принимая, что касательные напряжения отсутствуют так, как это имеет место в жидкости, находящейся в состоянии покоя.
Описанная гипотетическая жидкость с перечисленными свойствами, а именно:
называется идеальной жидкостью.
Понятие «идеальная жидкость» впервые было введено Л. Эйлером.
Такая жидкость является предельной абстрактной моделью и лишь приближенно отражают объективно существующие свойства реальных жидкостей. Эта модель позволяет с достаточной точностью решать много очень важных вопросов гидрогазодинамики и способствует упрощению сложных задач.

Большинство производителей электронных сигарет указывают в составе заправочных жидкостей четыре основных компонента:

  • Пропиленгликоль от 0 до 95%;
  • Глицерин – от 0 до 80%
  • Вода – от 0 до 20%
  • Ароматизаторы
  • Никотин

Пропиленгликоль — жидкое вещество, его плотность в несколько раз выше воды, и за счёт него создаётся эффект затяжки, которая происходит и во время курения обычной табачной сигареты. При этом пропиленгликоль не считается токсичным, в отличие от смол и иных компонентов традиционных сигарет.

Глицерин в составе жидкости никак не влияет на вкусовые качества сигареты. Его задача — создавать густой пар. Чем выше содержание глицерина, тем гуще пар, производимый электронной сигаретой.

Вода необходима в жидкости для электронных сигарет для осуществления процесса испарения.

Ароматизаторы используются для создания вкуса. Ароматизаторы представляют собой синтетические или натуральные соединения, использующиеся в пищевой промышленности.

Никотин в электронных сигаретах не константная составляющая. Он может присутствовать, а может и нет. В отличие от традиционных сигарет, где помимо никотина присутствуют некоторые виды смол и канцерогенов, в электронной имеется только один никотин.

Стоит добавить, что табачный вкус сигаретам придаёт обычный синтетический ароматизатор, а не никотин.

Итак, состав жидкости для электронных сигарет не в пример, проще, чем состав обычной сигареты, под чем подразумеваются вещества, которыми она пропитывается и вещества, которые образуются в результате процесса горения.

Виды жидкостей для электронных сигарет

Жидкость для электронных сигарет может быть нескольких видов и различаться по ряду критериев.

В первую очередь отличают безникотиновые и никотиновые жидкости для электронных сигарет. Последние различаются по количеству никотина и, как следствие, по крепости.

Классическая классификация содержания никотина в жидкости для электронных сигарет выглядит следующим образом:

  • 0 мг/мл — жидкость без никотина
  • 6-8 мг/мл — легкая концентрация
  • 11-12 мг/мл — средняя концентрация
  • 16-18 мг/мл — концентрации выше среднего
  • 22-24 мг/мл — высокая концентрация
  • 36 мг/мл — самая высокая концентрация (она обычно поставляется в жидкости для самозамеса)

Проще всего выяснить, какое количество никотина нужно для картриджа электронной сигареты, посмотрев на пачку обычных сигарет. Там должно быть указано, к примеру, что количество никотина на в одной сигарете равно 0,6 мг. Умножьте это число на количество сигарет в пачке, то есть на 20, и вы получите объём никотина, который необходим в жидкости для электронных сигарет. 20 х 0,6 = 12. Соответственно жидкость должна быть со средней концентрацией никотина, то есть 11-12 мг/мл.

Пропиленгликоль отвечает в электронной сигарете за силу тяги. Чем выше содержание пропиленгликоля, тем мощнее и туже затяжка. Привычное определение «затяжка» сегодня получило другое название — тротхит, что от английского означает «удар по горлу» — «throat hit». В электронных сигаретах за тротхит, или проще говоря за силу затяжки отвечает пропиленгликоль, а не никотин, вопреки распространённому мнению. Так, если на упаковке с жидкостью указано, что объём пропиленгликоля значительно превышает объём глицерина, то затяжка будет сильнее, и возникнет ощущение крепости сигареты.

