Иммунитет и его механизмы. Тема: Физиология иммунной системы. Работа иммунной системы

Механизмы иммунитета представляют собой процессы, позволяющие формировать защитную реакцию против попадания в организм человека чужеродных микроорганизмов. Правильность их работы напрямую влияет на здоровье и работу организма. Все механизмы иммунитета можно разделить на две группы: неспецифические и специфические.

Специфические механизмы являют собой процессы, которые работают по направлению к конкретному антигену, тем самым защищая организм от него не просто в течение долгого времени, но и в течение всей жизни человека. Неспецифические же механизмы иммунитета можно отнести к классу универсальных, так как они начинают действовать только в тот момент, когда в организм попадают те или иные чужеродные агенты. Кроме того, они позволяют эффективно защищать человека до тех пор, пока не придут в действие антиген-специфические реакции.

Гуморальный и клеточный иммунитет

Исторически сложилось, что в процессе познания иммунной системы, произошло разделение на клеточный и гуморальный иммунитет. Клеточный иммунитет способен работать только из-за фагоцитов и лимфоцитов, но при этом ему совершенно не нужны антитела, которые принимают активное участие в гуморальных механизмах.

Данный тип иммунитета способен защитить организм не только от инфекций, но и от раковых опухолей. В основе клеточного иммунитета лежат лимфоциты, которые формируются внутри костного мозга, после они переходят в тимус, а иногда и в вилочковую железу, где происходит их окончательное становление. Именно поэтому они получили название тимус-зависимых, или Т-лимфоцитов. На протяжении своей жизни лимфоциты несколько раз выходят за пределы лимфоидных органов, поступают в кровь, а после работы вновь возвращаются на свое место.

Подобная мобильность дает возможность клеткам перемещаться к местам воспаления очень быстро. Т-лимфоциты встречаются трех типов. Естественно, каждый из них играет свою важную роль. Т-киллеры представляют собой клетки, способные ликвидировать антигены. Т-хэлперы - это первые клетки, которые понимают, что внутри организма возникла опасность. Кроме того, они выражают свою реакцию на вторжение созданием специальных ферментов, которые позволяют увеличивать количество Т-киллеров и В-клеток. Последний тип представляет собой Т-супрессоры. Они необходимы для подавления активного иммунного ответа, если в данный момент он не требуется. Данный процесс играет немаловажную роль в остановке развития аутоиммунных реакций. На самом деле, разграничить клеточный и гуморальный иммунитет просто невозможно. А все потому, что в создании антигенов принимают участие клетки, а большое число реакций клеточного иммунитета просто не смогут протекать без участия антител.

Гуморальный иммунитет работает благодаря созданию антител, подходящих к каждому антигену, способному появиться в организме человека извне. Это своего рода сочетание белков, находящихся в крови, а также некоторых биологических жидкостях. Под ними подразумеваются интерфероны, которые помогают клеткам оставаться невосприимчивыми к воздействию любых вирусов. С-реактивный белок крови способствует запуску систему комплемента. Лизоцим представляет собой фермент, который позволяет навредить стенкам чужеродных микроорганизмов, тем самым растворяя их. Все перечисленные белки являются частью неспецифического гуморального иммунитета. Правда, существует еще специфический. Им считается интерлейкины. Также присутствуют специфические антитела и целый ряд остальных образований.

Клеточный и гуморальный иммунитет тесно связаны друг с другом. Поэтому даже малейший сбой в одной из этих категорий может привести к серьезным последствиям другую категорию иммунитета.

Инфекционный и противовирусный иммунитет

Инфекционный иммунитет в некоторых ситуациях могут называть нестерильным. Суть такого иммунитета кроется в том, что человек уже не сможет второй раз заболеть той болезнью, возбудитель которой уже присутствует в организме. Это может быть врожденное или приобретенное заболевание. Причем приобретенная болезнь может быть, как пассивной, так и активной.

Инфекционный иммунитет присутствует в нашем организме только до тех пор, пока по крови гуляет антиген и антитела. После выздоровления, эта защита становится не нужной, человек вновь открывается болезням, которые еще недавно сидели внутри него. Инфекционный иммунитет делится на кратковременный и длительный, или же пожизненный. К примеру, кратковременный иммунитет проявляется во время гриппа, а длительный может существовать и при брюшном тифе, в то время как корь, ветрянка дают вашему организму пожизненный иммунитет.

Противовирусный иммунитет уже на первом этапе обзаводится барьерами в виде слизистых оболочек и кожных покровов. Их повреждение, а также сухость могут помочь вирусам проникнуть в организм. После проникновения, враг начинает повреждать клетки, поэтому очень важно в этот момент начать вырабатывать необходимое количество интерферонов, способных организовать невосприимчивость к вирусному воздействию.

На следующем этапе противовирусный иммунитет работает за счет зова погибающих клеток. Умирая, они выбрасывают в организм цитокины, которые обозначают место воспаления. Этот зов привлекает лейкоциты, которые обеспечивают создания очага воспаления. Приблизительно на четвертый день заболевания происходит выработка антител. Именно они в итоге будут провозглашены победителями вирусов. Но есть у них и помощники по имени макрофаги. Это особые клетки, активирующие процесс - фагоцитоз, а также разрушение и переваривание клеток-разрушителей. Противовирусный иммунитет представляет собой сложный процесс, в который вовлечено огромное количество ресурсов иммунной системы.

К несчастью, не все иммунные реакции работают так, как рассказывается в учебниках по биологии. В большинстве своем те или иные процессы нарушаются, приводят организм к проблемам и различного рода осложнениям. Во время понижения иммунного ответа, человек должен принимать средства, поднимающие иммунитет. Они могут быть созданы самой природой или же приобретены в аптеке, но при этом самым важным по-прежнему остается их безопасность и эффективность действия.

Активизация иммунной защиты требуется людям разных возрастов, в том числе и пожилые, и дети. К сожалению, данным группам нашего населения требуется более мягкий и самый безопасный способ лечения. Современные средства, поднимающие иммунитет, в большинстве своем не соответствуют этим параметрам. Они не только способны вызывать побочные эффекты, но и из-за них появляется синдром отмены, привыкания. Естественно, встает вопрос: а так ли они необходимы человеку? Естественно, если после медицинского обследования специалист назначает вам средства, поднимающие иммунитет, то, конечно, принимать их следует. А вот случаи с самолечением лучше не допускать.

Много лет ученые трудились, пытаясь создать особые таблетки для иммунитета, которые помогали бы восстанавливать человеку функции иммунитета. Порядка 50 лет назад специалисты провели небольшое исследование, после которого выяснилось, что эти чудо-таблетки стали реальностью. Это исследование заключало в себе изучение трансфер факторов, то есть особых соединений с информацией, которые могут научить клетки иммунной системы, сделать пояснения, в каких случаях и как необходимо работать. В качестве итога продолжительной работы иммунологов и ученых появились на свет таблетки для иммунитета. Они способны регулировать и даже восстанавливать функции иммунной системой, хотя еще некоторое время назад о таком могли лишь мечтать.

Эти таблетки были названы Трансфер фактором. Это специальный препарат, который помогает заменить некоторые пробелы в иммунной информации. Этот процесс стал возможным только благодаря присутствующим в составе информационным соединениям, полученным из коровьего молозива. Ни одни таблетки для иммунитета, помимо Трансфер фактора не способны обеспечить безопасность, высокую эффективно и, одновременно с этим, быть натуральными.

Этот препарат является лучшим средством, которое существует в современном мире для восстановления иммунитета. Его можно использовать и в качестве профилактического, и в качестве лечебного средства, а также в период восстановления. Младенцам, пожилым людям и беременным женщинам врачи без опасения назначают этот препарат, так как он не вызывает побочных эффектов, привыкания, а, значит, является безопасным.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

иммунитет невосприимчивость сопротивляемость инфекция

Иммунитет - невосприимчивость организма к инфекционному началу или какомулибо инородному веществу.

Иммунитет обусловлен совокупностью всех тех наследственно полученных и индивидуально приобретённых организмом приспособлений, которые препятствуют проникновению и размножению микробов, вирусов и других патогенных агентов и действию выделяемых ими продуктов. Иммунологическая защита может быть направлена не только на патогенные агенты и выделяемые ими продукты. Любое вещество, являющееся антигеном, например чужеродный для организма белок, вызывает иммунологические реакции, с помощью которых это вещество тем или иным путём удаляется из организма.

Эволюция формировала систему иммунитета около 500 млн. лет. Этот шедевр природы восхищает нас красотой гармонии и целесообразностью. Настойчивое любопытство ученых разных специальностей раскрыло перед нами закономерности ее функционирования и создало в последние 110 лет науку «Медицинская иммунология».

