Вегетативный отдел нервной системы. I пара – обонятельный нерв

Предисловие

Функциональная анатомия вегетативной нервной системы является сложным разделом анатомии человека. Связано это со сложностью ее строения, трудностями препарирования ее образований, а также тем, что в существующих учебниках данные о вегетативной нервной системе излагаются кратко, в обобщенной форме, порой схематично и не всегда понятно для начинающих. Кроме того, в учебниках не отражены некоторые коренные вопросы структурно-функциональной организации вегетативной нервной системы. Так, отсутствуют данные о строении и функции вегетативных узлов, не дана структурная характеристика нервных стволов, участвующих в образовании вегетативных сплетений, недостаточно освещаются вопросы эмбриологии, без чего нельзя понять принцип многосегментарности в иннервации органов, почти отсутствует иллюстративный материал. Специальные пособия по этому разделу для студентов единичны и не всегда доступны. Вместе с тем любой врач в своей практической деятельности непременно сталкивается с патологией в этой области и правильность его действий во многом зависит от глубины знаний структурно-функциональных закономерностей строения вегетативной нервной системы. В связи с этим возникла необходимость составления учебного пособия по вегетативной нервной системе для студентов нашего института, в основу которого положен курс лекций, читаемых на кафедре, где обобщены имеющиеся данные по функциональной анатомии вегетативной нервной системы и восполнены те пробелы, которые имеются в учебниках анатомии человека.

Вегетативная нервная система рассматривается здесь как специализированная часть единой нервной системы и также как и соматическая нервная система находится под контролем коры полушарий большого мозга. Для лучшего понимания морфологических и функциональных особенностей вегетативной нервной системы приведены краткие сведения об основных этапах ее становления в ряду позвоночных, а также о развитии ее в эмбриогенезе.



Общая характеристика вегетативной нервной

Системы

В процессе эволюции в единой нервной системе выделились два отдела - анимальный (соматический) и вегетативный. Понятие “вегетативный” и “анимальный” связано с наличием в организме растительных (вегетативных) и животных (анимальных) функций. Анимальные функции - двигательные реакции и ощущения, которые формируются благодаря органам чувств, свойственны только животным организмам. Вегетативные функции - обмен веществ, пищеварение, кровообращение, дыхание, выделение, размножение присущи не только животным, но и растениям. Таким образом, часть нервной системы, обеспечивающая двигательные реакции скелетной мускулатуры и восприятие раздражений из внешней среды, называется анимальной или соматической. Вегетативная же нервная система контролирует функции внутренних органов, сосудов и желез, а также осуществляет адаптационно-трофическое влияние на все органы и ткани.

Вегетативный и соматический отделы в морфологическом и функциональном отношении тесно связаны между собой, взаимно дополняют друг друга и в целом составляют единую систему. Их объединяет общее развитие из нервной трубки, общий принцип строения (нервные клетки, ядра, узлы, волокна) и рефлекторный характер в основе деятельности.

Деятельность вегетативной нервной системы, также как и соматической, координируется корой полушарий большого мозга. Они действуют согласованно, обеспечивая приспособительные реакции в соответствии с меняющимися условиями внешней и внутренней среды.

По ряду морфофункциональных признаков в вегетативной нервной системе выделяют симпатический и парасимпатический отделы, которые действуют на гладкую мускулатуру и железы согласованно и во многих случаях как антагонисты. Кроме того, симпатический отдел выполняет адаптационно-трофическую функцию, иннервируя все органы и ткани.

В вегетативной нервной системе, как и соматической, выделяют центральный и периферический отделы. К центральному отделу относятся скопления нервных клеток, образующих ядра (центры), которые расположены в головном и спинном мозге, к периферическому - нервы, узлы, экстраорганные и интраорганные сплетения, периферические нервные окончания.

ФУНКЦИИ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

Вегетативная нервная система выполняет ряд функций:

1. Управляет деятельностью внутренних органов, кровеносных и лимфатических сосудов, осуществляя иннервацию гладкомышечных клеток и железистого эпителия.

2. Регулирует обмен веществ, приспосабливая его уровень к снижению или повышению функции органа. Тем самым осуществляет адаптационно-трофическую функцию, в основе которой лежит транспорт аксоплазмы - процесс непрерывного движения различных веществ от тела нейрона по отросткам в ткани. Одни из них включаются в обмен веществ, другие активируют метаболизм, улучшая трофику ткани.

3. Координирует работу всех внутренних органов, поддерживая постоянство внутренней среды организма.

ЦЕНТРЫ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

Центры вегетативной нервной системы разделяют на сегментарные и надсегментарные (высшие вегетативные центры).

Сегментарные центры располагаются в нескольких отделах центральной нервной системы, где выделяют 4 очага:

1. Мезенцефалический отдел в среднем мозге - добавочное ядро (Якубовича), nucleus accessorius, и непарное срединное ядро глазодвигательного нерва (III пара).

2. Бульбарный отдел в продолговатом мозге и мосту - верхнее слюноотделительное ядро, nucleus salivatorius superior, промежуточно-лицевого нерва (VII пара), нижнее слюноотделительное ядро, nucleus salivatorius inferior, языкоглоточного нерва (IX пара) и дорсальное ядроблуждающего нерва (X пара), nucleus dorsalis n. vagi.

Оба этих отдела объединяются под названием краниального и относятся к парасимпатическим центрам.

3. Тораколюмбальный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 16-ти сегментов спинного мозга (С 8 , Th 1-12 , L 1-3). Они являются симпатическими центрами.

4. Сакральный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 3-х крестцовых сегментов спинного мозга (S 2-4) и относятся к парасимпатическим центрам.