Соотношение с повышенным содержанием пропиленгликоля называется Ice blade (ледяной клинок), где на 95% пропиленгликоля добавляется лишь 5% глицерина.

Глицерин, как говорилось ранее, отвечает за количество пара, испускаемого электронной сигаретой. И чем больше содержание глицерина в жидкости для электронных сигарет, тем гуще и объёмнее будет пар. Однако, получить и густой пар и тугой тротхит в одной сигарете не получится. Чем больше количество глицерина в жидкости, тем меньше пропиленгликоля, и наоборот.

По типу ароматизатора

Ароматических основ для жидкостей электронных сигарет существует великое множество. Используются в равной степени и натуральные, и синтетические ароматизаторы. К слову сказать, и те, и другие успешно используются в пищевой промышленности. Чтобы стало ясно, натуральный ароматизатор — это экстракт, эссенция, эфирное масло, полученные путём извлечения имеющегося в природе химического соединения. Искусственный ароматизатор получают путём синтеза и анализа веществ, получая в итоге не существующее самостоятельно в природе химическое соединение. В качестве примера, ароматизатор «кола» добыт путём исключительно синтетическим, в отличие, например, от ароматизатора «мелисса» или «мята», которые несложно добыть и естественным путём.

В основном для ароматических основ производители отдают предпочтение табачным и фруктовым вкусам, так как они больше остальных пользуются популярностью у вейперов. Есть также сладкие ароматизаторы с шоколадными, сливочными и тому подобными вкусами. Ошибочно полагать, что табачный вкус жидкости для электронных сигарет определяется исключительно присутствием или отсутствием никотина. Табак — это ещё не никотин. Табачный вкус даёт тот же самый ароматизатор.

Безопасность жидкости для электронных сигарет

На тему безопасности электронных сигарет, и в частности, жидкостей для них, сказано уже очень много, и будет сказано ещё больше. Исследования проводятся, и будут проводиться, технологии производства сигарет и жидкостей для них совершенствоваться. Сказать, что жидкость для электронных сигарет абсолютно безвредна будет также неправильно, как и заявить, что она губительна. Разумеется, те, кто утверждают, что обычный глицерин в электронных сигаретах полностью безопасен, пожалуй, лукавят. Несмотря на то, что он вполне спокойно воспринимается организмом, нельзя сравнивать его действие при нанесении, например, на кожу, и при вдыхании лёгкими. То же самое касается и пропиленгликоля, и ароматизаторов.

Идея о том, что электронные сигареты — это способ для борьбы с курением тоже, отчасти лукавство. Начиная парить, и заменяя дым паром, человек продолжает привычное для него курение. И то, что называют отказом от курения, по сути является его заменой, но заменой не равнозначной.

Если исследования безопасности электронных сигарет пока ведутся, то исследования табачных изделий проведены уже исчерпывающие, и многим курильщикам уже набили оскомину.

В табачном дыме действительно содержатся токсичные вещества, которые так или иначе отравляют организм, и отрицать это бесполезно. В нём содержатся диоксид углерода, оксиды азота, бутадиен, монооксид углерода, формальдегиды, метанол, синильная кислота, Полоний-210 и Свинец-210, изотопы Радона и Цезия. Список этот можно дополнять, и по отравляющим свойствам, никотин действительно, будет самым безобидным из них. В сравнении с этим списком пропиленгликоль и глицерин с ароматизатором в жидкости для электронных сигарет выглядят более чем безобидно. Поэтому обезопасить себя полностью, начав парить, вряд ли получится, но создать достойную альтернативу традиционному курению вполне можно.

В чем преимущество электронных сигарет над обычными?

Электронная сигарета

Обычная сигарета

Безвреднее и безопаснее в сравнении с традиционным табакокурением Содержит более, чем 4000 химических соединений, наносящих вред здоровью
Основной состав прост – глицерин, пропиленгликоль, вода, никотин (последний может отсутствовать) Состав сигареты сложен, часто содержатся низкокачественные продукты
Нет наличия канцерогенов Больше 60 канцерогенов содержится в каждой сигарете
Нет привыкания (исключая жидкости с никотином) Привыкание развивается достаточно быстро, и сегодня считается одним из самых стойких
Неприятный запах изо рта отсутствует Имеется не только неприятный запах изо рта, но начинается медленный процесс разрушения эмали зубов.