Каждый год приносит открытия в этой бурно развивающейся области медицины.

Антигены - вещества, которые воспринимаются организмом как чужеродные и вызывают специфический иммунный ответ. Способны взаимодействовать с клетками иммунной системы и антителами. Попадание антигенов в организм может привести к формированию иммунитета, иммунологической толерантности или аллергии. Свойствами антигенов обладают белки, и другие макромолекулы. Термин «антиген» употребляют и по отношению к бактериям, вирусам, целым органам (при трансплантации), содержащим антиген. Определение природы антигена используется в диагностике инфекционных болезней, при переливании крови, пересадках органов и тканей.

Антигены также применяют для создания вакцин и сывороток.

Антитела - белки (иммуноглобулины) плазмы крови человека и теплокровных животных, образующиеся при попадании в организм различных антигенов и способные специфически связываться с этими антигенами.

Защищают организм от инфекционных заболеваний: взаимодействуя с микроорганизмами, препятствуют их размножению или нейтрализуют выделяемые ими токсины.

Все патогенные агенты и вещества антигенной природы нарушают постоянство внутренней среды организма. При уравновешивании этого нарушения организм использует весь комплекс своих механизмов, направленных на поддержание постоянства внутренней среды. Иммунологические механизмы являются частью этого комплекса. Иммунным оказывается тот организм, механизмы которого или вообще не позволяют нарушить постоянство его внутренней среды или позволяют быстро ликвидировать это нарушение. Таким образом, иммунитет является состоянием невосприимчивости, обусловленным совокупностью процессов, направленных на восстановление постоянства внутренней среды организма, нарушенного патогенными агентами и веществами антигенной природы.

Невосприимчивость организма к инфекции может быть обусловлена не только его иммунологической реактивностью, но и другими механизмами.

Например, кислотность желудочного сока может предохранить от заражения через рот некоторыми бактериями, и организм с большей кислотностью желудочного сока оказывается более защищённым от них, чем организм с меньшей кислотностью. В тех случаях, когда защита обусловлена не иммунологическим механизмом, говорят о резистентности организма. Не всегда можно провести чёткую грань между иммунитетом и резистентностью. Например, изменения в устойчивости организма к инфекции, наступающие в результате утомления или охлаждения, в большей степени обусловлены изменением физиологических констант организма, чем факторов иммунологической защиты.

Эта грань более отчётлива в явлениях приобретённого иммунитета, отличающихся высокой специфичностью, отсутствующей в явлениях резистентности.

Формы иммунитета

Иммунитет многообразен по своему происхождению, проявлению, механизму и ряду других особенностей, в силу чего существует классификация различных иммунологических явлений в виде определённых форм иммунитета. По происхождению различают иммунитет естественный, врождённый, и иммунитет приобретённый.

Естественный иммунитет - невосприимчивость, обусловленная врождёнными биологическими особенностями, присущими данному виду животных или человеку. Это видовой признак, передающийся по наследству, подобно любому другому морфологическому или биологическому признаку вида. Примерами подобной формы невосприимчивости может служить иммунитет человека к чуме собак или многих животных к кори. Он наблюдается как у одного итого же животного ко многим инфекционным агентам, например у рогатого скота к чуме собак, к птичьей чуме, к гриппу, так и у разных животных к одному и тому же инфекционному агенту (например, к гонокку иммунны все животные).

Напряжённость естественного иммунитета очень высока. Обычно его считают абсолютным, так как в подавляющем большинстве случаев естественный иммунитет не удаётся нарушить заражением даже громадными количествами вполне вирулентного материала. Однако известны и многочисленные исключения, свидетельствующие об относительности естественного иммунитета. Так, цыплёнка удаётся заразить сибирской язвой, если искусственно понизить температуру его тела (в норме 41- 420) до температуры являющейся оптимальной для развития сибиреязвенного микроба (370). Можно также заразить столбняком естественно иммунную к нему лягушку, если искусственно поднять температуру её тела. Естественный иммунитет в некоторых случаях может быть снижен действием ионизирующей радиации и созданием иммунологической толерантности.

В некоторых случаях отсутствие заболевания ещё не свидетельствует об отсутствии инфекции. Учение о скрытой инфекции позволяет различить иммунитет к заболеванию и иммунитет к микробу. В ряде случаев заболевание не возникает вследствие того, что попавший в организм микроб в нём не размножается и погибает, в других случаях заболевание не наступает, несмотря на то, что проникший в организм микроб или вирус в нём размножается.

Эти последние случаи, имеющие место при скрытых инфекциях у естественно иммунных организмов, также свидетельствуют об относительности естественного иммунитета.

Естественный иммунитет присущ не только невосприимчивым организмам. Восприимчивые организмы также обладают некоторым, хотя и слабо выраженным, иммунитетом, доказательством чего является то обстоятельство, что восприимчивый организм заболевает только при контакте с инфекционной дозой микробов. Если же в организм попадает меньшая доза, то эти микробы погибают, и заболевание не наступает.

Следовательно, и восприимчивый организм имеет некоторую степень естественного иммунитета. Этот «естественный иммунитет восприимчивых» имеет большое практическое значение. Доза микробов, меньшая инфекционной, не вызывая заболевания может обусловить появление приобретённого иммунитета, показателем чего является образование антител. Подобным образом и происходит постепенная повозрастная иммунизация населения к некоторым инфекциям. Эти процессы хорошо изучены при дифтерии.

Количество отрицательных реакций Шика резко увеличивается с возрастом, что обусловлено контактом населения с дифтерийным микробом.

Заболевания дифтерией имеют место в гораздо меньшем числе случаев, и только небольшая часть лиц пожилого возраста (от 60 до 70 лет), имеющих в крови антитоксин, когда-либо болела дифтерией. Без наличия известной степени иммунитета к дифтерии у маленьких детей всякая доза дифтерийных бактерий вызывала бы у них заболевание, и возрастной неприметной иммунизации у населения не было бы. Подобное же положение существует при кори, которой переболевает почти 100% всех людей. При полиомиелите наблюдается сдвиг в другую сторону: переболевает незначительное число детей, но почти все люди уже к 20-25 годам имеют антитела к возбудителю и, следовательно, имели с ним контакт. Таким образом, само понятие восприимчивости, являющееся синонимом отсутствия иммунитета, является относительным. Можно говорить о восприимчивости только к определённым дозам инфекции. Вместе с тем это понятие - чисто физиологическое, ибо восприимчивость обусловлена именно физиологическим аппаратом организма, возникшим в результате эволюционного процесса.

Приобретённый иммунитет вырабатывается организмом в течение его индивидуальной жизни либо путём перенесения соответствующего заболевания (естественно приобретённый иммунитет), либо путём вакцинации (искусственно приобретенный иммунитет). Различают также активно и пассивно приобретённый иммунитет. Активно приобретённый иммунитет возникает либо естественно, при перенесении инфекции, либо искусственно, при вакцинации живыми или мёртвыми микробами или их продуктами.

И в том, и в другом случае организм, приобретающий невосприимчивость, сам участвует в её создании и вырабатывает ряд защитных факторов, носящих название противотел. Например, после заболевания человека холерой его сыворотка приобретает способность убивать холерных микробов, при иммунизации лошади дифтерийным токсином её сыворотка приобретает способность нейтрализовать этот токсин благодаря образованию в организме лошади антитоксина. Если сыворотку, содержащую уже образовавшийся антитоксин, ввести животному или человеку, предварительно не получившему токсина, таким путём можно воспроизвести пассивный иммунитет, обусловленный антитоксином, который не был активно выработан организмом, получившим сыворотку, но пассивно получен им вместе с введённой сывороткой.

Активно приобретённый иммунитет, особенно естественно приобретённый, устанавливаясь через недели после заболевания или иммунизации, в большинстве случаев держится долго - годами и десятилетиями; иногда он остаётся на всю жизнь (например, иммунитет при кори). Однако по наследству он не передаётся. Ряд работ, устанавливающих наследственную передачу приобретённого иммунитета, не получил подтверждения. Вместе с тем способность вырабатывать активный иммунитет, несомненно, является видовым признаком, присущим организму, подобно восприимчивости или естественному иммунитету. Пассивно приобретённый иммунитет устанавливается очень быстро, обычно через несколько часов после введения иммунной сыворотки, но держится очень недолго и исчезает по мере исчезновения введённых в организм антител.

Это имеет место чаще всего уже через несколько недель. Приобретённый иммунитет во всех своих формах чаще всего является относительным и, несмотря на значительную напряжённость, в некоторых случаях он может быть преодолён большими дозами заражаемого материала, хотя течение инфекции будет при этом более лёгким. Иммунитет может быть направлен либо против микробов, либо против образуемых ими продуктов, в частности токсинов; поэтому различают антимикробный иммунитет, при котором микроб лишён возможности развиваться в организме, убивающем его своими защитными факторами, и антитоксический иммунитет, при котором микроб может существовать в организме, но заболевания не наступает, так как иммунный организм нейтрализует токсины микроба.

