Основные компоненты внутриклеточной жидкости. Межклеточная жидкость в организме повышена что делать

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Понятие о внутренних жидких средах организма: внутриклеточная, внеклеточная жидкости.

Всю жидкость в организме в основном подразделяют на внеклеточную и внутриклеточную; внеклеточную жидкость - на тканевую (межклеточную) жидкость и плазму крови.

*** У взрослого человека массой 70 кг жидкость в среднем составляет 60% массы тела, т.е. около 42 л. В зависимости от возраста, пола и степени ожирения это процентное соотношение может меняться. С возрастом, отчасти из-за того, что процентная доля жировой ткани увеличивается, количество жидкости в организме постепенно снижается. Поскольку женский организм в норме содержит больше жировой ткани, чем мужской, то общее количество жидкости по отношению к массе тела у женщин меньше, чем у мужчин. Таким образом, средние показатели содержания жидкости в различных средах организма имеют множество вариантов, зависящих от возраста, пола и относительного содержания жировой ткани.

Внутриклеточная жидкость

Около 28 л жидкости из 42 л (приблизительно 40% массы тела) находится внутри клеток организма. Эту жидкость называют внутриклеточной.
Жидкость внутри каждой клетки представляет собой особую смесь различных компонентов, однако ее содержание во всех клетках одинаково. Более того, состав внутриклеточной жидкости у различных живых существ сходен, начиная от самых примитивных микроорганизмов и заканчивая человеком. По этой причине жидкость внутри различных клеток рассматривают как отдельную жидкую среду.

Внеклеточная жидкость

Вся жидкость, которая находится вне клетки, носит название внеклеточной жидкости. В совокупности она составляет около 20% массы тела, что в норме у человека массой 70 кг составляет около 14 л. Более 3/4 внеклеточной жидкости представлено межклеточной жидкостью, и почти 1/4 объема (около 3 л) - плазмой. Плазма - жидкая часть крови, лишенная форменных элементов. Она участвует в постоянном обмене веществ с межклеточной жидкостью через поры мембран капилляров. Поры высокопроницаемы практически для любых растворенных веществ, за исключением белков, поэтому состав внеклеточной жидкости вследствие ее постоянного перемешивания практически одинаков.
Главное отличие состоит в содержании белка, наибольшая концентрация которого отмечается в плазме.

Кровь - состав, функции.

Кровь человека составляет примерно 8% от массы тела. Кровь состоит из клеток , клеточных фрагментов и водного раствора , плазмы .

Клетки крови

Нерастворимыми элементами крови являются эритроциты , лейкоциты и тромбоциты .

Главная функция эритроцитов - транспорт кислорода от легких в ткани и СО2 от тканей обратно в легкие.

К лейкоцитам принадлежат различные формы гранулоцитов, моноцитов и лимфоцитов . Эти клетки различаются между собой размерами, функцией и местом образования.

Тромбоциты являются клеточными фрагментами больших клеток-предшественников мегакариоцитов костного мозга. Главная функция тромбоцитов - участие в коагуляции крови .

Состав плазмы крови

Плазма крови является водным раствором электролитов , питательных веществ , метаболитов , белков , витаминов , следовых элементов и сигнальных веществ . Электролитный состав плазмы напоминает морскую воду , что указывает на эволюцию форм жизни из моря.

Жидкая фаза, остающаяся после свертывания крови , называется сывороткой. Она отличается от плазмы тем, что не содержит фибриногена и других белков , которые отделяются при коагуляции крови .

Функции крови

Кровь осуществляет в организме различные функции. Она является транспортным средством, поддерживает постоянство «внутренней среды» организма (гомеостаз ) и играет главную роль в защите от чужеродных веществ .

Транспорт. Кровь переносит газы - кислород и диоксид углерода , а также питательные вещества к печени и другим органам после всасывания в кишечнике. Такой транспорт обеспечивает снабжение органов и обмен веществ в тканях , а также последующий перенос конечных продуктов метаболизма для их выведения из организма легкими, печенью и почками. Кровь осуществляет также перенос гормонов в организме .

Гомеостаз . Кровь поддерживает водный баланс между кровеносной системой, клетками (внутриклеточным пространством) и внеклеточной средой. Кислотно-основное равновесие в крови регулируется легкими, печенью и почками. Поддержание температуры тела также зависит от контролируемого кровью транспорта тепла.

Защита. Против чужеродных молекул и клеток , проникающих в организм , кровь обладает неспецифическими и специфическими механизмами защиты. К специфической защитной системе относятся клетки иммунной системы и антитела .

Гемостаз. Для предотвращения кровопотери при повреждении кровеносных сосудов в крови существует эффективная система коагуляции - физиологическое свертывание. Растворение кровяных сгустков (фибринолиз) также обеспечивается кровью .