Перед вами (рис. 51) два кофейника одинаковой ширины: один высокий, другой – низкий. Какой из них вместительнее?

Рис. 51. В какой из этих кофейников можно налить больше жидкости?
Многие, вероятно, не подумав, скажут, что высокий кофейник вместительнее низкого. Если бы вы, однако, стали лить жидкость в высокий кофейник, вы смогли бы налить его только до уровня отверстия его носика – дальше вода начнет выливаться. А так как отверстия носика у обоих кофейников на одной высоте, то низкий кофейник оказывается столь же вместительным, как и высокий с коротким носиком.
Это и понятно: в кофейнике и в трубке носика, как во всяких сообщающихся сосудах, жидкость должна стоять на одинаковом уровне, несмотря на то, что жидкость в носике весит гораздо меньше, чем в остальной части кофейника. Если же носик недостаточно высок, вы никак не нальете кофейник доверху: вода будет выливаться, Обычно носик устраивается даже выше краев кофейника, чтобы сосуд можно было немного наклонять, не выливая содержимого.

Чего не знали древние

Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.
Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рис. 52, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, – и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!

Рис. 52. Водопроводные сооружения древнего Рима в их первоначальном виде.

Жидкости давят… вверх!

Рис. 53. Простой способ убедиться, что жидкость давит снизу вверх.
О том, что жидкости давят вниз, на дно сосуда, и вбок, на стенки, знают даже и те, кто никогда не изучал физики. Но что они давят и вверх , многие даже не подозревают. Обыкновенное ламповое стекло поможет убедиться, что такое давление действительно существует. Вырежьте из плотного картона кружок таких размеров, чтобы он закрывал отверстие лампового стекла. Приложите его к краям стекла и погрузите в воду, как показано на рис. 53. Чтобы кружок не отпадал при погружении, его можно придерживать ниткой, протянутой через его центр, или просто прижать пальцем. Погрузив стекло до определенной глубины, вы заметите, что кружок хорошо держится и сам, не прижимаемый ни давлением пальца, ни натяжением нитки: его подпирает вода, надавливающая на него снизу вверх.
Вы можете даже измерить величину этого давления вверх. Наливайте осторожно в стекло воду; как только уровень ее внутри стекла приблизится к уровню в сосуде, кружок отпадает. Значит, давление воды на кружок снизу уравновешивается давлением на него сверху столба воды, высота которого равна глубине кружка под водой. Таков закон давления жидкости на всякое погруженное тело. Отсюда, между прочим, происходит и та "потеря” веса в жидкостях, о которой говорит знаменитый закон Архимеда.

Рис. 54. Давление жидкости на дно сосуда зависит только от площади дна и от высоты уровня жидкости. На рисунке показано, как проверить это правило.
Имея несколько ламповых стекол разной формы, но с одинаковыми отверстиями, вы сможете проверить и другой закон, относящийся к жидкостям, а именно: давление жидкости на дно сосуда зависит только от площади дна и высоты уровня, от формы же сосуда оно совершенно не зависит. Проверка будет состоять в том, что вы проделаете описанный сейчас опыт с разными стеклами, погружая их на одну и ту же глубину (для чего надо предварительно приклеить к стеклам бумажные полоски на равной высоте). Вы заметите, что кружок всякий раз будет отпадать при одном и том же уровне воды в стеклах (рис. 54). Значит, давление водяных столбов различной формы одинаково, если только одинаковы их основание и высота. Обратите внимание на то, что здесь важна именно высота , а не длина, потому что длинный наклонный столб давит на дно совершенно так же, как и короткий отвесный столб одинаковой с ним высоты (при равных площадях оснований).

Что тяжелее?

