Оптические силы линзы системы линз. Оптика оптическая сила линзы формула тонкой линзы линейное. Изучение нового материала

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих - мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф , то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначается той же буквой F .

Основное свойство линз - способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , у величенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы. Единицой измерения оптической силы является диоптрия (дптр). Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м -1 .

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

d > 0 и f > 0 - для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;

d < 0 и f < 0 - для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: , следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), , то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутых Γ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, , следовательно, - изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, - изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой - отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l - f 1 , где l - расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 - действительное изображение, f 2 < 0 - мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл, изменяются только угловые расстояния.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах - астрономической трубе Кеплера и земной трубе Галилея .

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них - сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5.

Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .

Сейчас речь пойдет о геометрической оптике. В этом разделе много времени уделяется такому объекту, как линза. Ведь она может быть разной. При этом формула тонкой линзы одна на все случаи. Только нужно знать, как ее правильно применить.

Виды линз

Ею всегда является прозрачное для тело, которое имеет особенную форму. Внешний вид объекта диктуют две сферические поверхности. Одну из них допускается заменить на плоскую.

Причем у линзы может оказаться толще середина или края. В первом случае она будет называться выпуклой, во втором — вогнутой. Причем в зависимости от того, как сочетаются вогнутые, выпуклые и плоские поверхности, линзы тоже могут быть разными. А именно: двояковыпуклыми и двояковогнутыми, плосковыпуклыми и плосковогнутыми, выпукло-вогнутыми и вогнуто-выпуклыми.

В обычных условиях эти объекты используются в воздухе. Изготавливают их из вещества, которого больше, чем у воздуха. Поэтому выпуклая линза будет собирающей, а вогнутая — рассеивающей.

Общие характеристики

До того, как говорить о формуле тонкой линзы , нужно определиться с основными понятиями. Их обязательно нужно знать. Поскольку к ним постоянно будут обращаться различные задачи.

Главная оптическая ось — это прямая. Она проведена через центры обеих сферических поверхностей и определяет место, где находится центр линзы. Существуют еще дополнительные оптические оси. Они проводятся через точку, являющуюся центром линзы, но не содержат центры сферических поверхностей.

В формуле тонкой линзы есть величина, определяющая ее фокусное расстояние. Так, фокусом является точка на главной оптической оси. В ней пересекаются лучи, идущие параллельно указанной оси.

Причем фокусов у каждой тонкой линзы всегда два. Они расположены по обе стороны от ее поверхностей. Оба фокуса у собирающей действительные. У рассеивающей — мнимые.

Расстояние от линзы до точки фокуса — это фокусное расстояние (буква F ) . Причем его значение может быть положительным (в случае собирающей) или отрицательным (для рассеивающей).

С фокусным расстоянием связана еще одна характеристика — оптическая сила. Ее принято обозначать D. Ее значение всегда - величина, обратная фокусу, то есть D = 1/ F. Измеряется оптическая сила в диоптриях (сокращенно, дптр).

Какие еще обозначения есть в формуле тонкой линзы

Помимо уже указанного фокусного расстояния, потребуется знать несколько расстояний и размеров. Для всех видов линз они одинаковые и представлены в таблице.

Все указанные расстояния и высоты принято измерять в метрах.

В физике с формулой тонкой линзы связано еще понятие увеличения. Оно определяется как отношение размеров изображения к высоте предмета, то есть H/h . Его можно обозначить буквой Г.

Что нужно для построения изображения в тонкой линзе

Это необходимо знать, чтобы получить формулу тонкой линзы, собирающей или рассеивающей. Чертеж начинается с того, что обе линзы имеют свое схематическое изображение. Обе они выглядят как отрезок. Только у собирающей на его концах стрелки направлены наружу, а у рассеивающей - внутрь этого отрезка.

Теперь к этому отрезку необходимо провести перпендикуляр к его середине. Так будет изображена главная оптическая ось. На ней с обеих сторон от линзы на одинаковом расстоянии полагается отметить фокусы.

Предмет, изображение которого требуется построить, рисуется в виде стрелки. Она показывает, где находится верх предмета. В общем случае предмет помещается параллельно линзе.

Как построить изображение в тонкой линзе

Для того чтобы построить изображение предмета, достаточно найти точки концов изображения, а потом их соединить. Каждая из этих двух точек может получиться от пересечения двух лучей. Наиболее простыми в построении являются два из них.