Высшие вегетативные центры (надсегментарные) объединяют и регулируют деятельность симпатического и парасимпатического отделов, к ним относятся:

1. Ретикулярная формация , ядра которой формируют центры жизненно-важных функций (дыхательный и сосудодвигательный центры, центры сердечной деятельности, регуляции обмена веществ и т.д.). Проекция дыхательного центра соответствует средней трети продолговатого мозга, сосудодвигательного центра - нижней части ромбовидной ямки. Нарушение функции ретикулярной формации проявляется вегетативно-сосудистыми расстройствами (кардио-васкулярные, вазомоторные). Кроме того страдают интегративные функции, которые необходимы для формирования целесообразного адаптивного поведения.

2. Мозжечок , принимая участие в регуляции двигательных актов, одновременно обеспечивает эти анимальные функции адаптационно-трофическими влияниями, которые через соответствующие центры приводят к расширению сосудов интенсивно работающих мышц, повышению уровня трофических процессов в последних. Установлено участие мозжечка в регуляции таких вегетативных функций, как зрачковый рефлекс, трофика кожи (скорость заживления ран), сокращение мышц, поднимающих волосы.

3. Гипоталамус - главный подкорковый центр интеграции вегетативных функций, имеет существенное значение в поддержании оптимального уровня обмена веществ (белкового, углеводного, жирового, минерального, водного) и терморегуляции. За счет связей с таламусом он получает разностороннюю информацию о состоянии органов и систем организма, а вместе с гипофизом образует функциональный комплекс - гипоталамо-гипофизарную систему. Гипоталамус в ней выполняет роль своеобразного реле, включающего гипофизарную гормональную цепь в регуляцию различных висцеральных и соматических функций.

4. Особое место занимает лимбическая система обеспечивающая интеграцию вегетативных, соматических и эмоциональных реакций.

5. Полосатое тело имеет ближайшее отношение к безусловнорефлекторной регуляции вегетативных функций. Повреждение или раздражение ядер полосатого тела вызывает изменение кровяного давления, усиление слюно- и слезоотделения, усиление потоотделения.

Высшим центром регуляции вегетативных и соматических функций, а также их координации является кора полушарий большого мозга . Непрерывный поток импульсов от органов чувств, сомы и внутренних органов по афферентным путям поступает в кору головного мозга и через эфферентную часть вегетативной нервной системы, главным образом через гипоталамус, кора оказывает соответствующее влияние на функцию внутренних органов, обеспечивая адаптацию организма к меняющимся условиям окружающей и внутренней среды. Примером кортиковисцеральной связи может служить изменение вегетативных реакций под влиянием словесных сигналов (через вторую сигнальную систему).

Таким образом, вегетативная нервная система, так же как и вся нервная система, построена по принципу иерархии, подчиненности.

Центры вегетативной нервной системы разделяют на сегментарные и надсегментарные (высшие вегетативные центры).

Сегментарные центры располагаются в нескольких отделах центральной нервной системы, где выделяют 4 очага:

1. Мезенцефалический отдел в среднем мозге - добавочное ядро (Якубовича), nucleus accessorius, и непарное срединное ядро глазодвигательного нерва (III пара).

2. Бульбарный отдел в продолговатом мозге и мосту - верхнее слюноотделительное ядро, nucleus salivatorius superior, промежуточно-лицевого нерва (VII пара), нижнее слюноотделительное ядро, nucleus salivatorius inferior, языкоглоточного нерва (IX пара) и дорсальное ядроблуждающего нерва (X пара), nucleus dorsalis n. vagi.

Оба этих отдела объединяются под названием краниального и относятся к парасимпатическим центрам.

3. Тораколюмбальный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 16-ти сегментов спинного мозга (С 8 , Th 1-12 , L 1-3). Они являются симпатическими центрами.

4. Сакральный отдел - промежуточно-боковые ядра, nuclei intermediolaterales, 3-х крестцовых сегментов спинного мозга (S 2-4) и относятся к парасимпатическим центрам.

Высшие вегетативные центры (надсегментарные) объединяют и регулируют деятельность симпатического и парасимпатического отделов, к ним относятся:

1. Ретикулярная формация , ядра которой формируют центры жизненно-важных функций (дыхательный и сосудодвигательный центры, центры сердечной деятельности, регуляции обмена веществ и т.д.). Проекция дыхательного центра соответствует средней трети продолговатого мозга, сосудодвигательного центра - нижней части ромбовидной ямки. Нарушение функции ретикулярной формации проявляется вегетативно-сосудистыми расстройствами (кардио-васкулярные, вазомоторные). Кроме того страдают интегративные функции, которые необходимы для формирования целесообразного адаптивного поведения.

2. Мозжечок , принимая участие в регуляции двигательных актов, одновременно обеспечивает эти анимальные функции адаптационно-трофическими влияниями, которые через соответствующие центры приводят к расширению сосудов интенсивно работающих мышц, повышению уровня трофических процессов в последних. Установлено участие мозжечка в регуляции таких вегетативных функций, как зрачковый рефлекс, трофика кожи (скорость заживления ран), сокращение мышц, поднимающих волосы.

3. Гипоталамус - главный подкорковый центр интеграции вегетативных функций, имеет существенное значение в поддержании оптимального уровня обмена веществ (белкового, углеводного, жирового, минерального, водного) и терморегуляции. За счет связей с таламусом он получает разностороннюю информацию о состоянии органов и систем организма, а вместе с гипофизом образует функциональный комплекс - гипоталамо-гипофизарную систему. Гипоталамус в ней выполняет роль своеобразного реле, включающего гипофизарную гормональную цепь в регуляцию различных висцеральных и соматических функций.