На одну чашку весов поставлено ведро, до краев наполненное водой. На другую – точно такое же ведро, тоже полное до краев, но в нем плавает кусок дерева (рис. 55). Какое ведро перетянет?
Я пробовал задавать эту задачу разным лицам и получал разноречивые ответы. Одни отвечали, что должно перетянуть то ведро, в котором плавает дерево, потому что "кроме воды, в ведре есть еще и дерево”. Другие – что, наоборот, перетянет первое ведро, "так как вода тяжелее дерева”.
Но ни то, ни другое не верно: оба ведра имеют одинаковый вес. Во втором ведре, правда, воды меньше, нежели в первом, потому что плавающий кусок дерева вытесняет некоторый ее объем. Но, по закону плавания, всякое плавающее тело вытесняет своей погруженной частью ровно столько жидкости (по весу), сколько весит все это тело. Вот почему весы и должны оставаться в равновесии.

Рис. 55. Оба ведра одинаковы и наполнены водой до краев; в одном плавает кусок дерева. Которое перетянет?
Решите теперь другую задачу. Я ставлю на весы стакан с водой и рядом кладу гирьку. Когда весы уравновешены гирями на чашке, я роняю гирьку в стакан с водой. Что сделается с весами?
По закону Архимеда, гирька в воде становится легче, чем была вне воды. Можно, казалось бы, ожидать, что чашка весов со стаканом поднимется. Между тем в действительности весы останутся в равновесии. Как это объяснить?
Гирька в стакане вытеснила часть воды, которая оказалась выше первоначального уровня; вследствие этого увеличивается давление на дно сосуда, так что дно испытывает добавочную силу, равную потере веса гирькой.

Естественная форма жидкости

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда "теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)] (рис. 56).

Рис. 56. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато).

Рис. 57. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо.
Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.
Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо (рис. 57). Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.

Рис. 58. Упрощение опыта Плато.
Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58).
За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин].

Почему дробь круглая?

Сейчас мы говорили о том, что всякая жидкость, освобожденная от действия тяжести, принимает свою естественную форму – шарообразную. Если вспомните сказанное раньше о невесомости падающего тела и примете в расчет, что в самом начале падения можно пренебречь ничтожным сопротивлением воздуха [Дождевые капли опускаются ускоренно только в самом начале падения; уже примерно ко второй половине первой секунды падения устанавливается равномерное движение: все капли, уравновешивается силой сопротивления воздуха, которая возрастает с ростом скорости капли.], то сообразите, что падающие порции жидкости также должны принимать форму шаров. И действительно, падающие капли дождя имеют форму шариков. Дробинки – не что иное, как застывшие капли расплавленного свинца, который при заводском способе изготовления заставляют падать каплями с большой высоты в холодную воду: там они затвердевают в форме совершенно правильных шариков.

Рис. 59. Башня дроболитейного завода.
Так отлитая дробь называется "башенной”, потому что при отливке ее заставляют падать с верхушки высокой "дроболитейной” башни (рис. 59). Башни дроболитейного завода – металлической конструкции и достигают в высоту 45 м; в самой верхней части располагается литейное помещение с плавильными котлами, внизу – бак с водой. Отлитая дробь подлежит еще сортировке и отделке. Капля расплавленного свинца застывает в дробинку еще во время падения; бак с водой нужен лишь для того, чтобы смягчить удар дробинки при падении и предотвратить искажение ее шарообразной формы. (Дробь диаметром больше 6 мм, так называемая картечь, изготовляется иначе: вырубкой из проволоки кусочков, потом обкатываемых.)

"Бездонный” бокал

Вы налили воды в бокал до краев. Он полон. Возле бокала лежат булавки. Может быть, для одной-двух булавок еще найдется место в бокале? Попробуйте.