Особой формой приобретённого иммунитета является так называемый инфекционный иммунитет. Эта форма иммунитета обусловлена не перенесением инфекции, а наличием её в организме и существует только до тех пор, пока организм инфицирован. Моргенрот (1920), наблюдавший у заражённых стрептококками мышей подобную форму, назвал её депрессионными иммунитетом.

Мыши, заражённые небольшими дозами стрептококка, не умирали, но заболевали хронической инфекцией; однако они оказывались устойчивыми к дополнительному заражению смертельной дозой стрептококка, от которой умирали здоровые контрольные мыши. Иммунитет такого же характера развивается при туберкулёзе и некоторых других инфекциях. Инфекционный иммунитет называют также нестерильным, то есть не освобождающим организм от инфекции, в отличие от других так называемых стерильных форм иммунитета, при которых организм освобождается от инфекционного начала. Однако такая стерилизация не всегда имеет место, так как и в случаях приобретённого иммунитета, организм долгое время может быть носителем микроба или вируса и, следовательно, быть не «стерильным» в отношении перенесённой инфекции.

Различная иммунологическая реактивность отдельных тканей и органов организма и несоответствие во многих случаях между наличием иммунитета и присутствием антител послужили основой для построения теории местного иммунитета А. М. Безредки (1925).

Согласно этой теории, местный иммунитет возникает независимо от общего иммунитета и не связан с антителами. Чувствительными к инфекции являются только определённые ткани (например, к сибирской язве чувствительна только кожа) и поэтому их иммунизация приводит к общему иммунитету организма. Отсюда предложение иммунизировать кожу против кожных инфекций, кишечник против кишечных инфекций. Большой экспериментальный материал, полученный при изучении этого вопроса, показал, что местного иммунитета, как зависящего от всего организма явления не существует и что во всех случаях местная иммунизация сопровождается возникновением общего иммунитета с образованием антител. Вместе с тем было установлено, что местная иммунизация может быть в некоторых случаях целесообразной благодаря особенностям иммунологической реакции тех или других тканей.

Механизмы иммунитета

Механизмы иммунитета схематически можно разделить на следующие группы: кожные и слизистые барьеры; воспаление, фагоцитоз, ретикуло-эндотелиальная система; барьерная функция лимфатической ткани; гуморальные факторы; реактивность клеток организма.

Кожные и слизистые барьеры. Кожа непроходима для большинства бактерий. Все воздействия, способствующие повышению проницаемости кожи, понижают её устойчивость к инфекции, а все воздействия, понижающие её проницаемость, действуют в обратном направлении. Однако кожа является не только механическим барьером для микробов. Она обладает также стерилизующими свойствами, и микробы, попавшие на кожу, быстро погибают.

Арнольд (1930) и другие учёные наблюдали, что чудесная палочка, помещённая на здоровую кожу человека, исчезает настолько быстро, что через 10 минут может быть обнаружено только 10%, а через 20 минут - 1% всего помещённого на кожу количества бактерий; через 30 минут чудесную палочку уже вообще нельзя было обнаружить. Кишечная и брюшнотифозная палочки исчезали через 10

минут. Установлено, что бактерицидное действие кожи связано со степенью её чистоты. Стерилизующее действие кожи обнаруживается лишь в отношении тех видов микробов, которые приходят с ней в соприкосновение сравнительно редко или вовсе с ней не встречаются. Оно ничтожно в отношении микробов, являющихся частыми обитателями кожи, например жёлтого стафилококка. Есть основания полагать, что бактерицидные свойства кожи главным образом обусловлены содержанием в отделяемом потовых и сальных желез молочной и жирных кислот. Было показано, что эфирные алкогольные экстракты кожи, содержащие жирные кислоты и мыла, обладают заметным бактерицидным действием в отношении стрептококка, палочек дифтерии и кишечных бактерий, в то время как солевые лишены или почти лишены этого свойства.

Слизистые оболочки также являются защитным барьером организма в отношении микробов, причём эта защита обусловлена не только механическими функциями. Высокая кислотность желудочного сока, а также наличие в нём слюны, обладающей бактерицидными свойствами, препятствуют размножению бактерий. Слизистая оболочка кишечника, содержащего громадное количество бактерий, обладает резко выраженными бактерицидными свойствами.

Бактерицидное действие отделяемого слизистых оболочек связано также с наличием в этом отделяемом особого вещества - лизоцима. Лизоцим содержится в слезах, мокроте, слюне, плазме и сыворотке крови, лейкоцитах, в курином белке, в икре рыб. В наибольшей концентрации лизоцим найден в слезах и хрящах. Лизоцим не был обнаружен в спинномозговой жидкости, в мозгу, кале и поте. Лизоцим растворяет не только живых, но и мёртвых микробов. Кроме сапрофитов, он действует и на некоторых патогенных микробов (гонококк, сибиреязвенную бациллу), несколько подавляя их рост и вызывая частичное растворение. Лизоцим не оказывает какого-либо действия на изученные в этом отношении вирусы. Наиболее показательной является роль лизоцима в иммунитете роговицы, а также полостей рта, глотки и носа. Роговица - ткань, крайне чувствительная к инфекции, непосредственно соприкасается с громадным количеством микробов воздуха, в том числе и с такими, которые могут вызвать в ней нагноения (стафилококки, пневмококки). Однако эти заболевания роговицы сравнительно редки, что можно объяснить высокой бактерицидностью слёз, постоянно омывающих роговицу, и содержанием в них лизоцима. Благодаря высокому содержанию лизоцима в слюне необычно быстро заживают всякие раны во рту.

Литература :

1. Бакулев А.Н., Брусиловский Л.Я., Тимаков В.Д., Шабанов А.Н. Большая медицинская Энциклопедия М., 1959.

3. Кудрявцева Е., СПИД с 1981года по … “Наука и жизнь”№10, 1987г.

4. В.М. Покровский В.М., Коротько Г.Ф., Физиология человека М, 1992.

5.Данные сайта www.mednovosti.ru

Размещено на Allbest.ru

Подобные документы

    Иммунитет как невосприимчивость, сопротивляемость организма к инфекциям и инвазиям чужеродных организмов. Иммунный ответ. Нейтрофилы и их функция. Моноциты, макрофаги, лимфоциты. Виды нарушений фагоцитарной системы. Методы оценки гуморального иммунитета.

    презентация , добавлен 05.04.2015

    Иммунитет - невосприимчивость, сопротивляемость организма к инфекциям и инвазиям, а также воздействию чужеродной генетической информации. Укрепление иммунитета: закаливание, прогулки, физические нагрузки, рациональное питание; позитивный настрой, сон.

    презентация , добавлен 05.03.2013

    Функции крови, их сущность, особенности и характеристика. Лейкоциты и их роль в защите организма от микробов и вирусов. Иммунитет как сопротивляемость организма инфекциям и инвазиям чужеродных организмов, его виды. Функции антител в организме человека.

    презентация , добавлен 27.05.2012

    Иммунитет как совокупность свойств и механизмов, обеспечивающих постоянство состава организма и его защиту от инфекционных и других чужеродных агентов, его типы, формы проявления. Принципы и факторы, влияющие на формирование. Механизм защиты от инфекций.

    презентация , добавлен 25.12.2014

    Иммунитет как совокупность свойств и механизмов, обеспечивающих постоянство состава организма и его защиту от инфекционных и других чужеродных агентов, виды: врожденный, искусственный. Характеристика и анализ факторов неспецифической защиты организма.

    презентация , добавлен 11.12.2012

    Основные группы факторов, обеспечивающие невосприимчивость человека к возбудителям инфекции. Неспецифическая физическая резистентность, специфическая невосприимчивость (иммунитет). Неспецифические защитные механизмы. Гуморальный и клеточный иммунитет.

    контрольная работа , добавлен 18.02.2013

    Характеристика системы иммунной защиты организма. Приобретенный иммунитет и его формы. Выработка антител и регуляция их продукции. Образование клеток иммунологической памяти. Возрастные особенности иммунитета, вторичные (приобретенные) иммунодефициты.

    реферат , добавлен 11.04.2010

    Иммунитет как защитная реакция организма в ответ на внедрение инфекционных и других чужеродных агентов. Механизм действия иммунитета. Состав иммунной системы. Врожденный и приобретенный виды иммунитета. Определение состояния иммунной системы человека.