4. Особое место занимает лимбическая система обеспечивающая интеграцию вегетативных, соматических и эмоциональных реакций.

5. Полосатое тело имеет ближайшее отношение к безусловнорефлекторной регуляции вегетативных функций. Повреждение или раздражение ядер полосатого тела вызывает изменение кровяного давления, усиление слюно- и слезоотделения, усиление потоотделения.

Высшим центром регуляции вегетативных и соматических функций, а также их координации является кора полушарий большого мозга . Непрерывный поток импульсов от органов чувств, сомы и внутренних органов по афферентным путям поступает в кору головного мозга и через эфферентную часть вегетативной нервной системы, главным образом через гипоталамус, кора оказывает соответствующее влияние на функцию внутренних органов, обеспечивая адаптацию организма к меняющимся условиям окружающей и внутренней среды. Примером кортиковисцеральной связи может служить изменение вегетативных реакций под влиянием словесных сигналов (через вторую сигнальную систему).

Таким образом, вегетативная нервная система, так же как и вся нервная система, построена по принципу иерархии, подчиненности. Схему организации вегетативной иннервации иллюстрирует рис.1.

Рис. 1 Принцип организации вегетативной нервной системы.

Рефлекторная дуга вегетативной

Нервной системы

В простой трехнейронной вегетативной рефлекторной дуге (рис.2), как и в соматической, выделяют те же три звена, а именно: рецепторное, образованное чувствительным (афферентным) нейроном, ассоциативное, представленное вставочным (ассоциативным) нейроном и эффекторное звено, образованное двигательным (эффекторным) нейроном, передающим возбуждение на тот или иной рабочий орган. Нейроны связаны между собой синапсами, в которых с помощью медиаторов происходит передача нервного импульса с одного нейрона на другой.

Рис. 2. Схема рефлекторных дуг соматического (слева) и вегетативного (справа) типов, замыкающихся в спинном мозге.

1- рецептор; 2- чувствительный нейрон спинномозгового ганглия; 3- дорсальный корешок; 4- спинномозговой нерв; 5- вставочный нейрон; 6- двигательный нейрон переднего рога; 7- вентральный корешок; 8- двигательное нервное окончание скелетной мышцы; 9- нейрон симпатического ядра бокового рога; 10- преганглионарное волокно; 11- белая соединительная ветвь; 12- периферический вегетативный ганглий; 13- эффекторный нейрон; 14- постганглионарное волокно; 15- серая соединительная ветвь; 16- двигательное нервное окончание на гладкой мышце; 17и 18- волокна пирамидного пути.

Чувствительные нейроны представлены псевдоуниполярными клетками спинномозгового узла, так же как и в соматической нервной системе. Их периферические отростки заканчиваются рецепторами в органах. Поэтому информация о состоянии органов растительной и животной жизни стекается в спинномозговые узлы, и в этом смысле они являются смешанными соматически-вегетативными узлами. Центральный отросток чувствительного нейрона в составе заднего корешка вступает в спинной мозг и нервный импульс переключается на вставочный нейрон, клеточное тело которого расположено в боковых рогах (латерально-промежуточное ядро тораколюмбального или сакрального отделов) серого вещества спинного мозга.

Вставочный нейрон отдает аксон, который покидает спинной мозг в составе передних корешков и достигает одного из вегетативных узлов, где вступает в контакт с эффекторным (двигательным) нейроном.

Таким образом, второе звено вегетативной рефлекторной дуги отличается от соматической, во-первых, местом локализации тела вставочного нейрона, во-вторых, протяженностью и положением аксона, который в отличие от соматической нервной системы никогда не остается в пределах спинного мозга. Еще большие различия в строении третьего звена рефлекторной дуги. В отличие от соматической рефлекторной дуги, где двигательные нейроны расположены в передних рогах спинного мозга, для вегетативной рефлекторной дуги характерно расположение двигательного нейрона за пределами центральной нервной системы - в вегетативных узлах, аксоны которых направляются к рабочему органу, а это значит, что весь эфферентный путь подразделяется на два участка: предузловой (преганглионарный) - аксон вставочного нейрона и послеузловой (постганглионарный) - аксон двигательного нейрона вегетативного узла. Таким образом, в вегетативной рефлекторной дуге эфферентный периферический путь двухнейронный.

В простой трехнейронной вегетативной рефлекторной дуге, замыкающейся в пределах мозгового ствола, тело первого нейрона располагается в чувствительных узлах черепных нервов, второго - в вегетативных ядрах черепных нервов (мезенцефалический и бульбарный отделы) и третьего - в вегетативных узлах.

Достигая эффекторов (гладких мышц и желез), нервные импульсы вызывают сокращение мышцы или изменение секреторной деятельности железы, что в свою очередь вызывает раздражение рецепторов этих органов и отсюда поток импульсов по афферентным волокнам направляется обратно в ядра спинного или головного мозга, неся ежемоментную информацию о состоянии данного органа. Наличие обратной связи (обратной афферентации), с одной стороны позволяет осуществлять контроль за правильностью исполнения команд, с другой - вносить дополнительную своевременную коррекцию в выполнении ответной реакции организма.

Таким образом, в основе строения и функции вегетативной нервной системы, как и соматической, лежит замкнутая кольцевая цепь рефлексов, которая способствует наиболее полному приспособлению организма к окружающей среде.