Рис. 60. Поразительный опыт с булавками в бокале воды.
Начните бросать булавки и считайте их. Бросать надо осмотрительно: бережно погружайте острие в воду и затем осторожно выпускайте булавку из руки, без толчка или давления, чтобы сотрясением не расплескать воды. Одна, две, три булавки упали на дно – уровень воды остался неизменным. Десять, двадцать, тридцать булавок… Жидкость не выливается. Пятьдесят, шестьдесят, семьдесят… Целая сотня булавок лежит на дне, а вода из бокала все еще не выливается (рис. 60).
Не только не выливается, но даже и не поднялась сколько-нибудь заметным образом над краями. Продолжайте добавлять булавки. Вторая, третья, четвертая сотня булавок очутилась в сосуде – и ни одна капля не перелилась через край; но теперь уже видно, как поверхность воды вздулась, возвышаясь немного над краями бокала. В этом вздутии вся разгадка непонятного явления. Вода мало смачивает стекло, если оно хотя немного загрязнено жиром; края же бокала – как и вся употребляемая нами посуда – неизбежно покрывается следами жира от прикосновения пальцев. Не смачивая краев, вода, вытесняемая булавками из бокала, образует выпуклость. Вздутие незначительно на глаз, но если дадите себе труд вычислить объем одной булавки и сравните его с объемом той выпуклости, которая слегка вздулась над краями бокала, вы убедитесь, что первый объем в сотни раз меньше второго, и оттого в "полном” бокале может найтись место еще для нескольких сотен булавок. Чем шире посуда, тем больше булавок она способна вместить, потому что тем больше объем вздутия.
Сделаем для ясности примерный подсчет. Длина булавки – около 25 мм, толщина ее – полмиллиметра. Объем такого цилиндра нетрудно вычислить по известной формуле геометрии (p*d2*h/4), он равен 5 куб. мм. Вместе с головкой объем булавки не превышает 5,5 куб. мм.
Теперь подсчитаем объем водяного слоя, возвышающегося над краями бокала. Диаметр бокала 9 см = 90 мм. Площадь такого круга равна около 6400 кв. мм. Считая, что толщина поднявшегося слоя только 1 мм, имеем для его объема 6400 куб. мм; это больше объема булавки в 1200 раз. Другими словами, "полный” бокал воды может принять еще свыше тысячи булавок! И действительно, осторожно опуская булавки, можно погрузить их целую тысячу, так что для глаз они словно займут весь сосуд и будут даже выступать над его краями, а вода все-таки еще не будет выливаться.

Любопытная особенность керосина

Кому приходилось иметь дело с керосиновой лампой, тот, вероятно, знаком с досадными неожиданностями, обусловленными одной особенностью керосина. Вы наполняете резервуар, вытираете его снаружи досуха, а через час находите его снова мокрым.
Дело в том, что вы недостаточно плотно завинтили горелку и керосин, стремясь растечься по стеклу, выполз на наружную поверхность резервуара. Если желаете оградить себя от подобных "сюрпризов”, вы должны возможно плотнее завинчивать горелку.
Эта ползучесть керосина весьма неприятным образом ощущается на судах, машины которых потребляют керосин (или нефть). На подобных судах, если не приняты меры, положительно невозможно перевозить никакие товары, кроме тех же керосина или нефти, потому что жидкости эти, выползая из баков через незаметные скважины, растекаются не только по металлической поверхности самих баков, но проникают решительно всюду, даже в одежду пассажиров, сообщая всем предметам свой неистребимый запах. Попытки бороться с этим злом остаются часто безрезультатными. Английский юморист Джером не очень преувеличивал, когда в повести "Трое в одной лодке” рассказывал о керосине следующее:
"Я не знаю вещества, более способного просачиваться всюду, чем керосин. Мы держали его на носу лодки, а он оттуда просочился на другой конец, пропитав своим запахом все, что попадалось ему по пути. Просачиваясь сквозь обшивку, он капал в воду, портил воздух и небо, отравлял жизнь. Иногда керосиновый ветер дул с запада, иногда с востока, а иной раз это был северный керосиновый ветер или, может быть, южный, но, прилетал ли он из снежной Арктики или зарождался в песках пустыни, он всегда достигал нас, насыщенный ароматом керосина. По вечерам это благоухание уничтожало прелесть заката, а лучи месяца положительно источали керосин… Привязав лодку у моста, мы пошли прогуляться по городу, но ужасный запах преследовал нас. Казалось, весь город был им пропитан”. (На самом деле, конечно, пропитано было им лишь платье путешественников.)
Способность керосина смачивать наружную поверхность резервуаров подала повод к неправильному мнению, будто керосин может проникать сквозь металлы и стекло.