    презентация , добавлен 20.05.2011

    Реактивность - основа защитных функций организма. Причины действия патогенного фактора. Клеточные и гуморальные механизмы, обеспечивающие специфические реакции (иммунитет). Регуляция кроветворения макрофагами. Патофизиология базофилов и эозинофилов.

Вопрос № 3 Иммунитет определение значение. Иммунный ответ. Механизм клеточного и гуморального иммунитета.

Вопрос №2. Механизм фагоцитоза.

Вопрос №1 Иммунологическая реактивность, неспецифическая резистентность.

Регуляция иммунитета.

Иммунитет определение значение. Иммунный ответ. Механизм клеточного и гуморального иммунитета.

Механизм фагоцитоза.

Иммунологическая реактивность, неспецифическая резистентность.

Лекция №9

Тема: Физиология иммунной системы

План:

Основными формами нормальной иммунологической реактивности организма являются: иммунитет (защита при помощи антител и сенсибилизированных Т-лимфоцитов), иммунологическая память, иммунологическая толерантность. Патологическими формами реактивности являются антигенспецифическая гиперчувствительность, аутоиммунные процессы, отсутствие ответа или дефектный ответ вследствие врожденного иммунодефицита.

Иммунологическая память. Иммунологическая память-это способность иммунной системы специфически отвечать на повторные или последующие введения антигена. Она проявляется в виде ускоренного и усиленного, ответа на антиген (уменьшение латентного периода, более резкое нарастание титра антител, ускоренное отторжение трансплантата, аллергические реакции).

Иммунологическая память может быть краткосрочной, долговременной и пожизненной. Ее основными носителями являются долгоживущие сенсибилизированные В-лимфоциты. Эти клетки продолжают циркулировать в кровяном и лимфатическом русле, являясь специфическими предшественниками антиген-реактивных лимфоцитов. При повторном контакте с антигеном они размножаются, обеспечивая быстрое увеличение клона специфических В- или Т-лимфоцитов.

Иммунологическая толерантность. Иммунологическую толерантность можно рассматривать как негативную форму иммунологической памяти. Она проявляется в отсутствии или ослаблении ответа на повторное введение антигена. Иммунологическая толерантность лежит в основе отсутствия реакции организма на собственные антигены. В ранний период развития иммунная система потенциально способна реагировать на них, но постепенно «отвыкает» от этого. Предположительно, это обусловлено выведением из церкуляции В- и Т-клеток реагирующих для антигенны собственного организма или активацией Т-клеток-супрессоров, подавляющих реакцию на собственные антигены.

Неспецифическая резистентность. Наряду с иммунологической реактивностью в организме существует система неспецифической защиты, или неспецифической резистентности. Она включает следующие компоненты:

  1. Непроницаемость кожных и слизистых покровов;
  2. Кислотность содержимого желудка;
  3. Наличие в сыворотке крови и жидкостях организма бактерицидных субстанций - лизоцима, пропердина (комплекса сывороточного белка, ионов Мg и комплемента),
  4. Ферментов и противовирусных веществ (интерферона, термоустойчивых ингибиторов)

Факторы неспецифической защиты первыми включаются в борьбу при поступлении в организм чужеродных антигенов. Они как бы подготавливают почву для дальнейшего развертывания иммунных реакций, которые определяют исход борьбы. Особое положение среди факторов защиты занимают фагоциты и система белков крови, называемая комплементом, Их можно отнести как к неспецифическим, так и к иммунореактивным факторам защиты. Связывание антител с антигеном облегчает поглощение антигена фагоцитами и часто активирует систему, комплемента, хотя выработка комплемента и явление фагоцитоза не являются сами по себе специфическими реакциями в ответ на введение антигена.

Фагоцитоз сложный биологический процесс при котором происходит лизис чужеродных объектов. Фагоцитоз открыт Мечниковым в 1887г.

Первая стадия фагоцит распознает бактерию и приближается к ней. Фагоцит может улавливать отдаленные сигналы (хемотаксис) и мигрировать в их направлении (хемокинез). Хотя сотни продуктов метаболизма влияют на подвижность лейкоцитов, их действие проявляется лишь в присутствии особых соединений - хемоаттрактантов. К хемоаттрактантам относят продукты распада соединительной ткани, иммуноглобулинов, фрагменты активных компонентов комплемента, некоторые факторы свертывания крови и фибринолиза, простагландины, лейкотриены, лимфокины и монокины. Благодаря хемотаксису, фагоцит целенаправленно движется в сторону повреждающего агента. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения и тем с большей скоростью они движутся.

Вторая стадия - стадия прилипания. Коснувшись объекта, фагоцит прикрепляется к нему. Лейкоциты, прилипшие в очаге воспаления к стенке сосуда, не отрываются даже при большой скорости кровотока. Данное явление происходит, потому что комплекс заряжен положительно, а лимфоцит отрицательно.

Третья стадия - стадия поглощения. Объект фагоцитоза может перемещаться двумя способами. В одном случае оболочка фагоцита в месте контакта с объектом втягивается и объект, прикрепленный к этому участку оболочки, втягивается в клетку, а свободные края мембраны смыкаются над объектом. Образуется обособленная от наружной мембраны и от окружающей цитоплазмы вакуоль, содержащая фагоцитированную частицу.

Второй механизм поглощения - образование псевдоподий, которые обволакивают объект фагоцитоза и смыкаются над ним так, что, как и в первом случае, фагоцитированная частица оказывается заключенной в вакуоль внутри клетки.

Четвертая стадия - стадия внутриклеточного переваривания (рис. 6, IV; 7). К вакуоли, содержащей фагоцитированный объект (фагосоме), присоединяются лизосомы и содержащиеся в них неактивные ферменты, активируясь, изливаются в вакуоли. Образуется пищеварительная вакуоль.

В лизосомах имеется широкий спектр ферментов, в том числе расщепляющих биологические макромолекулы рибонуклеазы, протеазы, амилазы, липазы. Под действием этих ферментов и происходит переваривание чужеродных объектов.

Иммунитет. Это комплекс реакций, направленных на поддержание гомеостаза при встрече организма с агентами, которые расцениваются как чужеродные независимо от того, образуются ли они в самом организме или поступают в него извне.

Чужеродные для данного организма соединения, способные вызывать иммунный ответ, получили наименование «антигены» (АГ). Теоретически любая молекула может быть АГ. В результате действия АГ в организме образуются антитела (AT), сенсибилизируются (активируются) лимфоциты, благодаря чему они приобретают способность принимать участие в иммунном ответе.

Специфичность АГ заключается в том, что он избирательно реагирует с определенными AT или лимфоцитами, появляющимися после попадания АГ в организм.

Способность АГ вызывать специфический иммунный ответ обусловлена наличием на его молекуле многочисленных детерминант, к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся AT. АГ, взаимодействуя со своими AT, образуют иммунные комплексы (ИК).

Органы, принимающие участие в иммунитете, делят на четыре группы.

1. Центральные - тимус, или вилочковая железа, и, по-видимому, костный мозг.

2. Периферические, или вторичные, - лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположенных в слизистых оболочках различных органов.

3. Забарьерные - ЦНС, семенники, глаза, паренхима тимуса и при беременности - плод.

4. Внутрибарьерные - кожа.

Различают клеточный и гуморальный иммунитет.

Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности кожи, пересаженной от человека человеку.

Гуморальный иммунитет обеспечивается образованием AT и обусловлен в основном функцией В-лимфоцитов.

Иммунный ответ.

В иммунном ответе принимают участие иммунокомпетентные клетки, которые могут быть разделены на:

1. Антиген-презентирующие (представляющие АГ),

2. Регуляторные (регулирующие течение иммунных реакций)

3. Эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ).

К антигенпрезентирующим клеткам относятся моноциты, эндотелиальные клетки, и др.

К регуляторным клеткам относятся Т хелперы, Т-супрессоры,

Наконец, к эффекторам иммунного ответа принадлежат Т- и В-лимфоциты, являющиеся в основном антителопродуцентами.

Важная роль в иммунном ответе отводится особым цитокинам, получившим наименование интерлейкинов (ИЛ). Из названия видно, что ИЛ обеспечивает взаимосвязь отдельных видов лейкоцитов в иммунном ответе. Они представляют собой малые белковые молекулы с молекулярной массой 15 000-30 000.

До стимуляции антигеном («в покое») Т- и В-лимфоциты морфологически мало различимы. Под влиянием антигена происходят рост и дифференцировка и тех и других клеток. Активированные Т-клетки трансформируются в лимфобласты, которые дают начало образованию Т-киллеров, супрессоров, хелперов.