    Идущий из указанной точки параллельно главной оптической оси. После соприкосновения с линзой он идет через главный фокус. Если речь идет о собирающей линзе, то этот фокус находится за линзой и луч идет через него. Когда рассматривается рассеивающая, то луч нужно провести так, чтобы его продолжение проходило через фокус перед линзой.

    Идущий непосредственно через оптический центр линзы. Он не изменяет за ней своего направления.

Бывают ситуации, когда предмет поставлен перпендикулярно главной оптической оси и заканчивается на ней. Тогда достаточно построить изображение точки, которая соответствует краю стрелки, не лежащей на оси. А потом провести из нее перпендикуляр к оси. Это и будет изображение предмета.

Пересечение построенных точек дает изображение. В тонкой собирающей линзе получается действительное изображение. То есть оно получается непосредственно на пересечении лучей. Исключением является ситуация, когда предмет помещен между линзой и фокусом (как в лупе), тогда изображение оказывается мнимым. У рассеивающей же оно всегда получается мнимым. Ведь оно получается на пересечении не самих лучей, а их продолжений.

Действительное изображение принято чертить сплошной линией. А вот мнимое - пунктиром. Связано это с тем, что первое на самом деле там присутствует, а второе только видится.

Вывод формулы тонкой линзы

Это удобно сделать на основе чертежа, иллюстрирующего построение действительного изображения в собирающей линзе. Обозначение отрезков указано на чертеже.

Раздел оптики не зря называется геометрической. Потребуются знания именно из этого раздела математики. Для начала необходимо рассмотреть треугольники АОВ и А 1 ОВ 1 . Они подобны, поскольку в них имеется по два равных угла (прямые и вертикальные). Из их подобия следует, что модули отрезков А 1 В 1 и АВ относятся как модули отрезков ОВ 1 и ОВ.

Подобными (на основании того же принципа по двум углам) оказываются еще два треугольника: COF и A 1 FB 1 . В них равны отношения уже таких модулей отрезков: А 1 В 1 с СО и FB 1 с OF. Исходя из построения равными будут отрезки АВ и СО. Поэтому левые части указанных равенств отношений одинаковые. Поэтому равны и правые. То есть ОВ 1 / ОВ равно FB 1 / OF.

В указанном равенстве отрезки, обозначенные точками, можно заменить на соответствующие физические понятия. Так ОВ 1 — это расстояние от линзы до изображения. ОВ является расстоянием от предмета до линзы. OF — фокусное расстояние. А отрезок FB 1 равен разности расстояния до изображения и фокуса. Поэтому его можно переписать по-другому:

f / d = ( f - F ) / F или Ff = df - dF.

Для вывода формулы тонкой линзы последнее равенство необходимо разделить на dfF. Тогда получается:

1/ d + 1/f = 1/F.

Это у есть формула тонкой собирающей линзы. У рассеивающей фокусное расстояние отрицательное. Это приводит к изменению равенства. Правда, оно незначительное. Просто в формуле тонкой рассеивающей линзы стоит минус перед отношением 1/ F. То есть:

1/ d + 1/f = - 1/F.

Задача о нахождении увеличения линзы

Условие. Фокусное расстояние собирающей линзы равно 0,26 м. Требуется вычислить ее увеличение, если предмет находится на расстоянии 30 см.

Решение. Его начать стоит с введения обозначений и перевода единиц в Си. Так, известны d = 30 см = 0,3 м и F = 0,26 м. Теперь нужно выбрать формулы, основная из них та, которая указана для увеличения, вторая — для тонкой собирающей линзы.

Их нужно как-то объединить. Для этого придется рассмотреть чертеж построения изображения в собирающей линзе. Из подобных треугольников видно, что Г = H/h = f/d. То есть для того, чтобы найти увеличение, придется вычислить отношение расстояния до изображения к расстоянию до предмета.

Второе известно. А вот расстояние до изображения полагается вывести из формулы, указанной ранее. Получается, что

f = dF / ( d - F ).

Теперь эти две формулы необходимо объединить.

Г = dF / ( d ( d - F )) = F / ( d - F ).

В этот момент решение задачи на формулу тонкой линзы сводится к элементарным расчетам. Осталось подставить известные величины:

Г = 0,26 / (0,3 - 0,26) = 0,26 / 0,04 = 6,5.