Биологическая химия Лелевич Владимир Валерьянович

Глава 29. Водно-электролитный обмен

Распределение жидкости в организме

Для выполнения специфических функций клеткам необходима устойчивая среда обитания, включая стабильное обеспечение питательными веществами и постоянное выведение продуктов обмена. Основу внутренней среды организма составляют жидкости. На них приходится 60 – 65 % массы тела. Все жидкости организма распределяются между двумя главными жидкостными компартментами: внутриклеточным и внеклеточным.

Внутриклеточная жидкость – жидкость, содержащаяся внутри клеток. У взрослых на внутриклеточную жидкость приходится 2/3 всей жидкости, или 30 – 40 % массы тела. Внеклеточная жидкость – жидкость, находящаяся вне клеток. У взрослых на внеклеточную жидкость приходится 1/3 всей жидкости, или 20 – 25 % массы тела.

Внеклеточная жидкость подразделяется на несколько типов:

1. Интерстициальная жидкость – жидкость, окружающая клетки. Лимфа является интерстициальной жидкостью.

2. Внутрисосудистая жидкость – жидкость находящаяся внутри сосудистого русла.

3. Трансцеллюлярная жидкость, содержащаяся в специализированных полостях тела. К трансцеллюлярной жидкости относится спинномозговая, перикардиальная, плевральная, синовиальная, внутриглазная, а также пищеварительные соки.

Состав жидкостей

Все жидкости состоят из воды и растворенных в ней веществ.

Вода является основным компонентом человеческого организма. У взрослых мужчин вода составляет 60 % а у женщин – 55 % массы тела.

К факторам влияющим на количество воды в организме относятся.

1. Возраст. Как правило, количество воды в организме с возрастом уменьшается. У новорожденного количество воды составляет 70 % массы тела, в возрасте 6 – 12 месяцев – 60 %, у пожилого человека 45 – 55 %. Снижение количества воды с возрастом происходит вследствие уменьшения мышечной массы.

2. Жировые клетки. Содержат мало воды, поэтому количество воды в организма снижается с увеличением содержания жира.

3. Пол. Женский организм имеет относительно меньше воды, так как содержит относительно больше жира.

Растворенные вещества

В жидкостях организма содержатся два типа растворенных веществ – неэлектролиты и электролиты.

1. Неэлектролиты. Вещества, которые не диссоциируют в растворе и измеряются по массе (например мг на 100 мл). К клинически важным неэлектролитам относятся глюкоза, мочевина, креатинин, билирубин.

2. Электролиты. Вещества которые диссоциируют в растворе на катионы и анионы и их содержание измеряется в миллиэквивалент на литр [мэкв/л]. Электролитный состав жидкостей представлен в таблице.

Таблица 29.1. Основные электролиты жидкостных компартментов организма (приведены средние значения)

Содержание электролитов, мэкв/л Внеклеточная жидкость Внутриклеточная жидкость
плазма интерстициальная
Na + 140 140 10
K + 4 4 150
Ca 2+ 5 2,5 0
Cl - 105 115 2
PO 4 3- 2 2 35
HCO 3 - 27 30 10

Основными внеклеточными катионами являются Na + , Са 2+ , а внутриклеточными К + , Мg 2+ . Вне клетки преобладают анионы Сl - , НСО 3 - , а главным анионом клетки является РО 4 3- . Внутрисосудистая и интерстициальная жидкости имеют одинаковый состав, так как эндотелий капиляров свободно проницаем для ионов и воды.

Различие состава внеклеточной и внутриклеточной жидкостей обусловлено:

1. Непроницаемостью клеточной мембраны для ионов;

2. Функционированием транспортных систем и ионных каналов.

Характеристики жидкостей

Кроме состава, важное значение имеют общие характеристики (параметры) жидкостей. К ним относятся: объем, осмоляльность и рН.

Объем жидкостей.

Объем жидкости зависит от количества воды которая присутствует в данный момент в конкретном пространстве. Однако вода переходит пасивно, в основном за счет Na + .

Жидкости взрослого организма имеют объем:

1. Внутриклеточная жидкость – 27 л

2. Внеклеточная жидкость – 15 л

Интерстициальная жидкость – 11 л

Плазма – 3 л

Трансцеллюлярная жидкость – 1 л.

Вода, биологическая роль, обмен воды

Вода в организме находится в трех состояниях:

1. Конституционная (прочно связанная) воды, входит в структуру белков, жиров, углеводов.

2. Слабосвязанная воды диффузионных слоев и внешних гидратных оболочек биомолекул.

3. Свободная, мобильная вода, является средой в которой растворяются электролиты и ниэлектролиты.

Между связанной и свободной водой существует состояние динамического равновесия. Так синтез 1 г гликогена или белка требует 3 г Н 2 О которая переходит из свободного состояния в связанное.

Вода в организме выполняет следующие биологические функции:

1. Растворитель биологических молекул.