Копейка, которая в воде не тонет,

Существует не только в сказке, но и в действительности. Вы убедитесь в этом, если проделаете несколько легко выполнимых опытов. Начнем с более мелких предметов – с иголок. Кажется невозможным заставить стальную иглу плавать на поверхности воды, а между тем это не так трудно сделать. Положите на поверхность воды лоскуток папиросной бумаги, а на него – совершенно сухую иголку. Теперь остается только осторожно удалить папиросную бумагу из-под иглы. Делается это так: вооружившись другой иглой или булавкой, слегка погружают края лоскутка в воду, постепенно подходя к середине; когда лоскуток весь намокнет, он упадет на дно, игла же будет продолжать плавать (рис. 61). При помощи магнита, подносимого к стенкам стакана на уровне воды, вы можете даже управлять движением этой плавающей на воде иглы.
При известной сноровке можно обойтись и без папиросной бумаги: захватив иглу пальцами посредине, уроните ее в горизонтальном положении с небольшой высоты на поверхность воды.

Рис. 61. Игла, плавающая на воде. Вверху – разрез иглы (2 мм толщины) и точная форма углубления на воде (увеличено в 2 раза). Внизу – способ заставить иглу плавать на воде с помощью лоскутка бумаги.
Вместо иглы можно заставить плавать булавку (то и другое – не толще 2 мм), легкую пуговицу, мелкие плоские металлические предметы. Наловчившись в этом, попробуйте заставить плавать и копейку.
Причина плавания этих металлических предметов та, что вода плохо смачивает металл, побывавший в наших руках и потому покрытый тончайшим слоем жира. Оттого вокруг плавающей иглы на поверхности воды образуется вдавленность, ее можно даже видеть. Поверхностная пленка жидкости, стремясь распрямиться, оказывает давление вверх на иглу и тем поддерживает ее. Поддерживает иглу также и выталкивающая сила жидкости, согласно закону плавания: игла выталкивается снизу с силой, равной весу вытесненной ею воды. Всего проще добиться плавания иглы, если смазать ее маслом; такую иглу можно прямо класть на поверхность воды, и она не потонет.

Вода в решете

Оказывается, что и носить воду в решете возможно не только в сказке. Знание физики поможет исполнить такое классически невозможное дело. Для этого надо взять проволочное решето сантиметров 15 в поперечнике и с не слишком мелкими ячейками (около 1 мм) и окунуть его сетку в растопленный парафин. Затем вынуть решето из парафина: проволока окажется покрытой тонким слоем парафина, едва заметным для глаз.
Решето осталось решетом – в нем есть сквозные отверстия, через которые свободно проходит булавка, – но теперь вы можете, в буквальном смысле слова, носить в нем воду. В таком решете удерживается довольно высокий слой воды, не проливаясь сквозь ячейки; надо только осторожно налить воду и оберегать решето от толчков.
Почему же вода не проливается? Потому что, не смачивая парафин, она образует в ячейках решета тонкие пленки, обращенные выпуклостью вниз, которые и удерживают воду (рис. 62).

Рис. 62. Почему вода не выливается из парафинированного решета.
Такое парафинированное решето можно положить на воду, и оно будет держаться на ней. Значит, возможно не только носить воду в решете, но и плавать на нем.
Этот парадоксальный опыт объясняет ряд обыкновенных явлений, к которым мы чересчур привыкли, чтобы задумываться об их причине. Смоление бочек и лодок, смазывание салом пробок и втулок, окрашивание масляной краской и вообще покрытие маслянистыми веществами всех тех предметов, которые мы хотим сделать непроницаемыми для воды, а также и прорезинивание тканей – все это не что иное, как изготовление решета вроде сейчас описанного. Суть дела и там и тут одна и та же, только в случае с решетом она выступает в необычном виде.