ВЕГЕТАТИВНЫЕ УЗЛЫ

Узлы вегетативной нервной системы устроены однотипно, но отличаются друг от друга своей локализацией. По этому топографическому признаку их делят условно на три группы (порядка).Узлы I порядка , околопозвоночные (паравертебральные), ganglia trunci sympathici, образуют симпатический ствол, расположенный по сторонам позвоночного столба. Узлы II порядка , предпозвоночные (превертебральные) или промежуточные, ganglia intermedia, расположены впереди позвоночника, входят в состав вегетативных сплетений и также как и узлы I порядка относятся к симпатическому отделу вегетативной нервной системы. Узлы III порядка составляют конечные (терминальные) узлы, ganglia terminalia. Они в свою очередь разделяются на околоорганные и внутриорганные и относятся к парасимпатическим узлам.

Различная степень удаленности вегетативных узлов от спинного мозга или мозгового ствола, с одной стороны, и рабочего органа, с другой, сказывается на длине преганглионарных и постганглионарных волокон. Наибольшую длину имеют преганглионарные волокна, связанные с узлами III порядка. Постганглионарные волокна этих узлов, наоборот, очень короткие. Обратная картина наблюдается при рассмотрении волокон, связанных с узлами I порядка. Здесь преганглионарные волокна короткие, а постганглионарные - длинные. Преганглионарные волокна покрыты миелиновой оболочкой, благодаря чему имеют белый цвет. Их диаметр чаще составляет 2-3,5 мкм, а скорость распространения импульсов колеблется от 3 до 18 м/сек. Постганглионарные волокна лишены миелина, серого цвета, диаметр - до 2 мкм, скорость проведения импульса - 1-3 м/сек.

Снаружи вегетативный узел покрыт соединительнотканной капсулой, от которой внутрь отходят тяжи, между которыми располагаются группы клеток. Тело каждого нейрона имеет тонкую соединительнотканную капсулу. Между ней и телом нейрона - клетки сателлиты, которые выполняют опорную, защитную и трофическую функции.

В узлах выделяют три типа нейронов:

1. Клетки Догеля первого типа - мультиполярные с множеством коротких ветвящихся дендритов и одним длинным аксоном, направляющимся к рабочему органу (рис. 3). Это двигательные нейроны.

2. Клетки Догеля второго типа - чувствительные, мультиполярные с длинными дендритами, которые покидают узел и заканчиваются рецепторами на гладкомышечных или железистых клетках. Аксон может заканчиваться здесь же в ганглии, или направляться в соседние.

3. Клетки Догеля третьего типа представляют местные ассоциативные элементы, соединяющие своими отростками несколько клеток I и II типов как своего узла, так и соседних узлов.

Вегетативные узлы выполняют следующие функции:

1. Передачу нервного импульса с преганглионарной на постганглионарную часть эфферентного пути. Эта функция обусловлена наличием в узле двигательных нейронов.

2. Рефлекторную или замыкательную. Благодаря наличию не только двигательных, но и чувствительных нейронов в вегетативных узлах могут замыкаться периферические рефлекторные дуги, что превращает их в периферические нервные центры, способные осуществлять местные рефлексы на основе принципа саморегуляции.

3. Рецепторную, так как в узлах имеются рецепторы, которыми заканчиваются дендриты чувствительных нейронов спинномозговых и черепных узлов. Благодаря этим центростремительным связям состояние и деятельность вегетативных узлов находятся под контролем центральной нервной системы.

4. Через вегетативный узел проходят транзитно афферентные и эфферентные волокна.

Кроме анатомически обособленных ганглиев, по ходу вегетативных ветвей периферических нервов встречается большое количество нервных клеток, мигрировавших сюда в ходе эмбрионального развития.

Центральная часть представлена как сегментарными , так и надсегментарными центрами . Аксоны нейронов сегментарныхцентров, выходя из спинного, продолговатого и среднего мозга, на периферии формируют вегетативные нервы. Надсегментарные центры с периферией непосредственно не связаны, аксоны их нейронов заканчиваются на нейронах других нервных центров, в том числе сегментарных вегетативных.

Надсегментарные центры продолговатого и среднего мозга:

а) усиливают тоническое сокращение разгибательных мышц;

б) поддерживают тонус сгибателей проксимальных суставов конечностей;

в) обеспечивают статические и статокинетические рефлексы.

Повреждения спинного мозга происходят часто, особенно у молодых мужчин, в результате автомобильных катастроф, спортивных травм, неосторожного обращения с огнестрельным оружием или ранений при участии в военных действиях.Обратимое угнетение двигательных и вегетативных рефлексов после повреждения спинного мозга и исключение его связи с головным мозгом называется спинальным шоком . В экспериментах на животных спинальный шок возникает после полной перерезки спинного мозга. Это явление заключается в том, что все центры ниже перерезки временно перестают функционировать (исчезают рефлексы).О механизмах развития спинального шока и восстановления рефлексов известно мало. По-видимому, перерезка нисходящих путей отключает множество возбуждающих сигналов, поступающих к спинальным эфферентным нейронам из вышележащих отделов ЦНС (нарушается один из основных принципов координации – принцип субординации, или иерархических отношений между нервными центрами). При повторной перерезке спинного мозга ниже места первой перерезки в период восстановления рефлексов спинальный шок не возникает, рефлекторная деятельность спинного мозга сохраняется.Нарушение рефлекторной деятельности после пересечения спинного мозга у разных животных длится разное время. У лягушек оно исчисляется десятками секунд, у кролика рефлексы восстанавливаются через 10–15 мин.,У обезьян первые признаки восстановления рефлексов после перерезки спинного мозга появляются через несколько суток; у человека – через несколько месяцев.Следовательно, чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими.

2. Реципрокная иннервация мышц-антагонистов, её механизмы, значение.