2. Метаболическая – участие в биохимических реакциях (гидролиз, гидратация, дегидратация и др.).

3. Структурная – обеспечение структурной прослойки между полярными группами в биологических мембранах.

4. Механическая – способствует сохранению внутриклеточного давления, формы клеток (тургор).

5. Регулятор теплового баланса (сохранение, распределение, отдача тепла).

6. Транспортная – обеспечение переноса растворенных веществ.

Обмен воды

Суточная потребность в воде для взрослого человека составляет около 40 мл на 1 кг массы или около 2500 мл. Время пребывания молекулы воды в организме взрослого человека составляет около 15 дней, в организме грудного ребенка – до 5 дней. В норме имеется постоянный баланс между поступлением и потерей воды (Рис. 29.1).

Рис. 29.1 Водный баланс (внешний водный обмен) организма.

Примечание. Потеря воды через кожу слагается из:

1. неощутимых потерь воды – испарение с поверхности кожи со скоростью 6 мл/кг массы/час. У новорожденных скорость испарения больше. Эти потери воды не содержат электролитов.

2. ощутимые потери воды – потоотделение, при котором теряется вода и электролиты.

Регуляция объема внеклеточной жидкости

Значительные колебания объема интерстициальной части внеклеточной жидкости могут наблюдаться без выраженного влияния на функции организма. Сосудистая часть внеклеточной жидкости менее устойчива к изменениям и должна тщательно контролироваться, чтобы ткани адекватно снабжались питательными веществами при одновременном непрерывном удалении продуктов метаболизма. Объем внеклеточной жидкости зависит от количества натрия в организме, поэтому регуляция объема внеклеточной жидкости связана с регуляцией обмена натрия. Центральное место в этой регуляции занимает альдостерон.

Альдостерон действует на главные клетки собирательных трубок, т. е. дистальную часть почечных канальцев – на тот участок в котором реабсорбируется около 90 % фильтруемого натрия. Альдостерон связывается с внутриклеточными рецепторами, стимулирует транскрипцию генов и синтез белков которые открывают натриевые каналы в апикальной мембране. В результате повышенное количество натрия входит в главные клетки и активирует Na + , К + - АТФазу базолатеральной мембраны. Усиленный транспорт К + в клетку в обмен на Na + приводит к повышенной секреции К + через калиевые каналы в просвет канальца.

Роль системы ренин-ангиотензин

Система ренин-ангиотензин играет важную роль в регуляции осмоляльности и объема внеклеточной жидкости.

Активация системы

При понижении артериального давления в приносящих артериолах почек если уменьшения содержания натрия в дистальных канальцах в гранулярных клетках юкстагломерулярного аппарата почек синтезируется и секретируется в кровь протеолитических фермент-ренин. Дальнейшая активация системы показана на рис. 29.2.

Рис. 29.2. Активация системы ренин-ангиотензин.

Предсердный натрийуретический фактор

Предсердный натриуретический фактор (ПНФ) синтезируется предсердиями (в основном правым). ПНФ является пептидом и выделяется в ответ на любые события, приводящие к увеличению объема или возрастанию давления накопления сердца. ПНФ в отличие от ангиотензина II и альдостерона снижает сосудистый объем и артериальное давление.

Гормон обладает следующими биологическими эффектами:

1. Повышает экскрецию почками натрия и воды (за счет усиления фильтрации).

2. Уменьшает синтез ренина и выброс альдостерона.

3. Снижает выброс АДГ.

4. Вызывает прямую вазодилатацию.

Нарушения водно-электролитного обмена и кислотно-основного равновесия

Обезвоживание.

Обезвоживание (дегидратация, водная недостаточность) ведет к умньшению объема внеклеточной жидкости-гиповолемии.

Развивается вследствие:

1. Аномальной потери жидкости через кожу, почки, желудочно-кишечный тракт.

2. Снижение поступления воды.

3. Перемещения жидкости в третье пространство.

Выраженное снижение объема внеклеточной жидкости может привести к гиповолемическому шоку. Продолжительная гиповлемия может вызвать развитие почечной недостаточности.

Различают 3 типа обезвоживания:

1. Изотоническое – равномерная потеря Na + и H 2 O.

2. Гипертоническое – недостаток воды.

3. Гипотоническое – недостаток жидкости с превалированием недостатка Na+.

В зависимости от типа потери жидкости дегидратация сопровождается снижением или повышением показателей осмоляльности, КОР, уровня Nа + и К + .

Отеки – одно из наиболее тяжелых нарушений водно-электролитного обмена. Отек – это избыточное накопление жидкости в интерстициальном пространстве, например на ногах или легочном интерстиции. При этом происходит набухание основного вещества соединительной ткани. Отечная жидкость всегда образуется из плазмы крови, которая в патологических условиях не в состоянии удерживать воду.

Отеки развиваются вследствие действия факторов:

1. Снижение концентрации альбуминов в плазме крови.