Пена на службе техники

Опыт плавания стальной иглы и медной монеты на воде имеет сходство с явлением, используемым в горнометаллургической промышленности для "обогащения” руд, т. е. для увеличения содержания в них ценных составных частей. Техника знает много способов обогащения руд; тот, который мы сейчас имеем в виду и который называется "флотацией”, – наиболее действенный; он успешно применяется даже в тех случаях, когда все остальные не достигают цели.

Рис. 63. Как происходит флотация.
Сущность флотации (т. е. всплывания) состоит в следующем. Тонко измельченная руда загружается в чан с водой и с маслянистыми веществами, которые способны обволакивать частицы полезного минерала тончайшими пленками, не смачиваемыми водой. Смесь энергично перемешивается с воздухом, образуя множество мельчайших пузырьков – пену. При этом частицы полезного минерала, облеченные тонкой маслянистой пленкой, приходя в соприкосновение с оболочкой воздушного пузырьки, пристают к ней и повисают на пузырьке, который и выносит их вверх, как воздушный шар в атмосфере поднимает гондолу (рис. 63). Частицы же пустой породы, не облеченные маслянистым веществом, не пристают к оболочке и остаются в жидкости. Надо заметить, что воздушный пузырек пены гораздо больше по объему, нежели минеральная частица, и плавучесть его достаточна для увлечения твердой крупинки вверх. В итоге частицы полезного минерала почти все оказываются в пене, покрывающей жидкость. Пену снимают и направляют в дальнейшую обработку – для получения так называемого "концентрата”, который в десятки раз богаче полезным минералом, нежели первоначальная руда.
Техника флотации разработана так тщательно, что надлежащим подбором примешиваемых жидкостей можно отделить каждый полезный минерал от пустой породы любого состава.
К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце прошлого века американская учительница (Карри Эверсон), стирая загрязненные маслом мешки, в которых хранился раньше медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации.

Мнимый "вечный” двигатель

В книгах иногда описывается в качестве настоящего "вечного” двигателя прибор такого устройства (рис.64): масло (или вода), налитое в сосуд, поднимается фитилями сначала в верхний сосуд, а оттуда другими фитилями – еще выше; верхний сосуд имеет желоб для стока масла, которое падает на лопатки колеса, приводя его во вращение. Стекшее вниз масло снова поднимается по фитилям до верхнего сосуда. Таким образом, струя масла, стекающая по желобку на колесо, ни на секунду не прерывается, и колесо вечно должно находиться в движении…
Если бы авторы, описывающие эту вертушку, дали себе труд ее изготовить, они, конечно, убедились бы, что не только колесо не вертится, но что ни одна капля жидкости даже не попадает в верхний сосуд!

Рис. 64. Неосуществимая вертушка.
Это можно сообразить, впрочем, и не приступая к изготовлению вертушки. В самом деле, почему изобретатель думает, что масло должно стекать вниз с верхней, загнутой части фитиля? Капиллярное притяжение, преодолев тяжесть, подняло жидкость вверх по фитилю; но ведь та же причина удержит жидкость в порах намокшего фитиля, не давая ей капать с него. Если допустить, что в верхний сосуд нашей мнимой вертушки от действия капиллярных сил может попасть жидкость, то надо будет признать, что те же фитили, которые будто бы доставили ее сюда, сами же и перенесли бы ее обратно в нижний.
Этот мнимый вечный двигатель напоминает другую водяную машину "вечного” движения, придуманную еще в 1575 г. итальянским механиком Страдою Старшим. Мы изображаем здесь этот забавный проект (рис. 65). Архимедов винт, вращаясь, поднимает воду в верхний бак, откуда она вытекает из лотка струёй, ударяющей в лопатки наливного колеса (справа внизу). Водяное колесо вращает точильный станок, а одновременно двигает, с помощью ряда зубчатых колес, тот самый архимедов винт, который поднимает воду в верхний бак. Винт вращает колесо, а колесо – винт!… Если бы возможны были подобные механизмы, то проще всего было бы устроить так: перекинуть веревку через блок и привязать к ее концам одинаковые гири: когда один груз опускался бы, он приподнимал бы тем самым другой груз, а тот, опускаясь с этой высоты, поднимал бы первый. Чем не "вечный” двигатель?