Активированные антигеном В- лимфоциты становятся затем продуцентами антител. При первом контакте с антигеном происходит их начальная активация, или сенсибилизация. Некоторые из дочерних клеток превращаются в клетки иммунологической памяти, другие оседают в периферических лимфатических органах. Здесь они превращаются в плазматические клетки, обладающие хорошо развитым гранулярным эндоплазматическим ретикулумом.

Плазматические клетки при участии Т-лимфоцитов-хелперов начинают вырабатывать антитела, которые выделяются в плазму крови.

Клетки иммунологической памяти не дают первичного иммунологического ответа, но при повторном контакте с тем же антигеном легко превращаются в клетки, секретирующие антитела.

Механизм клеточного иммунитета зависит от действия гуморальных факторов, выделяемых цитотоксическими лимфоцитами (Т-киллерами). Эти соединения получили наименование «перфорины» и «цитолизины».

Т-киллеры выделяют собственные гуморальные факторы «перфорины» и «цитолизины». Лизис чужеродных клеток мишеней осуществляется в три стадии:

1) распознавание и контакт с клетками-мишенями;

2) летальный удар;

3) лизис клетки-мишени

В стадию летального удара перфорины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры, через которые проникает вода, разрывающая клетки. Далее лизис происходит также под действием перфоринов и цитолизинов.

Установлено, что каждый Т-эффектор способен лизировать несколько чужеродных клеток-мишеней.

Иммунитет представляет собой систему биологических механизмов, направленных на сохранение постоянства внутренней среды организма, с помощью которых он распознает и уничтожает все генетически чужое, независимо от того проникает ли оно извне (микроб) или возникает в нем (мутировавшая клетка).

В инфекционной патологии иммунитет - это невосприимчивость макроорганизма к патогенным микробам и токсическим продуктам их жизнедеятельности.

На поверхности кожи и всех слизистых взрослого человека одномоментно находится 10 14 - 10 15 различных микробов нормальной и условно-патогенной флоры. Время от времени к ним присоединяются субинфицирующие дозы различных патогенов. Не допустить их проникновение во внутреннюю среду макроорганизма призвана эволюционно сформировавшаяся система клеточных и гуморальных факторов резистентности. Это первая линия защиты организма от микробов, представляющая собой совокупность преиммунных биологических реакций.

При дефектах и несостоятельности факторов резистентности в естественных условиях возникает инфекционный процесс, в ходе которого формируется вторая линия защиты организма - приобретенный иммунитет.

Приобретенным иммунитетом называют совокупность специфических факторов, которая формируется в процессе индивидуального развития организма и направлена против повторного контакта с тем же микробом или его продуктами. При этом наследственно полученные (факторы резистентности) и индивидуально приобретенные организмом защитные механизмы (факторы иммунитета) действуют сочетано.

Приобретенный иммунитет подразделяют на варианты:

Приобретенный естественный активный и приобретенный искусственный активный являются активно приобретенными формами иммунитета и создаются самим организмом человека. Приобретенный естественный активный иммунитет возникает после перенесенного заболевания, скрытой инфекции или многократного бытового инфицирования без возникновения заболевания. Часто его называют постинфекционным и в зависимости от полноты очищения организма от возбудителя подразделяют на стерильный и нестерильный.

Приобретенный искусственный активный иммунитет создается вакцинацией человека, т.е. искусственным введением в его организм веществ антигенной природы. Такую форму иммунитета называют поствакцинальной.

Продолжительность активно приобретенных форм иммунитета значительна. Приобретенный естественный активный может сохраняться годами, десятилетиями и даже в течение всей жизни (брюшной тиф, дифтерия, корь). Максимальная продолжительность приобретенного искусственного активного иммунитета - 10 лет, чаще 1-2 года.

Пассивно приобретенный иммунитет возникает естественно, когда антитела матери передаются с кровью плоду (I 1, I 2, I 3, I 4) и с молоком при грудном вскармливании (IgA секреторный). Такой иммунитет (плацентарный, материнский) обеспечивает невосприимчивость новорожденного на протяжении 6-7 месяцев к возбудителям некоторых инфекционных заболеваний (корь, дифтерия, скарлатина).

Приобретенный искусственный пассивный иммунитет создается введением выработанных другим организмом (животным - гетерологичных, человеком - гомологичных) специфических антител. Продолжительность невосприимчивости 2-3 недели.

Ни одна из форм приобретенного иммунитета не передается потомству. Его напряженность - относительная и, в большинстве случаев, он утрачивается в различные сроки.

Приобретенный противоинфекционный иммунитет объединяет два звена иммунного ответа макроорганизма: гуморальное и клеточное. Напряженность гуморального звена зависит от класса и уровня циркулирующих специфических антител, а клеточного - от функциональной активности макрофагов и различных субпопуляций Т-лимфоцитов. Как правило, в механизмах развития защиты против возбудителей инфекционных заболеваний принимают участие оба звена с преобладанием того или другого в разные фазы инфекционного заболевания.

В зависимости от объекта действия приобретенный противоинфекционный иммунитет подразделяют на антитоксический, антибактериальный, противовирусный, иммунитет к грибкам, простейшим. Однако делен

а) врожденный, видовой;

б) приобретенный.

К естественному иммунитету относится также пассивный иммунитет новорожденных;

II - искусственный иммунитет:

а) активный, возникающий после вакцинации;

б) пассивный, когда в организм вводят лечебные сыворотки или иммуноглобулины. Как отдельную форму А. М. Безредка предложил выделить местный иммунитет органов и тканей.

Приобретенный иммунитет возникает после того, как человек перенес инфекционную болезнь, поэтому его называют также постинфекционным. Приобретенный иммунитет индивидуален, потомству не передается. Он специфичен, так как предохраняет организм только от перенесенной болезни. Длительность постинфекционного иммунитета различна. При одних заболеваниях, например чуме, туляремии, коклюше, кори, эпидемическом паротите, он пожизненный. Повторные заболевания при них возможны крайне редко. Длительный приобретенный иммунитет возникает также после заболевания брюшным тифом, холерой, натуральной и ветряной оспой, дифтерией, сыпным тифом, сибирской язвой. При некоторых инфекциях продолжительность приобретенного иммунитета невелика и человек может несколько раз болеть одной и той же болезнью. Например, при бруцеллезе продолжительность постинфекционного иммунитета равна 8-12 мес. Невосприимчивость к той или иной инфекционной болезни возникает не только при выраженной форме заболевания, но и при легких стертых и даже бессимптомных формах.

При большинстве инфекционных заболеваний развитие невосприимчивости к данному возбудителю идет параллельно освобождению организма от микробов, и после выздоровления человек освобождается от возбудителя. Иногда эту форму иммунитета называют стерильной. Существует также нестерильный, или инфекционный, иммунитет. Он заключается в том, что невосприимчивость человека к повторному заражению микробом связана с наличием в организме того же возбудителя. Как только организм освобождается от него, человек снова становится восприимчивым к данному инфекционному заболеванию. Инфекционный иммунитет существует при туберкулезе, сифилисе, глубоких микозах, малярии.

Различают антибактериальный иммунитет, когда защитные реакции организма, направлены на уничтожение микробов, и антитоксический, когда происходит обезвреживание токсических продуктов микроорганизмов. Особенно большое значение антитоксический иммунитет имеет при столбняке, ботулизме, дифтерии, газовой гангрене, при которых экзотоксины возбудителей поражают различные органы и системы.

Пассивный иммунитет новорожденных также является естественной формой иммунитета. Он обусловлен передачей особых веществ - антител - из организма матери плоду через плаценту или через молоко матери новорожденному. Продолжительность такого иммунитета невелика (всего несколько месяцев), но роль его очень важна. Обычно дети, обладающие таким иммунитетом, маловосприимчивы к заражению и заболеваниям в первые 6 мес жизни.

Искусственный иммунитет. Его создают в организме искусственно, чтобы предупредить возникновение инфекционной болезни, а также используют для лечения.

Различают активную и пассивную формы искусственного иммунитета.

Активный искусственный иммунитет создают у человека при введении ему препаратов, которые получают из убитых или ослабленных микробов (вакцины) либо обезвреженных токсинов возбудителей (анатоксины). Продолжительность активного искусственного иммунитета при использовании вакцин из живых ослабленных микробов и анатоксинов 3-5 лет, а в случае применения вакцин из убитых микробов - до 1 года.

Пассивный искусственный иммунитет возникает при введении в организм человека специальных защитных веществ, которые получили название иммунных антител. Они содержатся в сыворотках переболевших людей. Антитела (иммунные сыворотки) можно получить, специально иммунизируя (заражая) животных определенными видами возбудителей.

Пассивный искусственный иммунитет сохраняется недолго, около месяца, до тех пор, пока существуют антитела в организме. Затем антитела разрушаются и выводятся из организма.