2. Повышение уровня АДГ, альдостерона вызывающее задержку воды, натрия.

3. Увеличение проницаемости капилляров.

4. Повышение капиллярного гидростатического давления крови.

5. Избыток или перераспределение натрия в организме.

6. Нарушение циркуляции крови (например сердечная недостаточность).

Нарушения кислотно-основного равновесия

Нарушения наступают при не способности механизмов поддержания КОР предотвращать сдвиги. Могут наблюдаться два крайних состояния. Ацидоз – повышения концентрации ионов водорода или потеря оснований приводящее к уменьшению рН. Алкалоз – возрастание концентрации оснований или снижение концентрации ионов водорода вызывающее увеличение рН.

Изменение рН крови ниже 7,0 или выше 8,8 вызывают смерть организма.

Три формы патологических состояний приводят к нарушению КОР:

1. Нарушение выведения углекислого года легкими.

2. Избыточная продукция кислых продуктов тканями.

3. Нарушения выведения оснований с мочой, фекалиями.

С точки зрения механизмов развития различают несколько типов нарушений КОР.

Дыхательный ацидоз – вызывается повышением рСО 2 выше 40мм. рт. ст за счет гиповентиляции при заболеваниях легких, ЦНС, сердца.

Дыхательный алкалоз – характеризуется снижением рСО 2 менее 40мм. рт. ст., является результатом повышения альвеолярной вентиляции и наблюдается при психическом возбуждении, заболеваниях легких (пневмонии).

Метаболический ацидоз – следствие первичного снижения бикарбоната в плазме крови, что наблюдается при накоплении нелетучих кислот (кетоацидоз, лактоацидоз), потере оснований (диарея), снижение экскреции кислот почками.

Метаболический алкалоз – возникает при увеличении уровня бикарбоната плазмы крови и наблюдается при потере кислого содержимого желудка при рвоте, использовании диуретиков, синдроме Кушинга.

Минеральные компоненты тканей, биологические функции

В организме человека обнаружено большинство элементов встречающихся в природе.

С точки зрения количественного содержания в организме их можно разделить на 3 группы:

1. Микроэлементы-содержание в организме более 10–2%. К ним относятся – натрий, калий, кальций, хлорид, магний, фосфор.

2. Микроэлементы – содержание в организме от 10–2% до 10–5%. К ним относятся – цинк, молибден, иод, медь и др.

3. Ультрамикроэлементы – содержание в организме менее 10–5%, например серебро, алюминий и др.

В клетках минеральные вещества находятся в виде ионов.

Основные биологические функции

1. Структурная – участвуют в формировании пространственной структур биополимеров и других веществ.

2. Кофакторная – участие в образовании активных центров ферментов.

3. Осмотическая – поддержание осмолярности и объема жидкостей.

4. Биоэлектрическая – генерация мембранного потенциала.

5. Регуляторная – ингибирование или активирование ферментов.

6. Транспортная – участие в переносе кислорода, электронов.

Натрий, биологическая роль, обмен, регуляция

Биологическая роль:

1. Поддержание водного баланса и осмоляльности внеклеточной жидкости;

2. Поддержание осмотического давления, объема внеклеточной жидкости;

3. Регуляция кислотно-основного равновесия;

4. Поддержание нервно-мышечной возбудимости;

5. Передача нервного импульса;

6. Вторично активный транспорт веществ через биологические мембраны.

В организме человека содержится около 100 гр натрия, который распределен преимущественно во внеклеточной жидкости. Натрий поступает с пищей в количестве 4–5 гр в сутки и всасывается в проксимальном отделе тонкой кишки. Т? (время полуобмена) для взрослых 11–13 суток. Выделяется натрий из организма с мочой (3,3 гр/сут), потом (0,9 гр/сут), калом (0,1 гр/сут).

Регуляция обмена

Основная регуляция обмена осуществляется на уровне почек. Они отвечают за экскрецию избытка натрия и способствуют его сохранению при недостатке.

Почечную экскрецию:

1. усиливают: ангиотензин-II, альдостерон;

2. уменьшает ПНФ.

Калий, биологическая роль, обмен, регуляция

Биологическая роль:

1. участие в поддержании осмотического давления;

2. участие в поддержании кислотно-основного равновесия;

3. проведение нервного импульса;

4. поддержание нервно-мышечного возбуждения;

5. сокращение мышц, клеток;

6. активация ферментов.

Калий – основной внутриклеточный катион. В организме человека содержится 140 г калия. С пищей ежесуточно поступает около 3–4 г калия, который всасывается в проксимальном отделе тонкой кишки. Т? калия – около 30 суток. Выводится с мочой (3 г/сут), калом (0,4 г/сут), потом (0,1 г/сут).