Ответ: линза дает увеличение в 6,5 раз.

Задача, в которой нужно найти фокус

Условие. Лампа расположена в одном метре от собирающей линзы. Изображение ее спирали получается на экране, отстоящем от линзы на 25 см. Вычислите фокусное расстояние указанной линзы.

Решение. В данные полагается записать такие величины: d =1 м и f = 25 см = 0,25 м. Этих сведений достаточно, чтобы из формулы тонкой линзы вычислить фокусное расстояние.

Так 1/ F = 1/1 + 1/0,25 = 1 + 4 = 5. Но в задаче требуется узнать фокус, а не оптическую силу. Поэтому остается только разделить 1 на 5, и получится фокусное расстояние:

F = 1/5 = 0, 2 м.

Ответ: фокусное расстояние собирающей линзы равно 0,2 м.

Задача о нахождении расстояния до изображения

Условие . Свечку поставили на расстоянии 15 см от собирающей линзы. Ее оптическая сила равна 10 дптр. Экран за линзой поставлен так, что на нем получается четкое изображение свечи. Чему равно это расстояние?

Решение. В краткую запись полагается записать такие данные: d = 15 см = 0,15 м, D = 10 дптр. Формулу, выведенную выше, нужно записать с небольшим изменением. А именно, в правой части равенства поставить D вместо 1/ F.

После нескольких преобразований получается такая формула для расстояния от линзы до изображения:

f = d / ( dD - 1).

Теперь необходимо подставить все числа и сосчитать. Получается такое значение для f: 0,3 м.

Ответ: расстояние от линзы до экрана равно 0,3 м.

Задача о расстоянии между предметом и его изображением

Условие. Предмет и его изображение отстоят друг от друга на 11 см. Собирающая линза дает увеличение в 3 раза. Найти ее фокусное расстояние.

Решение. Расстояние между предметом и его изображением удобно обозначить буквой L = 72 см = 0,72 м. Увеличение Г = 3.

Здесь возможны две ситуации. Первая — предмет стоит за фокусом, то есть изображение получается действительное. Во второй — предмет между фокусом и линзой. Тогда изображение с той же стороны, что и предмет, причем мнимое.

Рассмотрим первую ситуацию. Предмет и изображение находятся по разные стороны от собирающей линзы. Здесь можно записать такую формулу: L = d + f. Вторым уравнением полагается записать: Г = f / d. Необходимо решить систему этих уравнений с двумя неизвестными. Для этого заменить L на 0,72 м, а Г на 3.

Из второго уравнения получается, что f = 3 d. Тогда первое преобразуется так: 0,72 = 4 d. Из него легко сосчитать d = 0, 18 (м). Теперь легко определить f = 0,54 (м).

Осталось воспользоваться формулой тонкой линзы, чтобы вычислить фокусное расстояние. F = (0,18 * 0,54) / (0,18 + 0,54) = 0,135 (м). Это ответ для первого случая.

Во второй ситуации — изображение мнимое, и формула для L будет другой: L = f - d. Второе уравнение для системы будет тем же. Аналогично рассуждая, получим, что d = 0, 36 (м), а f = 1,08 (м). Подобный расчет фокусного расстояния даст такой результат: 0,54 (м).

Ответ: фокусное расстояние линзы равно 0,135 м или 0,54 м.

Вместо заключения

Ход лучей в тонкой линзе — это важное практическое приложение геометрической оптики. Ведь их используют во многих приборах от простой лупы до точных микроскопов и телескопов. Поэтому знать о них необходимо.

Выведенная формула тонкой линзы позволяет решать множество задач. Причем она позволяет делать выводы о том, какое изображение дают разные виды линз. При этом достаточно знать ее фокусное расстояние и расстояние до предмета.

Главным применением законов преломления света являются линзы.

Что такое линза?

Само слово «линза» означает «чечевица».

Линзой называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями.

Рассмотрим, как работает линза на принципе преломления света.

Рис. 1. Двояковыпуклая линза

Линза может быть разбита на несколько отдельных частей, каждая из которых представляет собой стеклянную призму. Верхнюю часть линзы представим в виде трехгранной призмы: падая на нее, свет преломляется и смещается в сторону основания. Все следующие части линзы представим как трапеции, в которых луч света проходит внутрь и снова выходит, смещаясь в направлении (рис. 1).