Местный иммунитет как отдельная форма иммунитета был выделен А. М. Безредкой, который считал, что существует местная невосприимчивость различных органов и тканей к возбудителю. Современные достижения иммунологии во многом подтверждают правомерность теории местного иммунитета Безредки, однако механизмы возникновения местной невосприимчивости тканей намного сложнее, чем он предполагал.

Деление иммунитета на различные виды и формы весьма условно. Как при врожденном, так и при приобретенном иммунитете защиту организма осуществляют одни и те же системы, органы и ткани. Их функция направлена на то, чтобы поддерживать в организме определенное постоянство внутренней среды, которое можно обозначить как нормальное состояние.

Лимфоидные клетки организма выполняют основную функцию в развитии иммунитета - невосприимчивости, не только по отношению к микроорганизмам, но и ко всем генетически чужеродным клеткам, например при пересадке тканей. Лимфоидные клетки обладают способностью отличать "свое" от "чужого" и устранять "чужое" (элиминировать).

Родоначальницей всех клеток иммунной системы является кроветворная стволовая клетка. В дальнейшем происходит развитие двух типов лимфоцитов: Т и В (тимусзависимых и бурсазависимых). Эти названия клетки получили в связи с их происхождением. Т-клетки развиваются в тимусе (зобной, или вилочковой железе) и под влиянием веществ, выделяемых тимусом, в периферической лимфоидной ткани.

Название В-лимфоциты (бурсазависимые) произошло от слова "бурса" - сумка. В сумке Фабрициуса у птиц развиваются клетки, сходные с В-лимфоцитами человека. Хотя у человека не найдено органа, аналогичного сумке Фабрициуса, название связано с этой сумкой.

При развитии В-лимфоцитов из стволовой клетки они проходят несколько стадий и преобразуются в лимфоциты, способные образовывать плазматические клетки. Плазматические клетки в свою очередь образуют антитела и на их поверхности имеются иммуноглобулины трех классов: IgG, IgM и IgA (рис. 32).


Рис. 32. Сокращенная схема развития иммуноцитов

Иммунный ответе виде продукции специфических антител происходит следующим образом: чужеродный антиген, проникнув в организм, прежде всего фагоцитируется макрофагами. Макрофаги, перерабатывая и концентрируя антиген на своей поверхности, передают информацию о нем Т-клеткам, которые начинают делиться, "созревают" и выделяют гуморальный фактор, включающий в антителопродукцию В-лимфоциты. Последние также "созревают", развиваются в плазматические клетки, которые и синтезируют антитела заданной специфичности.

Так, соединенными усилиями макрофаги, Т- и В-лимфоциты осуществляют иммунные функции организма - защиту от всего генетически чужеродного, в том числе и от возбудителей инфекционных болезней. Защита с помощью антител осуществляется таким образом, что синтезированные к данному антигену иммуноглобулины, соединяясь с ним (антигеном), подготавливают его, делают чувствительным к разрушению, обезвреживанию различными естественными механизмами: фагоцитами, комплементом и пр.



Контрольные вопросы

1. Какова роль макрофагов в иммунном ответе?

2. Какова роль Т-лимфоцитов в иммунном ответе?

3. Какова роль В-лимфоцитов в иммунном ответе?

Теории иммунитета . Значение антител в развитии иммунитета неоспоримо. Каков же механизм их образования? Этот вопрос в течение длительного времени является предметом споров и обсуждений.

Создано несколько теорий антителообразования, которые можно разделить на две группы: селективные (селекция - отбор) и инструктивные (инструктировать - наставлять, направлять).

Селективные теории предполагают существование в организме уже готовых антител к каждому антигену или клеток, способных синтезировать эти антитела.

Так, Эрлих (1898) предполагал, что клетка имеет готовые "рецепторы" (антитела), которые соединяются с антигеном. После соединения с антигеном, антитела образуются еще в большем количестве.

Такого же мнения придерживались создатели других селективных теорий: Н. Ерне (1955) и Ф. Бернет (1957). Они утверждали, что уже в организме плода, а затем и во взрослом организме имеются клетки, способные к взаимодействию с любым антигеном, но под влиянием определенных антигенов определенные клетки вырабатывают "нужные" антитела.

Инструктивные теории [Гауровитц Ф., Полинг Л., Ландштейнер К., 1937-1940] рассматривают антиген, как "матрицу", штамп, на котором формируются специфические группировки молекулы антител.

Однако эти теории не объясняли всех явлений иммунитета и в настоящее время наиболее принятой является клонально-селекционная теория Ф. Бернета (1964). Согласно этой теории в эмбриональном периоде в организме плода имеется множество лимфоцитов - клеток-предшественников, которые при встрече с собственными антигенами разрушаются. Поэтому во взрослом организме уже нет клеток для выработки антител к собственным антигенам. Однако, когда взрослый организм встречается с чужеродным антигеном, происходит селекция (отбор) клона иммунологически активных клеток и они вырабатывают специфические антитела, направленные против данного "чужого" антигена. При повторной встрече с этим антигеном клеток "отобранного" клона уже больше и они быстрее образуют большее количество антител. Эта теория наиболее полно объясняет основные явления иммунитета.

Механизм взаимодействия антигена и антител имеет различные объяснения. Так, Эрлих уподоблял их соединение реакции между сильной кислотой и сильным основанием с образованием нового вещества типа соли.

Бордэ считал, что антиген и антитела взаимно адсорбируют друг друга подобно краске и фильтровальной бумаге или йоду и крахмалу. Однако эти теории не объясняли главного - специфичности иммунных реакций.

Наиболее полно механизм соединения антигена и антитела объяснен гипотезой Маррека (теория "решетки") и Полинга (теория "фермы") (рис. 33). Маррек рассматривает соединение антигена и антител в виде решетки, в которой антиген чередуется с антителом, образуя решетчатые конгломераты. Согласно гипотизе Полинга (см. рис. 33) антитела имеют две валентности (две специфические детерминанты), а антиген несколько валентностей - он поливалентен. При соединении антигена и антител образуются агломераты, напоминающие "фермы" построек.



Рис. 33. Схематическое изображение взаимодействия антител и антигена. А - по схеме Маррска: Б - по схеме Полинга. Структура комплекса: а - при оптимальных соотношениях; б - при избытке антигена; в - при избытке антител

При оптимальном соотношении антигена и антител образуются большие прочные комплексы, видимые простым глазом. При избытке антигена каждый активный центр антител заполнен молекулой антигена, не хватает антител для соединения с другими молекулами антигена и образуются мелкие, невидимые глазом комплексы. При избытке антител, для образования решетки не хватает антигена, детерминанты антител отсутствуют и видимого проявления реакции нет.

На основании изложенных теорий специфичность реакции антиген - антитело сегодня представляют как взаимодействие детерминантной группы антигена и активных центров антитела. Так как антитела формируются под воздействием антигена, их структура соответствует детерминантным группам антигена. Детерминантная группа антигена и фрагменты активных центров антитела имеют противоположные электрические заряды и, соединяясь, образуют комплекс, прочность которого зависит от соотношения компонентов и среды, в которой они взаимодействуют.

Учение об иммунитете - иммунология - достигло за последние десятилетия больших успехов. Раскрытие закономерностей иммунного процесса позволило решить различные задачи во многих областях медицины. Разработаны и совершенствуются методы предупреждения многих инфекционных заболеваний; лечения инфекционных и ряда других (аутоиммунных, иммунодефицитных) болезней; предупреждения гибели плода при резус-конфликтных ситуациях; трансплантации тканей и органов; борьбы со злокачественными новообразованиями; иммунодиагностики - использования реакций иммунитета в диагностических целях.

Реакции иммунитета - это реакции между антигеном и антителом или между антигеном и сенсибилизированными * лимфоцитами, которые происходят в живом организме и могут быть воспроизведены в лабораторных условиях.

* (Сенсибилизированные - повышенно чувствительные. )

Реакции иммунитета вошли в практику диагностики инфекционных болезней в конце XIX - начале XX века. В силу высокой чувствительности (улавливают антигены в очень больших разведениях) и, главное, строгой специфичности (позволяют отличить близкие по составу антигены) они нашли широкое применение в решении теоретических и практических вопросов медицины и биологии. Этими реакциями пользуются иммунологи, микробиологи, инфекционисты, биохимики, генетики, молекулярные биологи, экспериментальные онкологи и врачи других специальностей.

Реакции антигена с антителом называются серологическими (от лат. serum - сыворотка) или гуморальными (от лат. humor - жидкость), потому что участвующие в них антитела (иммуноглобулины) всегда находятся в сыворотке крови.

Реакции антигена с сенсибилизированными лимфоцитами называются клеточными.

Контрольные вопросы

1. Как образуются антитела?