Регуляция обмена

Несмотря на небольшое содержание К + в плазме, его концентрация регулируется очень строго. Поступление К + в клетки усиливают адреналин, альдостерон, инсулин, ацидоз. Общий баланс К + регулируется на уровне почек. Альдостерон усиливает выделение К + за счет стимуляции секреции по калиевым каналам. При гипокалиемии регуляторные возможности почек ограничены.

Кальций, биологическая роль, обмен, регуляция

Биологическая роль:

1. структура костной ткани, зубов;

2. мышечное сокращение;

3. возбудимость нервной системы;

4. внутриклеточный посредник гормонов;

5. свертывание крови;

6. активация ферментов (трипсин, сукцинатдегидрогеназа);

7. секреторная активность железистых клеток.

В организме содержится около 1 кг кальция: в костях – около 1 кг, в мягких тканях, преимущественно внеклеточно – около 14 г С пищей поступает 1 г в сутки, а всасывается 0,3 г/сутки. Т? для кальция содержащегося в организме около 6 лет, для кальция костей скелета – 20 лет.

В плазме крови кальций содержится в двух видах:

1. недиффундируемый, связанный с белками (альбумином), биологически неактивный – 40 %.

2. диффундируемый, состоящий из 2-х фракций:

Ионизированный (свободный) – 50 %;

Комплексный, связанный с анионами: фосфатом, цитратом, карбонатом – 10 %.

Все формы кальция находятся в динамическом обратимом равновесии. Физиологической активностью обладает только ионизированный кальций. Кальций выделяется из организма: с калом – 0,7 г/сутки; с мочой 0,2 г/сутки; с потом 0,03 г/сутки.

Регуляция обмена

В регуляции обмена Са 2+ имеют значение 3 фактора:

1. Паратгормон – увеличивает выход кальция из костной ткани, стимулирует реабсорбцию в почках, и активируя превращение витамина D в его форму D 3 повышает всасывание кальция в кишечнике.

2. Кальцитонин – уменьшает выход Са 2+ из костной ткани.

3. Активная форма витамина D – витамин D 3 стимулирует всасывание кальция в кишечнике. В конечном итоге, действие паратгормона и витамина D направлено на повышение концентрации Са2+ во внеклеточной жидкости, в том числе в плазме, а действие кальцитонина – на понижение этой концентрации.

Фосфор, биологическая роль, обмен, регуляция

Биологическая роль:

1. образование (совместно с кальцием) структуры костной ткани;

2. строение ДНК, РНК, фосфолипидов, коферментов;

3. образование макроэргов;

4. фосфорилирование (активация) субстратов;

5. поддержание кислотно-основного равновесия;

6. регуляция метаболизма (фосфорилирование, дефосфорилирование белков, ферментов).

В организме содержится 650 г фосфора, из них в скелете – 8,5%, в клетках мягких тканей – 14%, во внеклеточной жидкости – 1 %. Поступает около 2 г в сутки, из которых всасывается до 70%. Т? кальция мягких тканей – 20 суток, скелета – 4 года. Выводится фосфор: с мочой – 1,5 г/сутки, с калом – 0,5 г/сутки, с потом – около 1 мг/сутки.

Регуляция обмена

Паратгормон усиливает выход фосфора из костной ткани и выведение его с мочой, а также увеличивает всасывание в кишечнике. Обычно концентрация кальция и фосфора в плазме крови изменяются противоположным образом. Однако не всегда. При гиперпаратиреоидизме повышаются уровни обоих, а при детском рахите снижаются концентрации обоих.

Эссенциальные микроэлементы

Эссенциальные микроэлементы – микроэлементы без которых организм не может расти, развиваться и совершать свой естественный жизненный цикл. К эссенциальным элементам относятся: железо, медь, цинк, марганец, хром, селен, молибден, иод, кобальт. Для них установлены основные биохимические процессы в которых они участвуют. Характеристика жизненно-важных микроэлементов приведена в таблице 29.2.

Таблица 29.2. Эссенциальные микроэлементы, краткая характеристика.

Микро-элемент Содержание в организме (в среднем) Основные функции
Медь 100 мг Компонент оксидаз (цитохромоксидаза), участие в синтезе гемоглобина, коллагена, иммунных процессах.
Железо 4,5 г Компонент гем-содержащих ферментов и белков (Hb, Mb и др.).
Йод 15 мг Необходим для синтеза гормонов щитовидной железы.
Кобальт 1,5 мг Компонент витамина В 12 .
Хром 15 мг Участвует в связывании инсулина с рецепторами клеточных мембран, образует комплекс с инсулином и стимулирует проявление его активности.
Марганец 15 мг Кофактор и активатор многих ферментов (пируваткиназа, декарбоксилазы, супероксиддисмутаза), участие в синтезе гликопротеинов и протеогликанов, антиоксидантное действие.
Молибден 10 мг Кофактор и активатор оксидаз (ксантиноксидаза, сериноксидаза).
Селен 15 мг Входит в состав селенопротеинов, глутатионпероксидазы.
Цинк 1,5 г Кофактор ферментов (ЛДГ, карбоангидраза, РНК и ДНК-полимеразы).
Из книги ЧЕЛОВЕК - ты, я и первозданный автора Линдблад Ян