Виды линз (рис. 2)

Рис. 2. Виды линз

Собирающие линзы

1 - двояковыпуклая линза

2 - плоско-выпуклая линза

3 - выпукло-вогнутая линза

Рассеивающие линзы

4 - двояковогнутая линза

5 - плоско-вогнутая линза

6 - выпукло-вогнутая линза

Обозначение линз

Тонкая линза - это линза, толщина которой много меньше радиусов, ограничивающих ее поверхность (рис. 3).

Рис. 3. Тонкая линза

Видим, что радиус одной сферической поверхности и другой сферической поверхности больше, чем толщина линзы α.

Линза преломляет свет определенным образом. Если линза собирающая, то лучи собираются в одной точке. Если линза рассеивающая, то лучи рассеиваются.

Для обозначения различных линз введен специальный рисунок (рис. 4).

Рис. 4. Схематическое изображение линз

1 - схематическое изображение собирающей линзы

2 - схематичное изображение рассеивающей линзы

Точки и линии линзы:

1. Оптический центр линзы

2. Главная оптическая ось линзы (рис. 5)

3. Фокус линзы

4. Оптическая сила линзы

Рис. 5. Главная оптическая ось и оптический центр линзы

Главная оптическая ось - воображаемая линия, которая проходит через центр линзы и перпендикулярна плоскости линзы. Точка О является оптическим центром линзы. Все лучи, проходящие через эту точку, не преломляются.

Другая важная точка линзы - фокус (рис. 6). Он располагается на главной оптической оси линзы. В точке фокуса пересекаются все лучи, которые падают на линзу параллельно главной оптической оси.

Рис. 6. Фокус линзы

У каждой линзы два фокуса. Мы будем рассматривать равнофокусную линзу, то есть когда фокусы стоят от линзы на одинаковом расстоянии.

Расстояние между центром линзы и фокусом называется фокусным расстоянием (отрезок на рисунке). Второй фокус расположен с обратной стороны линзы.

Следующая характеристика линзы - это оптическая сила линзы.

Оптическая сила линзы (обозначается ) - это способность линзы преломлять лучи. Оптическая сила линзы - обратное значение фокусного расстояния:

Фокусное расстояние измеряется в единицах длины.

За единицу оптической силы выбрана такая единица измерения, при которой фокусное расстояние равно одному метру. Такая единица оптической силы называется диоптрия.

У собирающих линз впереди оптической силы ставится знак «+», а если линза рассеивающая, то перед оптической силой ставится знак «-».

Единица диоптрия записывается следующим образом:

Для каждой линзы существует еще одно важное понятие. Это мнимый фокус и действительный фокус.

Действительный фокус - это такой фокус, который образован лучами, преломившимися в линзе.

Мнимый фокус - это фокус, который образуется продолжениями лучей, прошедших через линзу (рис. 7).

Мнимый фокус, как правило, у рассеивающей линзы.

Рис. 7. Мнимый фокус линзы

Вывод

На данном уроке вы узнали, что такое линза, какие бывают линзы. Познакомились с определением тонкой линзы и главными характеристиками линз и узнали, что такое мнимый фокус, действительный фокус, и в чем их различие.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. /Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Tak-to-ent.net ().
  2. Tepka.ru ().
  3. Megaresheba.ru ().

Домашнее задание

  1. Задание 1. Определите оптическую силу собирающей линзы с фокусным расстоянием 2 метра.
  2. Задание 2. Каково фокусное расстояние линзы, оптическая сила которой равна 5 диоптрий?
  3. Задание 3. Может ли двояковыпуклая линза иметь отрицательную оптическую силу?

Что означает понятие оптической силы линзы? Как вычисляется этот параметр? Существуют определенные принципы и расчеты, по которым определяется этот показатель. В формуле расчета используется определенный набор параметров и аргументов. Но для начала нужно определить, что же означает это понятие, а потом уже переходить к расчетам. После этого можно познакомиться с практическим применением данного понятия в наше время. Также обязательно нужно узнать, какими именно средствами измеряется оптическая сила линзы. Итак, начнем!

Знакомство с понятием оптической силы линзы позволит вам узнать интереснейшие и актуальнейшие факты и поучаствовать в увлекательных исследованиях.

Что такое линза и что означает понятие «оптическая сила линзы»?