2. Какие Вы знаете теории образования антител?

3. Каков механизм взаимодействия антигена с антителом?

Серологические реакции

Серологические реакции - реакции взаимодействия между антигеном и антителом протекают в две фазы: 1-я фаза - специфическая - образование комплекса антигена и соответствующего ему антитела (см. рис. 33). Видимого изменения в этой фазе не происходит, но образовавшийся комплекс становится чувствительным к неспецифическим факторам, находящимся в среде (электролиты, комплемент, фагоцит); 2-я фаза - неспецифическая. В этой фазе специфический комплекс антиген - антитело взаимодействует с неспецифическими факторами среды, в которой происходит реакция. Результат их взаимодействия может быть видим невооруженным глазом (склеивание, растворение и т. п.). Иногда эти видимые изменения отсутствуют.

Характер видимой фазы серологических реакций зависит от состояния антигена и условий среды, в которой происходит его взаимодействие с антителом. Различают реакции агглютинации, преципитации, иммунного лизиса, связывания комплемента и др. (табл. 14).


Таблица 14. Серологические реакции в зависимости от участвующих в них компонентов и условий среды

Применение серологических реакций . Одно из основных применений серологических реакций - лабораторная диагностика инфекций. Их используют: 1) для выявления антител в сыворотке больного, т. е. для серодиагностики; 2) для определения вида или типа антигена, например выделенного от больного микроорганизма, т. е. для его идентификации.

При этом неизвестный компонент определяют по известному. Например, для обнаружения антител в сыворотке больного берут известную лабораторную культуру микроорганизма (антиген). Если сыворотка реагирует с ним, значит она содержит соответствующие антитела и можно думать, что данный микроб является возбудителем болезни у обследуемого больного.

Если нужно определить, какой микроорганизм выделен, его испытывают в реакции с известной диагностической (иммунной) сывороткой. Положительный результат реакции говорит о том, что данный микроорганизм идентичен тому, которым иммунизировали животное для получения сыворотки (табл. 15).



Таблица 15. Применение серологических реакций

Серологические реакции применяют также для определения активности (титра) сывороток и в научных исследованиях.

Проведение серологических реакций требует особой подготовки.

Посуда для серологических реакций должна быть чистой и сухой. Применяют пробирки (бактериологические, агглютинационные, преципитационные и центрифужные), пипетки градуированные разного размера и пастеровские * , колбы, цилиндры, предметные и покровные стекла, чашки Петри, пластины из пластмассы с лунками.

* (Каждый ингредиент реакции разливают отдельной пипеткой. Пипетки следует сохранять до конца постановки опыта. Для этого удобно помещать их в стерильные пробирки с пометками, где какая пипетка. )

Инструменты и оборудование: петля, штативы, лупа, агглютиноскоп, термостат, холодильник, центрифуга, весы химические с разновесом.

Материалы: антитела (иммунные и исследуемые сыворотки), антигены (культуры микроорганизмов, диагностикумы, экстракты, лизаты, гаптены, эритроциты, токсины), комплемент, изотонический раствор натрия хлорида.

Внимание! В серологических реакциях применяют только химически чистый натрия хлорид.

Сыворотки . Сыворотка больного. Сыворотку обычно получают на второй неделе болезни, когда можно ожидать наличие в ней антител, иногда пользуются сыворотками реконвалесцентов (выздоравливающих) и переболевших.

Чаще всего для получения сыворотки кровь берут из вены в количестве 3-5 мл в стерильную пробирку и направляют в лабораторию, сопровождая этикеткой, с указанием фамилии и инициалов больного, предполагаемого диагноза и даты.

Кровь следует брать натощак или не раньше чем через 6 ч после еды. В сыворотке крови после еды могут содержаться капельки жира, которые делают ее мутной и непригодной для исследования (такая сыворотка называется хилезной).

Внимание! При взятии крови необходимо соблюдать правила асептики.

Для получения сыворотки кровь оставляют на 1 ч при комнатной температуре или ставят в термостат при 37° С на 30 мин для образования сгустка.

Внимание! Не следует держать сыворотку в термостате больше 30 мин - может произойти гемолиз, что помешает проведению исследований.

Образовавшийся сгусток отделяют от стенок пробирки пастеровской пипеткой или петлей ("обводят"). Пробирку помещают в холодильник на некоторое время (обычно 1 ч, но не более 48 ч) для лучшего отделения сыворотки из сжавшегося на холоде сгустка. Затем сыворотку отсасывают стерильной пастеровской пипеткой, снабженной резиновым баллоном или шлангом.

Отсасывать сыворотку следует очень осторожно, чтобы не захватить форменные элементы. Сыворотка должна быть совершенно прозрачной без примеси клеток. Мутные сыворотки еще раз отсасывают после того, как клетки осядут. Сыворотку можно освободить от форменных элементов центрифугированием.

Внимание! На сгустке сыворотка может оставаться не более 48 ч при + 4° С.

Для получения сыворотки кровь можно брать из прокола мякоти пальца или мочки уха пастеровской пипеткой. У грудных детей кровь берут из У-образного разреза на пятке.

При использовании пастеровской пипетки кровь насасывают в пипетку из прокола. Острый конец пипетки запаивают. Пипетку помещают в пробирку острым концом вниз. Чтобы он не сломался, на дно пробирки кладут кусочек ваты. Пробирку с соответствующей этикеткой направляют в лабораторию. Скопившуюся в широком конце пипетки сыворотку отсасывают.

Иммунные сыворотки получают из крови людей или животных (чаще кроликов и лошадей), иммунизированных по определенной схеме соответствующим антигеном (вакциной). В полученной сыворотке определяют ее активность (титр), т. е. наибольшее разведение, в котором она реагирует с соответствующим антигеном в определенных условиях опыта.

Готовят сыворотки обычно на производстве. Их разливают в ампулы, на которых указывают название и титр. В большинстве случаев сыворотки высушивают. Сухую сыворотку перед употреблением растворяют в дистиллированной воде до первоначального объема (тоже указан на этикетке). Хранят все сухие (лиофилизированные) диагностические" препараты при 4-10° С.

Для серологических исследований применяют иммунные сыворотки нативные (не адсорбированные) и адсорбированные. Недостаток нативных сывороток - наличие в них групповых антител, т. е. антител к микроорганизмам, имеющим общие антигены. Обычно такие антигены встречаются у микробов, принадлежащих к одной группе, роду, семейству. Адсорбированные сыворотки отличаются строгой специфичностью: реагируют только с гомологичным антигеном. Антитела к другим (гетерогенным) антигенам удалены адсорбцией. Титр антител адсорбированных сывороток низкий (1:40, 1:320), поэтому их не разводят * .

* (В настоящее время методом биотехнологии получены особые клетки (гибридомы), вырабатывающие in vitro моноклональные антитела, т. е. антитела, реагирующие строго специфично (с одним антигеном). )

Реакция агглютинации

Реакция агглютинация (РА) - это склеивание и выпадение в осадок микробов или других клеток под действием антител в присутствии электролита (изотонического раствора натрия хлорида). Образовавшийся осадок называют агглютинатом. Для реакции необходимы:

1. Антитела (агглютинины) - находятся в сыворотке больного или в иммунной сыворотке.

2. Антиген - взвесь живых или убитых микроорганизмов, эритроцитов или других клеток.

3. Изотонический раствор.

Реакцию агглютинации для серодиагностики широко применяют при брюшном тифе, паратифах (реакция Видаля), бруцеллезе (реакция Райта) и др. Антителом при этом является сыворотка больного, а антигеном - известный микроб.

При идентификации микробов или других клеток антигеном служит их взвесь, а антителом - известная иммунная сыворотка. Эту реакцию широко применяют при диагностике кишечных инфекций, коклюша и др.

Подготовка ингредиентов: 1) получение сыворотки см. с. 200; 2) приготовление антигена. Взвесь живых микробов должна быть гомогенной и соответствовать (в 1 мл) примерно 30 ед. мутности по оптическому стандарту ГИСК. Для ее приготовления обычно используют 24-часовую культуру, выращенную на скошенном агаре. Культуру смывают 3-4 мл изотонического раствора, переносят в стерильную пробирку, определяют ее густоту и, если нужно, разводят.

Применение взвеси убитых микробов - диагностикумов - облегчает работу и делает ее безопасной. Обычно пользуются диагностикумами, приготовленными на производстве.

Постановка реакции. Существует два метода проведения этой реакции: реакция агглютинации на стекле (иногда ее называют ориентировочной) и развернутая реакция агглютинации (в пробирках).