Глава 14 Homo erectus. Развитие мозга. Зарождение речи. Интонации. Речевые центры. Глупость и ум. Смех-плач, их происхождение. Обмен информацией в группе. Homo erectus оказался весьма пластичным «прачеловеком»: за миллион с лишним лет своего существования он все время

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

ОБМЕН УГЛЕВОДОВ Следует еще раз подчеркнуть, что процессы, происходящие в организме, представляют собой единое целое, и только для удобства изложения и облегчения восприятия рассматриваются в учебниках и руководствах в отдельных главах. Это относится и к разделению на

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Глава 2. Что такое энергетический обмен? Как клетка получает и использует энергию Чтобы жить, надо работать. Эта житейская истина вполне приложима к любым живым существам. Все организмы: от одноклеточных микробов до высших животных и человека - непрерывно совершают

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

16. Обмен веществ и превращение энергии. Энергетический обмен Вспомните!Что такое метаболизм?Из каких двух взаимосвязанных процессов он состоит?Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?Обмен веществ и

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

7.6. Азотный обмен Азот, углерод, кислород и водород являются основообразующими химическими элементами, без которых (хотя бы в пределах нашей солнечной системы) не возникла бы жизнь. Азот в свободном состоянии обладает химической инертностью и является самым

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Обмен веществ Наши болезни все те же, что и тысячи лет назад, но врачи подыскали им более дорогие названия. Народная мудрость - Повышенный уровень холестерина может наследоваться - Ранняя смертность и гены ответственны за утилизацию холестерина - Наследуется ли

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 10. Энергетический обмен. Биологическое окисление Живые организмы с точки зрения термодинамики – открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики. Каждое органическое

Из книги автора

Обмен витаминов Ни один из витаминов не осуществляет свои функции в обмене веществ в том виде, в котором он поступает с пищей. Этапы обмена витаминов:1. всасывание в кишечнике с участием специальных транспортных систем;2. транспорт к местам утилизации или депонирования с

Из книги автора

Глава 16. Углеводы тканей и пищи – обмен и функции Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде

Из книги автора

Глава 18. Обмен гликогена Гликоген – основной резервный полисахарид в животных тканях. Он представляет собой разветвленный гомополимер глюкозы, в котором остатки глюкозы соединены в линейных участках?-1,4-гликозидными связями, а в точках ветвления – ?-1,6- гликозидными

Из книги автора

Глава 20. Обмен триацилглицеролов и жирных кислот Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования энергии. ТАГ (нейтральные жиры) – наиболее выгодная и основная форма депонирования энергии.

Из книги автора

Глава 21. Обмен сложных липидов К сложным липидам относят такие соединения, которые, помимо липидного, содержат и нелипидный компонент (белок, углевод или фосфат). Соответственно существуют протеолипиды, гликолипиды и фосфолипиды. В отличие от простых липидов,

Из книги автора

Глава 23. Обмен аминокислот. Динамическое состояние белков организма Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и

Из книги автора

Глава 26. Обмен нуклеотидов Практически все клетки организма способны к синтезу нуклеотидов (исключение составляют некоторые клетки крови). Другим источником этих молекул могут быть нуклеиновые кислоты собственных тканей и пищи, однако эти источники имеют лишь

Водно-электролитное и кислотно-щелочное равновесие

I. Основы патофизиологии. Для грамотной диагностики и лечения водно-электролитных нарушений нужно иметь представление о жидкостных пространствах организма, обмене электролитов и кислотно-щелочном равновесии.

А. Водно-электролитный состав и жидкостные пространства организма

1. Вода составляет 45-80% веса тела в зависимости от содержания жира в организме и имеет секторальное распределение. У новорожденных общее содержание воды в организме составляет 80% массы тела, а в организме взрослого мужчины или женщины её часть составляет уже соответственно около 60% и 50% соответственно, а в пожилом и старческом возрасте они равны 51% и 45%.

Выделяют внутриклеточную и внеклеточную жидкость, которая в свою очередь подразделяется на внутрисосудистую (плазма и форменные элементы крови), интерстициальную и трансцеллюлярную.

2. Внутриклеточная вода составляет 35% от идеальной массы тела или 63% от общего содержания воды в организме. В среднем 25 литров. При этом внеклеточная вода-22-24%. Объём циркулирующей крови у взрослого мужчины составляет в среднем 75 мл. на килограмм массы тела, а у женщин- 65мл на килограмм. Для жизнеобеспечения наиболее важен водно-электролитный баланс внутрисосудистой жидкости, поэтому лечение должно быть направлено в первую очередь на его восстановление. Внутрисосудистая жидкость и жидкость интерстициального пространства находятся в динамическом равновесии, которое регулируется гидростатическими и осмотическими силами. При патологических состояниях это равновесие нарушается.