Коллатераль аксона, кт связан с другой осуществляемого рефлекса(например, сгибания) одновременно возбуждает тормозной нейрон, направляющий аксон к мотонейрону несовместимой реакции(например, мышцы-разгебателя). Так осуществляется реципрокная иннервация мышц-антогонистов.

Реципрокная иннервация (от лат. reciprocus - возвращающийся, обратный, взаимный), сопряжённая иннервация, рефлекторный механизм координации двигательных актов, обеспечивающий согласованную деятельность мышц-антагонистов (например, одновременное сокращение группы сгибателей сустава и расслабление его разгибателей). Сущность Реципрокная иннервация заключается в том, что рефлекторное возбуждение в группе нервных клеток, иннервирующих определённые мышцы, сопровождается реципрокным, т. е. сопряжённым, торможением активности в других клетках, функционально связанных с антагонистами, что ведёт к их расслаблению. Т. о., центры мышц-антагонистов - сгибателей и разгибателей - находятся в противоположном состоянии при выполнении многих двигательных актов. Механизм Реципрокная иннервация обеспечивает возможность осуществления организмом координированных движений (ходьба, чесание, движения глаз, трудовые движения и многие др.). Реципрокная иннервация была впервые обнаружена в 1876 П. А. Спиро, учеником И. М. Сеченова, и детально проанализирована английским физиологом Ч. Шеррингтоном, который и ввёл этот термин. Как показали Н. Е. Введенский и А. А. Ухтомский, этот механизм не жестко фиксирован, а динамичен, вследствие чего мышцы, являющиеся антагонистами при совершении одних движений, при участии в других сокращаются одновременно, т. е. ведут себя как синергисты. Прямое исследование процессов возбуждения и торможения в одиночных нервных клетках, проводящееся с помощью микроэлектродной техники с 50-х гг. 20 в., позволило понять особенности механизма Реципрокная иннервация на клеточном уровне. Ведущую роль в формировании сопряжённых отношений между двигательными нейронами, иннервирующими мышцы-антагонисты, играют вставочные нейроны, выполняющие в нервной системе функцию релейных переключателей и интегрирующих элементов.

3. Понятие о тонусе мышц. Виды тонуса. Основные принципы его
поддержания. Этапы становления тонуса в онтогенезе.

Тонус - умеренное напряжение мышц, когда они находятся в состоянии относительного покоя. Тонус поддерживается за счет нервных импульсов, поступающих из центральной нервной системы даже в состоянии покоя. Источники импульсов - мотонейроны (альфа и гамма) передних рогов спинного мозга. Они должны сами находиться в состоянии тонуса.

Причины тонуса нейронов- рефлекторное происхождение тонуса мышц - мотонейроны получают импульсы от рецепторов скелетных мышц. Доказательство: исчезновение тонуса скелетных мышц при перерезке задних корешков спинного мозга; действие гуморальных факторов - активность мотонейронов поддерживается за счет действия метаболитов (например, СО2, лактат - накапливается в спинном мозге, возбуждая нейроны); влияние вышележащих отделов центральной нервной системы - они поддерживают тонус мышц и регулируют его уровень и распределение. Доказательство: удаление головного мозга у лягушки.

Тем не менее, любое движение требует создания для него удобной позы и адекватного положения тела в пространстве. Поэтому сочетание фазных сокра-

щений одних мышц и тонических – других обеспечивает гармонию движения.В каждом движении участвуют 3 группы мышц: 1) основные; 2) вспомогательные, обеспечивающие синкинезии – сопутствующие движения, например, движения рук при ходьбе; 3) позные – мышцы шеи, спины и

др., поддерживающие удобное для движения взаимное положение частей тела.

Механизмы регуляции движений и тонуса являются рефлекторными. Классическое доказательство этого положения – опыт Бронжеста:при перерезке у лягушки задних корешков спинного мозга, т. е. афферентных нервных стволов, связанных с задней лапкой, естественное взаимоположение бедра и голени нарушается. Следовательно, тоническое сокращение мышц конечности, создающее определенную позу, возможно лишь при сохранении целостности рефлекторной дуги.Регуляция движений – это выключение лишних, ненужных компонентов – «избыточных степеней свободы» (Н. А. Бернштейн) за счет процессов координации. Одним из механизмов ее является реципрокная иннервациямышц-антагонистов, заключающаяся в сопряженном торможении центроводной из двух мышц-антагонистов при возбуждении центров другой мышцы.Так, при сгибании конечности возбуждение моторного центра мышцы-сгибателя сопровождается торможением центра мышцы-разгибателя.В регуляции движений важную роль играют обратные связи , или«сензорные коррекции», по Н. А. Бернштейну (1935). Их источником являются плохо осознаваемые сигналы проприорецепторов («темное мышечноечувство», по И. М. Сеченову). Направление движений оценивается с помощью зрительного анализатора. Его роль возрастает при патологическом ограничении сигналов от проприорецепторов, что может быть продемонстрировано на больных со спинной сухоткой. У этих больных развиваютсяструктурные изменения задних рогов спинного мозга, куда обычно поступают проприоцептивные сигналы. Поэтому попытка двигаться с закрытымиглазами им не удается: в этом случае отключены не один, а два важнейшихисточника обратной связи, необходимой для регуляции движений.Роль обратных связей в регуляции движений используется в медицинской практике (Н. М. Яковлев, 1981). Так, восстановление движений удетей при церебральном параличе ускоряется, если больной слышит звучащую игрушку или видит аплодирующую ему куклу. Оба сигнала (звуко-

вой и оптический) появляются лишь в том случае, если ребенок с достаточным усилием сдавливает подошвой ноги при ходьбе резиновую игрушку, а мышечные биопотенциалы достаточны для автоматического включения механизма, приводящего в движение куклу.