Реакция агглютинации на стекле . На обезжиренное предметное стекло наносят 2 капли специфической (адсорбированной) сыворотки и каплю изотонического раствора. Неадсорбированные сыворотки предварительно разводят в соотношении 1:5 - 1:25. Капли на стекло наносят так, чтобы между ними было расстояние. Восковым карандашом на стекле помечают, где какая капля. Культуру петлей или пипеткой тщательно растирают на стекле, а потом вносят в каплю изотонического раствора и в одну из капель сыворотки, размешивая в каждой до образования гомогенной взвеси. Капля сыворотки, в которую не внесена культура, является контролем сыворотки.

Внимание! Нельзя переносить культуру из сыворотки в каплю изотонического раствора, которая является контролем антигена.

Реакция протекает при комнатной температуре в течение 1-3 мин. Контроль сыворотки должен оставаться прозрачным, а в контроле антигена должна наблюдаться равномерная муть. Если в капле, где культура смешана с сывороткой, появятся хлопья агглютината на фоне прозрачной жидкости, результат реакции считают положительным. При отрицательном результате реакции в капле будет равномерная муть, как в контроле антигена.

Реакция отчетливее видна, если ее рассматривать на темном фоне в проходящем свете. При ее изучении можно пользоваться лупой.

Развернутая реакция агглютинации . Готовят последовательные, чаще всего двукратные разведения сыворотки. Сыворотку больного обычно разводят от 1:50 до 1:1600, иммунную - до титра или до половины титра. Титр агглютинирующей сыворотки - ее максимальное разведение, в котором она агглютинирует гомологичные клетки.

Разведение сыворотки: 1) ставят в штатив нужное количество пробирок одинакового диаметра, высоты и конфигурации дна;

2) на каждой пробирке указывают степень разведения сыворотки, кроме того, на 1-й пробирке пишут номер опыта или название антигена. На пробирках контролей пишут "КС" - контроль сыворотки и "КА" - контроль антигена;

3) во все пробирки наливают по 1 мл изотонического раствора;

4) в отдельной пробирке готовят исходное (рабочее) разведение сыворотки. Например, для приготовления рабочего разведения 1:50, в пробирку наливают 4,9 мл изотонического раствора и 0,1 мл сыворотки. На пробирке обязательно указывают степень ее разведения. Исходное разведение сыворотки вносят в первые две пробирки и в пробирку контроля сыворотки;

5) готовят последовательные двукратные разведения сыворотки.

Примерная схема ее разведения приведена в табл. 16.



Таблица 16. Схема разведения сыворотки для развернутой РА

Примечание. Стрелки указывают перенос жидкости из пробирки в пробирку; из 5-й пробирки и пробирки контроля сыворотки 1,0 мл выливают в дезинфицирующий раствор.

Внимание! Во всех пробирках должен быть одинаковый объем жидкости.

После того как сделаны разведения сыворотки, во все пробирки, кроме контроля сыворотки, вносят по 1-2 капли антигена (диагностикума или свежеприготовленной взвеси бактерий). В пробирках при этом должна появиться небольшая равномерная муть. Контроль сыворотки остается прозрачным.

Пробирки тщательно встряхивают и помещают в термостат (37° С). Предварительный учет результатов реакции производят через 2 ч, а окончательный - спустя 18-20 ч (выдерживая при комнатной температуре).

Учет результатов как всегда начинают с контролей. Контроль сыворотки должен оставаться прозрачным, контроль антигена - равномерно мутным. Просматривают пробирки в проходящем свете (очень удобно на темном фоне) невооруженным глазом, с помощью лупы или агглютиноскопа.

Агглютиноскоп - прибор, состоящий из полой металлической трубки, укрепленной на подставке. Сверху на ней расположен окуляр с регулирующим винтом. Под трубкой прикреплено вращающееся зеркало. Пробирку с изучаемой жидкостью вставляют сбоку в отверстие трубки на такое расстояние, чтобы находящаяся в ней жидкость была под окуляром. Установив с помощью зеркала освещение и сфокусировав окуляр, определяют наличие и характер агглютината.

При положительном результате реакции в пробирках видны зерна или хлопья агглютината. Агглютинат постепенно оседает на дно в виде "зонтика", а жидкость над осадком просветляется (сравните с равномерно мутным контролем антигена).

Для изучения величины и характера осадка содержимое пробирок слегка встряхивают. Различают мелкозернистую и хлопьевидную агглютинацию. Мелкозернистая (О-агглютинация) получается при работе с О-сыворотками * . Хлопьевидная (Н) - при взаимодействии подвижных микроорганизмов со жгутиковыми Н-сыворотками.

* (О-сыворотки содержат антитела к О (соматическому)-антигену, Н-сыворотки - к жгутиковому. )

Хлопьевидная агглютинация наступает быстрее, образующийся при этом осадок очень рыхлый и легко разбивается.

Интенсивность реакции выражают следующим образом:

Все клетки осели, жидкость в пробирке совершенно прозрачна. Результат реакции резко положительный.

Осадок меньше, нет полного просветления жидкости. Результат реакции положительный.

Осадок еще меньше, жидкость мутная. Результат реакции слабо положительный.

Незначительный осадок, жидкость мутная. Сомнительный результат реакции.

Осадка нет, жидкость равномерно мутная, как в контроле антигена. Отрицательный результат реакции.

Возможные ошибки при постановке реакции агглютинации . 1. Спонтанная (самопроизвольная) агглютинация. Некоторые клетки, особенно микробы в R-форме, не дают однородной (гомогенной) взвеси, быстро выпадают в осадок. Во избежание этого следует пользоваться культурой в S-форме, которая не дает спонтанной агглютинации.

2. В сыворотке здоровых людей имеются антитела к некоторым микроорганизмам (так называемые "нормальные антитела"). Титр их невысок. Поэтому положительный результат реакции в разведении 1:100 и выше говорит о ее специфичности.

3. Групповая реакция с близкими по антигенному строению микробами. Например, сыворотка больного брюшным тифом может также агглютинировать бактерии паратифа А и Б. В отличие от специфической групповая реакция идет в более низких титрах. Адсорбированные сыворотки не дают групповой реакции.

4. Следует учесть, что специфические антитела после перенесенной болезни и даже после прививок могут сохраняться длительное время. Они называются "анамнестическими". Чтобы отличить их от "инфекционных" антител, образующихся в течение текущей болезни, реакцию ставят в динамике, т. е. исследуют сыворотку больного, взятую повторно через 5-7 дней. Повышение титра антител говорит о наличии болезни - титр "анамнестических" антител не повышается, а может даже снизиться.

Контрольные вопросы

1. Что такое реакции иммунитета, каковы их основные свойства?

2. Какие компоненты участвуют в серологических реакциях? Почему реакции называют серологическими, из скольких фаз они состоят?

3. Что такое реакция агглютинации? Ее использование и методы проведения. Что такое диагностикум?

4. Каким антигеном пользуются при исследовании сыворотки больного? Какой сывороткой определяют вид неизвестного микроба?

5. Что такое О- и Н-агглютинация? В каких случаях образуется хлопьевидный осадок и когда мелкозернистый?

Задание

1. Поставьте развернутую реакцию агглютинации для определения титра антител в сыворотке больного и учтите ее результат.

2. Поставьте реакцию агглютинации на стекле для определения вида выделенного микроорганизма.

Реакция гемагглютинации

В лабораторной практике пользуются двумя различными по механизму действия реакциями гемагглютинации (РГА).

Первая РГА относится к серологическим. В этой реакции эритроциты агглютинируются при взаимодействии с соответствующими антителами (гемагглютининами). Реакцию широко используют для определения групп крови.

Вторая РГА не является серологической. В ней склеивание эритроцитов вызывают не антитела, а особые вещества, образуемые вирусами. Например, вирус гриппа агглютинирует эритроциты кур и морских свинок, вирус полиомиелита - эритроциты барана. Эта реакция позволяет судить о наличии того или иного вируса в исследуемом материале.

Постановка реакции. Реакцию ставят в пробирках или на специальных пластинах с лунками. Исследуемый на наличие вируса материал разводят изотоническим раствором от 1:10 до 1:1280; 0,5 мл каждого разведения смешивают с равным объемом 1-2% взвеси эритроцитов. В контроле 0,5 мл эритроцитов смешивают с 0,5 мл изотонического раствора. Пробирки ставят в термостат на 30 мин, а пластины оставляют при комнатной температуре на 45 мин.

Учет результатов. При положительном результате реакции на дне пробирки или лунки выпадает осадок эритроцитов с фестончатыми краями ("зонтик"), покрывающий все дно лунки. При отрицательном результате эритроциты образуют плотный осадок с ровными краями ("пуговку"). Такой же осадок должен быть в контроле. Интенсивность реакции выражают знаками "плюс". Титром вируса является максимальное разведение материала, в котором происходит агглютинация.