Изначально определим понятие слова «линза». Это прозрачное тело, которое ограничено с двух сторон сферическими поверхностями. Обычно линзы делят на два вида: выпуклые и вогнутые. В первом варианте края этой линзы намного тоньше ее середины. А вот во втором варианте в линзе края будут намного толще, чем середина линзы. Также стоит отметить, что эти две разновидности линз имеют определенные названия. Например, выпуклая линза будет называться собирающей . Потому что параллельные лучи, которые направляются на эти линзы при преломлении, собираются в одной точке. А вот вогнутая линза будет называться рассеивающей . Вот здесь лучи, которые направляются на линзу, проходя через нее, просто рассеиваются. Увидеть, чем различаются типы подобных линз можно на рисунке, представленном ниже.

Теперь, когда мы разобрались, что такое линзы, можно переходить к ключевому понятию – к оптической силе линзы. Определение оптической силы линзы – это величина, которая обратная фокусному расстоянию данной линзы. Эта величина характеризирует способность различных линз и специальных систем из такого рода линз преломлять свет. Стоит отметить, что чем короче будет это расстояние линз, тем больше увеличение она даст. То есть можно заметить такую деталь, что у той линзы, у которой оптическая сила выше, фокусное расстояние будет короче.

Обратите внимание, что информация о том, как ультрафиолет служит современной науке и промышленности доступна по этому адресу: .

Формула оптической силы линзы фото

Ниже приводим фотографии по теме статьи «Законы отражения и преломления света». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

Инструкция

Сначала нужно измерить фокусное расстояние . В этом случае сначала закрепите в вертикальном положении перед экраном, а затем направьте на нее световые лучи прямо через центр линзы . Важно точно световым лучом в центр, иначе результаты будут недостоверными.

Теперь установите экран на таком расстоянии от линзы , чтобы лучи, выходящие из нее, в одной точке. При помощи линейки остается только измерить полученное расстояние – приложите линейку к центру линзы и определите расстояние в сантиметрах до экрана.

Если же вы не можете определить фокусное расстояние, стоит воспользоваться еще одним проверенным способом – уравнением тонкой линзы . Чтобы найти все составляющие уравнения, придется поэкспериментировать с линзой и экраном.

Линзу установите между экраном и лампой на подставке. Лампу и линзу двигайте так, чтобы в конечном итоге на экране получилось изображение. Теперь измерьте линейкой :- от предмета до линзы ;- от линзы до изображения.Переведите результаты в метры.

Теперь можно рассчитывать оптическую силу . Сначала нужно число 1 разделить на первое расстояние, а затем и на второе полученное значение. Полученные результаты суммируйте – это и будет оптическая сила линзы .

Видео по теме

Обратите внимание

Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = 1/м

Источники:

  • как найти оптическую силу линзы

Оптической силой обладает линза. Она измеряется в диоптриях. Эта величина показывает увеличение линзы, то есть то, насколько сильно лучи преломляются в ней. От этого, в свою очередь, зависит изменение размеров предметов на изображениях. Обычно оптическая сила линзы указывается ее изготовителем. Но если подобной информации нет, то измерьте ее самостоятельно.

Вам понадобится

  • - линзы;
  • - источник света;
  • - экран;
  • - линейка.

Инструкция

Если известно фокусное расстояние линзы, то ее оптическую , поделив число 1 на это фокусное расстояние в метрах. Фокусное расстояние расстоянию от оптического центра до места, в которой все преломленные лучи в одну точку. Причем для собирающей линзы это значение действительное, а для рассеивающей - мнимое (точка строится на продолжениях рассеянных ).

В том случае, если фокусное расстояние неизвестно, то для собирающей линзы его можно измерить. Укрепите линзу на штативе, расположите перед ней экран, и направьте на нее с обратной стороны пучок параллельных ее главной оптической оси световых лучей. Двигайте линзу до тех пор, пока на экране световые лучи не сойдется в одну точку. Измерьте расстояние от оптического центра линзы до экрана – это и будет фокус собирающей линзы. Ее оптическую силу измерьте по методике, изложенной в предыдущем .