Этапы регуляции движений:

Формирование побуждения , или замысла движения происходит в высших отделах ЦНС (мотивационные и ассоциативные зоны коры)и определяет целенаправленность двигательного акта, его стратегию.Субъективно это воспринимается как двигательная мотивация – стремление к удовлетворению какой-либо доминирующей потребности: пищевой,оборонительной, половой, трудовой, творческой и др.

Выбор программы , или тактики движения есть выбор зафиксированной последовательности сокращений и расслаблений определенных мышечных групп. Структурами программного обеспечения в ЦНС являются базальные ганглии (врожденные, генетически детерминированные программы) и мозжечок (приобретенные программы). Первые – программы ползания, ходьбы, бега – реализуются у человека не сразу после рождения, а по мере созревания мозговых структур. Вторые – приобретенные программы речи, письма, трудовых и спортивных движений – формируются из готовых врожденных «блоков» на основе обучения (условных рефлексов), или

опыта. По мере овладения навыками уменьшается число участвующих мышц, повышается доля пассивных механизмов, например, силы тяжести, повышается экономичность движений, ограничивается утомление.

Исполнение программы движения связанно с активацией соответствующих двигательных единиц. Исполнительными структурами ЦНС, обеспечивающими выполнение движения, являются моторные зоны коры, ствол мозга и спинной мозг. Движения могут быть произвольными и не-

произвольными, осознанными и автоматизированными. Две эти классификации не тождественны. Так, произвольные движения могут включать осознанные компоненты, обычно контролируемые сознанием, и автоматизированные, в основном обеспечиваемые без постоянного контроля сознания. К последним относятся движения, совершаемые по врожденным программам, а также хорошо «усвоенные» приобретенные формы движений.


Похожая информация.


Физиологические и анатомические особенности вегетативной нервной системы. Вегетативная нервная система (автономная) - часть нервной системы, которая иннервирует сосуды и внутренние органы, осуществляя координацию их работы и регулируя обменные и трофические процессы (поддерживая таким образом гомеостаз организма). Она подразделяется на центральную и перефирическую, включает два отдела: симпатический и парасимпатический. К центральной вегетативной нервной системе относятся скопления нервных клеток, образующих ядра (центры), которые расположены в головном и спинном мозге. К перефирическому отделу относятся вегетативные волокна, вегетативные узлы (ганглии), вегетативные нервные окончания.

Физиологической особенностью вегетативной нервной системы является следующие: 1) она часть целостной реакции организма; 2) имеет малую скорость проведения нервного сигнала; 3) не подчиняется произвольному контролю со стороны головного мозга; 4) оказывает три вида влияний на работу органов: 5) пусковое (запускает работу органов, которые работают несостоянно); 6) корригирующее (усиливает или ослабляет работу органов); 7) адаптивно-трофическое (включает систему обмена веществ, направленную на восстановление гомеостаза).

Анатомической особенностью вегетативной нервной системы является то, что нейроны, управляющие мускулатурой внутренних органов и железами, лежат за пределами центрального отдела вегетативной нервной системы и образуют скопления - ганглии. Таким образом, имеется дополнительное звено между центральными структурами вегетативной нервной системы и эффекторами. Участок волокна, идущий от центральных нейронов до ганглия, называется преганглионарным волокном, а участок волокна, идущий от ганглия до эффектора - постганглионарным волокном. Вегетативная рефлекторная дуга состоит из трех звеньев: рецепторное (чуствительные нейроны располагаются в органах, а их аксон в составе заднего корешка вступает в спинной мозг); ассоциативного (вставочный нейрон располагается в боковых рогах спинного мозга, через преганглионарное волокно передает сигнал на вегетативный ганглий); эфферентного (двигательный нейрон располагется в вегетативном ганглии, а через постганглионарное волокно передает возбуждение на рабочий орган).

Симпатический и парасимпатические отделы нервной системы имеют ряд различий. Преганглионарные волокна симпатического отдела выходят из грудного и поясничного отделов спинного мозга, ганглии располагаются рядом с центральным отделом, а от них идут длинные постганглионарные волокна. В передаче информации с преганглионарного волокна на ганглий участвует ацетилхолин, но основным нейромедиатором, который воздействует на эффекторы, является норадреналин. Активация симпатического отдела вызывает эрготоропные эффекты: увеличивается возбудимость и проводимость систем органов, усиливаются обменные процессы, происходит учащение дыхания и сердцебиения, т.е. организм приспосабливается к интенсивной деятельности, активируются защитные силы организма. Длинные преганглионарные волокна парасимпатического отделаначинаются в стволе и крестцовых отделах спинного мозга, а ганглии располагаются вблизи эффекторов. В предаче информации с преганглионарного нейрона на ганглий и с постганглионарного нейрона на рабочий орган принимает участие нейромедиатор ацетилхолин. Активация парасимпатического отдела создает условия для отдыха и восстановления сил. Усиливаются трофотропные процессы: увеличивается синтез пищеварительных ферментов и, усиливается секреция пищеварительных желез. Происходит снижение частоты сердечных сокражений и сужение зрачков.

В норме между симпатическим и парасимпатическими отделами существует неустойчивое равновесие, сдвиги которого обусловлены действием раздражителей внешней и внутренней среды. Действие обоих отделов на одни и те же органы чаще всего приводит к противоположным эффектам, т.е. они работают как антагонисты. В некоторых случаях наблюдается синергизм в работе обоих отделов: при пищеварении происходит увеличение белкового состава слюны (действие симпатического отдела) и увеличение ее количества (действие парасимпатического отдела). Почти полное выключение симпатического отдела не является опасным для жизнедеятельности организма, но нарушения в работе парасимпатического отдела могут привести к серьезным последствиям: нарушается регуляция кровоснабжения, температурная регуляция тела, быстро наступает утомление, т.е. человек в таком состоянии плохо адаптируется к изменению окружающей среды.