Рис. 65. Старинный проект водяного "вечного” двигателя для точильного камня.

Кто хочет стать миллионером? 14.10.17. Вопросы и ответы

Программа «Кто хочет стать миллионером?»

Все вопросы и ответы:

Леонид Якубович и Александр Розенбаум

Несгораемая сумма: 200 000 рублей.

1. Как называют водителя, совершающего поездки на большие расстояния?

· стрелок · бомбардир · дальнобойщик · снайпер

2. Какой эффект, как говорят, производит покупка дорогой вещи?

· щёлкает по барсетке

· бьёт по карману

· стреляет по кошельку

· шлёпает по кредитке

3. Как зовут поросёнка, героя популярного мультфильма?

· Франтик · Финтик · Фантик · Фунтик 4. Как заканчивался лозунг эпохи социализма: «Нынешнее поколение советских людей будет жить…»?

· не тужить

· долго и счастливо

· при коммунизме

· на Марсе

5. На что, согласно законам физики, действует подъёмная сила?

· крюк башенного крана

· крыло самолёта

· звонок будильника

· рост производства

6. Как называется склад имущества в воинской части?

· жаровня

· парилка

· каптёрка

· сушилка

7. Какую часть имбиря чаще всего используют в кулинарии?

· корень

· стебель

8. Сколько миллиметров в километре?

· десять тысяч

· сто тысяч

· миллион

· десять миллионов

9. Что «разгорелось» в куплетах из фильма «Весёлые ребята»?

· утюг

· папироса

10. Где покоится прах американского астронома Юджина Шумейкера?

· на Марсе

· на Юпитере

· на Луне

· на Земле

11. С какой болью сравнил любовь поэт Герих Гейне?

· с головной

· с поясничной

· с зубной

· с фантомной

12. Какую должность при дворе царицы Тамары занимал Шота Руставели?

· казначей

· придворный поэт

· главный визирь

Выигрыш игроков составил 200 000 рублей.

Александр Ревва и Вера Брежнева

Несгораемая сумма: 200 000 рублей.

1. Куда во время чаепития обычно кладут варенье?

· в розетку

· в штепсель

· в удлинитель

· в тройник

2. О чём говорят: «Ни свет ни заря»?

· о потухшем костре

· о раннем утре

· о закончившемся фейерверке

· о перегоревших пробках

3. Какую карточную масть часто называют «сердечками»?

· червы

4. Какими бывают хранилища данных в Интернете?

· облачными

· тучными

· дождевыми

· радужными

5, сообщает сайт. Что стало жилищем героев известной песни «Битлз»?

· синий троллейбус

· жёлтая подводная лодка

· зелёный поезд

· последняя электричка

6. Что в прошлом не использовалось для письма?

· папирус

· бумазея

· пергамент

· глиняные таблички

7. Чем паук-серебрянка наполняет своё подводное гнездо?

· крыльями мух

· водорослями

· пузырьками воздуха

· жемчужинками

8. Во что жидкость обычно не наливают?

· в реторту

· в бурдюк

· в анкерок

· в тубус

9. Что умел делать плащ доктора Стрэнджа — героя кино и комиксов?

· разговаривать

· стрелять

· делать хозяина невидимым

· летать

10. Какая из этих стихотворных форм наименьшая по количеству строк?

· катрен

· онегинская строфа

11. Кто не изображён на гербе Исландии?

· белый медведь

Выигрыш игроков составил 0 рублей.