Состав внутриклеточной и внеклеточной жидкости

а. Натрий - основной катион и осмотически активный компонент внеклеточной жидкости.

б. Калий - основной катион и осмотически активный компонент внутриклеточной жидкости.

в. Вода свободно проходит через клеточные мембраны, выравнивая осмотическое давление внутриклеточной и внеклеточной жидкостей. Измеряя осмоляльность одного пространства (например, плазмы), мы оцениваем осмоляльность всех жидкостных пространств организма.

4. Осмоляльность обычно определяют по концентрации натрия в плазме.

а. Повышение концентрации натрия в плазме (осмоляльности) означает относительный недостаток воды.

б. Снижение концентрации натрия в плазме (осмоляльности) означает относительный избыток воды.

5. Осмотическое постоянство организма обеспечивается потреблением и выделением воды, которые регулируются АДГ и механизмами жажды. Многие хирургические больные не могут пить (предписание «ничего внутрь», назогастральный зонд и т. п.) и утрачивают контроль над потреблением жидкости. Осмотические расстройства нередки и часто бывают ятрогенными.

Всю жидкость в организме в основном подразделяют на внеклеточную и внутриклеточную; внеклеточную жидкость - на тканевую (межклеточную) жидкость и плазму крови.
К особому типу внеклеточной жидкости обычно относят и еще одну небольшую часть, называемую трансцеллюлярной жидкостью, несмотря на то, что в некоторых случаях она значительно отличается по составу от межклеточной жидкости или плазмы. Общее содержание ее в организме составляет около 1-2 л, она представлена синовиальной, перитонеальной, перикардиальной, внутриглазной и цереброспинальной жидкостями.

У взрослого человека массой 70 кг жидкость в среднем составляет 60% массы тела, т.е. около 42 л. В зависимости от возраста, пола и степени ожирения это процентное соотношение может меняться. С возрастом, отчасти из-за того, что процентная доля жировой ткани увеличивается, количество жидкости в организме постепенно снижается. Поскольку женский организм в норме содержит больше жировой ткани, чем мужской, то общее количество жидкости по отношению к массе тела у женщин меньше, чем у мужчин. Таким образом, средние показатели содержания жидкости в различных средах организма имеют множество вариантов, зависящих от возраста, пола и относительного содержания жировой ткани.

Внутриклеточная жидкость

Около 28 л жидкости из 42 л (приблизительно 40% массы тела) находится внутри 75x10 12 клеток организма. Эту жидкость называют внутриклеточной.
Жидкость внутри каждой клетки представляет собой особую смесь различных компонентов, однако ее содержание во всех клетках одинаково. Более того, состав внутриклеточной жидкости у различных живых существ сходен, начиная от самых примитивных микроорганизмов и заканчивая человеком. По этой причине жидкость внутри различных клеток рассматривают как отдельную жидкую среду.

Суточный баланс воды в организме

Внеклеточная жидкость

Вся жидкость , которая находится вне клетки, носит название внеклеточной жидкости. В совокупности она составляет около 20% массы тела, что в норме у человека массой 70 кг составляет около 14 л. Более 3/4 внеклеточной жидкости представлено межклеточной жидкостью, и почти 1/4 объема (около 3 л) - плазмой. Плазма - жидкая часть крови, лишенная форменных элементов. Она участвует в постоянном обмене веществ с межклеточной жидкостью через поры мембран капилляров. Поры высокопроницаемы практически для любых растворенных веществ, за исключением белков, поэтому состав внеклеточной жидкости вследствие ее постоянного перемешивания практически одинаков.
Главное отличие состоит в содержании белка, наибольшая концентрация которого отмечается в плазме.

Объем крови

Кровь содержит жидкие среды : внеклеточную жидкость (плазму) и внутриклеточную жидкость (внутри эритроцитов). Поскольку кровь находится в собственном резервуаре - сосудистой системе, ее рассматривают как отдельную среду организма. Объем крови особенно важен для регуляции гемодинамических показателей. Общий объем крови в организме в среднем составляет 7% массы тела взрослых (около 5 л). Приблизительно 60% объема крови представлено плазмой, 40% составляют эритроциты, хотя у разных лиц в зависимости от пола, веса и других факторов эти значения немного отличаются.

Гематокрит (объем «упакованных» эритроцитов). Гематокритом называют часть объема крови, состоящую из плотного осадка эритроцитов, который образовался в результате центрифугирования в специальном «гематокритном капилляре». Истинное значение гематокрита составит 96% измеренного, поскольку «упаковать» эритроциты отдельно невозможно: в пространстве между клетками остается около 3-4% плазмы.