Когда измерить фокусное расстояние невозможно, используйте тонкой линзы. Для этого экраном и предметом (лучше всего подойдет световая стрелка типа свечи или лампочки на подставке) установите линзу. Передвигайте предмет и линзу таким образом, чтобы на экране получить изображение. В случае с рассеивающей линзой оно быть мнимым. Измерьте расстояние от оптического центра линзы до предмета и его изображения в метрах.

Рассчитайте оптическую силу линзы:
1. Число 1 поделите от предмета до оптического центра.
2. Число 1 поделите на расстояние от изображения до оптического центра. Если изображение мнимое, перед ним поставьте знак «минус».
3. Найдите сумму , получившихся в пп.1 и 2 с учетом знаков перед ними. Это и будет оптическая сила линзы.

Оптическая сила линзы может иметь как положительное, так и отрицательное значение.

Источники:

  • оптическую силу линзы

Некоторые люди, имеющие такое заболевание, как близорукость, вынуждены носить линзы ежедневно. Уход за ними – очень важен, так как именно от этого зависит безопасность и дальнейшее здоровье ваших глаз. Как правило, линзы в процессе носки собирают микроскопическую пыль, которую необходимо удалять с помощью специального многоцелевого раствора.

Вам понадобится

  • - контейнер для линз;
  • - многоцелевой раствор;
  • - пинцет для линз;
  • - 3% перекись водорода;
  • - раствор тиосульфата натрия.

Инструкция

Намочите указательный и пальцы раствором, слегка протрите линзу, удаляя загрязнения, например, волоски. После этого капните в линзу несколько капель раствора и указательным пальцем, не нажимая и не прилагая усилий, еще раз протрите ее со всех сторон.

Далее продезинфицируйте линзы . Для этого возьмите их специальным пинцетом (он должен быть с мягкими наконечниками, дабы не повредить поверхность) и положите в контейнер, наполненный свежим и чистым раствором. Оставьте их в нем минимум на четыре часа (в идеале – на восемь ). После этого линзы готовы к ношению.

Часто на образуются некие белковые отложения, причиной этому могут быть различные внешние факторы, например, пыль, табачный дым и прочие. Чтобы возвратить линзам прозрачность используйте ферментные таблетки. Учтите, что использовать их можно только раз в неделю.

Возьмите контейнер, наполните свежим раствором, в каждой ячейке растворите по одной ферментной таблетки. Затем промойте линзы от загрязнений и положите в контейнер на пять часов.

Далее выньте их, снова тщательно промойте. Тоже самое сделайте и с контейнером. После этого наполните его свежим раствором, положите в него линзы и оставьте на восемь часов. После этого они готовы к носке.

Если вы используете цветные линзы с так называемой «подложкой», уход за ними особенный. Такие линзы еженедельно опускайте в 3 % раствор перекиси водорода на пятнадцать минут, затем в 2,5 % раствор тиосульфата на десять минут. А этого продержите линзы в обычном многоцелевом растворе в течение 8 часов.

Видео по теме

Совет 4: Контактные линзы или классические очки - плюсы и минусы

Когда контактные линзы только появились в продаже, их недостатки были слишком существенными, поэтому большинство людей с проблемами зрения предпочитали носить очки. Линзы были дорогими, неудобными, требовали много времени для ухода. Современные же линзы лишены этих минусов, поэтому люди стали задумываться о том, чтобы заменить ими привычные очки.

Плюсы и минусы контактных линз

Достоинства контактных линз по сравнению с очками очевидны: во-первых, они совершенно незаметны , поэтому с эстетической точки зрения они лучше. А некоторые модели, например корейские , могут не только поменять цвет глаз, но и придать радужке необычный рисунок. Во-вторых, благодаря тому, что линзы плотно прилегают к , в них можно без проблем вести активный образ жизни – заниматься спортом, ходить в бассейн, бегать, кататься на велосипеде. При этом не приходится бояться того, что линзы упадут , сломаются, запотеют, будут отражать свет или мешать обзору. Более широкий , который обеспечивают линзы, тоже часто упоминают среди их плюсов: в очках хорошо видно только то, что находится непосредственно за стеклами, а так как стекла имеют ограниченную форму, то угол обзора гораздо меньше.

Врачи утверждают, что ограничение бокового обзора вредит зрению.

Долгое время одним из существенных недостатков линз была дороговизна, но сегодня качественные « » линзы из мягких материалов стоят , чем красивая и крепкая оправа и с покрытием от запотевания. Тем не менее очки могут прослужить несколько лет, а линзы приходится покупать постоянно: в месяц на них уходит от 300 до 2000 рублей в зависимости от выбранного типа и марки.