Высшие вегетативные центры мозга. Центральная регуляция функций вегетативной нервной системы осуществляется с участием различных отделов мозга. Ствол мозга содержит такие жизненно важные центры, как дыхательный, сосудодвигательный, центры сердечной деятельности и т.д. Ядро блуждающего нерва направляет свои аксоны к большей части внутренних органов, иннервируя как гладкую мускулатуру, так и железы (например, слюнные). Средний мозг обеспечивает последовательность реакций акта еды и дыхания. Основная роль нисходящей части ретикулярной формации ствола - повышение активности нервных центров, связанных с вегетативными функциями. Ретикулярная формация оказывает на них тонизирующее влияние, обеспечивая высокий уровень их активности. Одновременно ретикулярная формация способна регулировать деятельность гипоталамуса. Моноаминергическая система ствола (норадренергические нейроны голубоватого пятна, дофаминергические нейроны среднего мозга и серотонинергические нейроны в ядрах срединного шва) участвует в вегетативном обеспечении эмоциональных состояний, цикла «сон - бодрствование» и модуляции высших психических функций. Мозжечок, имея обширную афферентацию от внешней среды, участвует в регуляции вегетативного обеспечения любой мышечной деятельности, способствует активации всех резервов организма для выполнения мышечной работы. Полосатое тело участвует в безусловнорефлекторной регуляции вегетативных функций (слюно- и слезоотделение, потоотделение и др.) Лимбическая система - «висцеральный мозг» осуществляет коррекцию вегетативного обеспечения пищевого, сексуального, оборонительного и других форм поведения, а также различных эмоциональных состояний. Такая коррекция осуществляется за счет модуляции активности вегетативной нервной системы главным образом с участием гипоталамуса, который является центром интеграции моторных, эндокринных и эмоциональных компонетов сложных реакций адаптивного поведения, центром регуляции гомеостаза и обмена веществ. Гиппокамп и миндалевидное тело также являются высшими парасимпатическими центрами, которые реализуют свой эффект через гипоталамус. В миндалевидном теле имеются нейроны, повышающие активность симпатической нервной системы. Они активируются при отрицательных эмоциях. Например, в этих условиях уменьшается коронарный кровоток, повышается артериальное давление, а также снижается содержание в крови эритроцитов и гемоглобина. Поэтому страх, ярость, агрессивность, которые инициируются при возбуждении нейронов миндалевидного тела, нередко являются причиной выраженной патологии сердечно-сосудистой системы. Таламус - структура, имеющая обширные связи с соматической нервной системой и ретикулярной формацией. Внутриталамические связи обеспечивают интеграцию сложных двигательных реакций с вегетативными процессами.

Кора может оказывать прямое и опосредованное влияние на работу внутренних органов, которое осуществляется с участием вегетативных центров, расположенных в различных отделах коры. Потенциально кора может осуществлять любое влияние на вегетативные функции, но использует свои возможности в случае крайней необходимости. Наряду с гипоталамусом и другими компонентами лимбической системы кора способна осуществлять долгосрочную регуляцию работы внутренних органов (на основе выработки многочисленных вегетативных рефлексов), что способствует успешной адаптации организма к новым условиям существования, в том числе при выполнении учетной, трудовой и бытовой деятельности. Способность коры оказывать не только возбуждающее, но и тормозное влияние на подкорковые вегетативные центры дает человеку возможность контролировать свои эмоции, существенно расширяя границы социальной и биологической адаптации.

Гипоталамус как высший центр регуляции вегетативных функций. Как уже отмечалось выше, гипоталамус содержит нейроны, ответственные за регуляцию активности симпатических и парасимпатических центров ствола мозга и спинного мозга, а также за процессы секреции гормонов гипофиза, щитовидной железы, надпочечников и половых желез. Благодаря этому гипоталамус участвует в регуляции деятельности всех внутренних органов, в регуляции таких интегративных процессов, как обмен энергии и веществ, терморегуляция, а также формирование различных по модальности биологических мотиваций (например, пищевой, питьевой и половой), благодаря чему организуется поведенческая активность организма, направленная на удовлетворение соответствующих биологических потребностей. Выше уже отмечалось, что, согласно гипотезе В. Гесса, ядра переднего и частично среднего гипоталамуса рассматриваются как высшие парасимпатические центры, или трофотропные зоны, в то время как ядра заднего (и частично среднего) гипоталамуса - как высшие симпатические центры, или эрготропные зоны. С другой стороны, существует представление о диффузной локализации нейронов, регулирующих активность симпатических (или парасимпатических) нейронов - в каждом центре, ответственном за регуляцию деятельности соответствующего внутреннего органа или интегративного процесса, имеются оба типа нейронов. В настоящее время известно, что гипоталамус выполняет регуляцию деятельности сердечно-сосудистой системы; активности свертывающей и противосвертывающей систем крови; активности иммунной системы (совместно с вилочковой железой) организма; внешнего дыхания, в том числе координация легочной вентиляции, с деятельностью сердечно-сосудистой системы и с соматическими реакциями; моторной и секреторной деятельности пищеварительного тракта; водно-солевого обмена, ионного состава, объема внеклеточной жидкости и других показателей гомеостаза; интенсивности мочеообразования; белкового, углеводного и жирового обмена; основного и общего обмена, а также терморегуляция. Важную роль гипоталамус играет в регуляции пищевого поведения. Установлено существование в гипоталамусе двух взаимодействующих центров: голода (латеральное ядро гипоталамуса) и насыщения (вентромедиальное ядро гипоталамуса). Электрическая стимуляция центра голода провоцирует акт еды у сытого животного, тогда как стимуляция центра насыщения прерывает прием пищи. Разрушение центра голода вызывает отказ от потребления пищи (афагия) и воды, что часто приводит к гибели животного. Электрическая стимуляция латерального ядра гипоталамуса увеличивает секрецию слюнных и желудочных желез, желчи, инсулина, усиливает моторную деятельность желудка и кишечника. Повреждение центра насыщения увеличивает прием пищи (гиперфагия). Практически сразу после такой операции животное начинает есть много и часто, что приводит к гипоталамическому ожирению. При ограничении пищи масса тела уменьшается, но как только ограничения снимают, вновь проявляется гиперфагия, снижающаяся лишь при развитии ожирения. Эти животные проявляли также повышенную разборчивость при выборе пищи, предпочитая наиболее вкусную. Ожирение, следующее за повреждением вентромедиального ядра гипоталамуса, сопровождается анаболическими изменениями: изменяется обмен глюкозы, повышается уровень холестерина и триглицеридов в крови, снижается уровень потребления кислорода и утилизации аминокислот. Электрическая стимуляция вентромедиального гипоталамуса уменьшает секрецию слюнных и желудочных желез, инсулина, моторику желудка и кишечника. Таким образом, можно заключить, что латеральный гипоталамус вовлечен в регуляцию метаболизма и внутренней секреции, а вентромедиальный - оказывает на нее тормозное влияние.