У мужчин показатель гематокрита составляет 0,40, у женщин - 0,36. При тяжелой анемии гематокрит может снижаться до уровня, едва совместимого с жизнью - 0,1. Напротив, при некоторых состояниях, связанных с избыточным образованием эритроцитов (полицитемии), гематокрит возрастает до 0,65.


внеклеточной жидкости и снижение сердечного выброса. Вероятно, они обладают и вазодиллятирующим действием. Диуретики могут вызывать нежелательные эффекты в виде снижения уровня калия крови, нарушения толерантности к глюкозе, гиперурикемии, эктопических нарушений ритма и импотенции. Для лечения АГ предпочтительны тиазидные диуретики. Гидрохлортиазид эффективно снижает АД при назначении в небольших
  • ОСТРАЯ ПОЧЕЧНАЯ НЕДОСТАТОЧНОСТЬ
    внеклеточной жидкости (ожоги, кровопотеря, дегидратация, диарея, цирроз печени с асцитом, нефротический синдром, перитонит). При длительно сохраняющемся нарушении гемодинамики Преренальная ОПН может переходить в ренальную. 2. Ренальная ОПН. Ренальная ОПН в 75% случаев обусловлена ише-мическим (шок и дегидратация) и токсическим (нефротоксины) поражением почек и в 25% случаев - другими
  • БЕРЕМЕННОСТЬ И РОДЫ ПРИ ПОРОКАХ СЕРДЦА
    внеклеточной жидкости на 5-6 литров - происходит за счет увеличения объема циркулирующей крови - и за счет повышения гидростатического давления в капиллярах 3) Увеличение числа сердечных сокращений на 15-20 сокращений в минуту - особенно в третьем триместре - это физиологическая тахикардия - пульс составляет 85-90 в минуту 4) Увеличение ударного объема, минутного
  • Рибонуклеиновые кислоты вирусов гриппа
    внеклеточной жидкости обнаруживаются вновь синтезированные вирусные частицы, и некоторые кленки деградируют. Другой аспект проблемы внутриклеточного синтеза вирусной РНК состоит в том, где синтезируется эта РНК- Этот вопрос будет рассмотрен в гл. 8. 2, Созревание и упаковка РНК в вирионы Механизм, согласно которому РНК (или РНП) упаковывается в вирусную частицу, до настоящего времени
  • 1.2. Внепродуктивные органы репродуктивной системы
    внеклеточной жидкостью в капиллярном сплетении срединного возвышения, богатого терминалями 19 Глава 1. Структура и функция репродуктивной системы в возрастном аспекте гипоталамических нейронов. Таким путем осуществляется передача информации от гипоталамуса к гипофизу. Однако кроме основного направления кровотока вниз по ножке гипофиза небольшой объем крови все же может поступать вверх
  • Обмен веществ
    внеклеточной жидкости, прежде всего ОЦК. Регуляция водного обмена в первую очередь осуществляется за счет воздействия альдостерона, прогестерона и АДГ. Для обеспечения нормального течения беременности возрастает интенсивность потребления витаминов, которые необходимы для обеспечения обменных процессов в организме матери и плода. Витамин Е принимает участие в правильном развитии беременности.
  • Патогенетические и патоморфологические изменения отдельных органов и систем при гестозе
    внеклеточного сектора воды, повышение сопротивления почечных сосудов. В связи с этим нарушается концентрация мочи, снижается диурез, особенно днем в вертикальном положении женщины. Снижается толерантность к водной нагрузке. Для начала развития гестоза характерны снижение диуреза, никтурия, повышение относительной плотности мочи. Более поздними признаками являются олигурия, снижение
  • Лечение гестоза в стационаре
    внеклеточных ионов кальция внутрь клетки, где локализуются АТФаза и миофибриллы. Антагонисты ионов кальция предотвращают расщепление АТФ, с которым связано образование энергии для процесса сокращения мышечной оболочки артерий и артериол, в результате чего происходит системная вазодилатация и снижение артериального давления и ОПСС. Нельзя надеяться, что какой-либо из существующих гипотензивных
  • НАРУШЕНИЯ ТЕРМОРЕГУЛЯЦИИ
    внеклеточных жидкостей (прямое воздействие) и нарушением жизнедеятельности организованных тканей и кровообращения (непрямое воздействие). При отморожении ткани образуются кристаллики льда и, как следствие, повышается концентрация растворенных веществ в оставшейся жидкости. При медленном замораживании происходят значительные физические нарушения. Кристаллы льда образуются только во внеклеточных
  • Обморок и слабость
    внеклеточной жидкости. При синдроме хронической ортостатической гипотензии в некоторых случаях улучшение состояния отмечают при приеме кортикостероидов (флудрокортизона ацетат - fludrocortisone acetate в таблетках по 0,1-0,2 мг в сутки в несколько приемов). Рекомендуют также бинтовать ноги и спать, слегка приподняв голову и плечи. При лечении синокаротидных обмороков следует в первую