За линзами нужно тщательнее следить, так как они имеют непосредственный контакт с глазом, поэтом очень легко занести инфекцию. Их необходимо хранить в специальном растворе и ежедневно чистить, перед надеванием и снятием нужно тщательно мыть руки.

С другой стороны, за очками тоже приходится следить – время от времени протирать стекла, хранить в футляре, чинить при необходимости. А на уход за линзами тратится всего около двух минут в день.

Во время ношения линз нужно следить за состоянием своих глаз, так как даже самые проницаемые для воздуха линзы не дают глазу полноценно «дышать». Поэтому нужно регулярно пользоваться каплями для глаз, избегать пыльных и задымленных помещений, не использовать лаки для волос, дезодоранты или духи (или зажмуривать глаза). Если частичка пыли попадет на линзу, это принесет дискомфорт, придется снимать и промывать ее.

Плюсы и минусы очков

Одно из основных преимуществ очков состоит в том, что они не соприкасаются с глазом, поэтому нет риска занести инфекцию или повредить глаз. Также очки просто и быстро снимать при необходимости. Из этого вытекает простота их ношения и легкость в уходе за очками.

Очки могут стать частью имиджа человека и даже улучшить его внешний облик, они визуально увеличивают глаза, придают человеку серьезный и респектабельный вид, внушают уверенность.

Недостатков у очков тоже много: они запотевают, когда происходит перепад температуры, ломаются и , отражают свет, ограничивают боковое зрение.

Световое излучение – это особые волны, которые исходят от источника излучения (лампы или солнце), совершают колебания и распространяются свободно в пространстве по всем направлениям. Эти световые волны называются неполяризованными.

Что такое поляризованный свет?

Когда поток света отражается от какой-либо гладкой блестящей поверхности, от воды, снега, льда, витрины магазина, стекла автомобиля, он может преобразоваться в поляризованный поток. Волны поляризованного света, возникшие в этих случаях, совершают колебания только в одном направлении, а не во всех.

Когда неполяризованный свет отразится от обширной горизонтальной поверхности, от воды, например, он будет поляризованным и начнет совершать колебания лишь в горизонтальном направлении. Этот свет называют линейно или поляризованным, именно он доставляет тот неприятный мешающий блеск, от которого глаза ощущают дискомфорт.

Поляризованные линзы

Поляризованные линзы, как и все солнцезащитные линзы, снижают чувствительность к слишком яркому свету, блокируют слепящий эффект, который вызван отражением света от зеркальных и прозрачных поверхностей. Так, поляризованные линзы позволяют безопасно и комфортно находиться на улице в солнечную погоду.

Главный таких линз заключается в том, чтобы пропускать лишь полезный свет. Естественный свет распространяется перпендикулярно вектору направления. Свет попадает на капот автомобиля, воду, мокрую дорогу и отражается от них, но поляризованная линза его блокирует и пропускает только полезный естественный свет. Благодаря улучшенному восприятию, также усиливается острота ощущения окружающего мира.

К преимуществам поляризованных линз относятся:

Улучшение контрастов;
- нейтрализация слепящего яркого света;
- придание насыщенности цветам;
- снижение яркости ореола вокруг светового источника;
- защита от ультрафиолета на 100%;
- улучшение качества восприятия мира;
- увеличение визуального комфорта;
- максимальная защита от солнца;
- гарантия оптимальной безопасности ношения.

В каких случаях необходимы поляризационные линзы?

Очки с поляризованными линзами незаменимы на рыбалке и для занятий водными видами спорта. Они устраняют блики солнца, отражаемые от воды. Для организации досуга на свежем воздухе такие линзы также будут полезны, так как они улучшают контрастность и качество цветов. За автомобиля водитель будет защищен от бликов солнца, отражаемых от капота, мокрой дороги или лобового стекла.

Поляризационные линзы помогают и при ослепляющем, и при дестабилизирующем блеске, создающем проблематичные, а иногда опасные для жизни ситуации. Поляризованные линзы, благодаря этим преимуществам, становятся все популярнее для защиты глаз при провождении времени на свежем воздухе в чрезмерной яркости излучения солнца – в горах, на пляже, при занятиях зимними видами спорта.