Роль гипоталамуса в регуляции пищевого поведения . В норме сахар крови является одним из важных (но не единственным) факторов пищевого поведения. Его концентрация весьма точно отражает энергетическую потребность организма, а величина разности его содержания в артериальной и венозной крови тесно связана с ощущением голода или сытости. В латеральном ядре гипоталамуса имеются глюкорецепторы (нейроны, в мембране которых есть рецепторы к глюкозе), которые тормозятся при увеличении уровня глюкозы крови. Установлено, что их активность в значительной степени определяется глюкорецепторами вентромедиального ядра, которые первично активируются глюкозой. Гипоталамические глюкорецепторы получают информацию о содержании глюкозы в других частях тела. Об этом сигнализируют периферические глюкорецепторы, находящиеся в печени, каротидном синусе, стенке желудочно-кишечного тракта. Таким образом, глюкорецепторы гипоталамуса, интегрируя информацию, получаемую по нервным и гуморальным путям, участвуют в контроле приема пищи. Получены многочисленные данные об участии различных мозговых структур в контроле приема пищи. Афагия (отказ от пищи) и адипсия (отказ от воды) наблюдаются после повреждения бледного шара, красного ядра, покрышки среднего мозга, черной субстанции, височной доли, миндалины. Гиперфагия (обжорство) развивается после повреждения лобных долей, таламуса, центрального серого вещества среднего мозга. Несмотря на врожденный характер пищевых реакций, многочисленные данные показывают, что в регуляции приема пищи важная роль принадлежит условнорефлекторным механизмам. В регуляции пищевого поведения участвуют многие факторы. Общеизвестно влияние на аппетит вида, запаха и вкуса пищи. Степень наполнения желудка также влияет на аппетит. Хорошо известна зависимость приема пищи от температуры окружающей среды: низкая температура стимулирует прием пищи, высокая - тормозит. Конечный приспособительный эффект всех механизмов, участвующих в пищевом поведении, состоит в приеме количества пищи, сбалансированного по калорийности с расходуемой энергией. Этим достигается постоянство массы тела.

Роль гипоталамуса в регуляции температуры тела. На уровне 36,6° С температура тела у человека поддерживается с очень большой точностью, до десятых долей градуса. В переднем гипоталамусе имеются нейроны, активность которых чувствительна к изменению температуры этой области мозга. Если искусственно поднять температуру переднего гипоталамуса, то у животного наблюдаются увеличение частоты дыхания, расширение периферических кровеносных сосудов и увеличенный расход тепла. При охлаждении переднего гипоталамуса развиваются реакции, направленные на усиленную теплопродукцию и сохранение тепла: дрожь, пилоэрекция (поднятие волос), сужение периферических сосудов. Периферические тепловые и холодовые терморецепторы несут в гипоталамус информацию о температуре окружающей среды, и до изменения температуры головного мозга заблаговременно включаются соответствующие рефлекторные ответы. Поведенческие и эндокринные реакции, активируемые холодом, контролируются задним гипоталамусом, а те, что активируются теплом, - передним гипоталамусом. После удаления головного мозга впереди гипоталамуса животные остаются теплокровными, однако точность температурной регуляции ухудшается. Разрушение у животных переднего гипоталамуса делает невозможным поддерживание температуры тела.

Тонус вегетативной нервной системы. В естественных условиях симпатические и парасимпатической центры вегетативной нервной системы находятся в состоянии непрерывного возбуждения, получившего название «тонус». Явление постоянного тонуса вегетативной нервной системы проявляется прежде всего в том, что по эфферентным волокнам к органам постоянно идет поток импульсов с определенной частотой следования. Известно, что состояние тонуса парасимпатической системы лучше всего отражает деятельность сердца, особенно сердечный ритм, а состояние тонуса симпатической системы - сосудистая система, в частности, величина артериального давления (в покое или при выполнении функциональных проб). Многие стороны природы тонической активности остаются малоизвестными. Считают, что тонус ядерных образований формируется преимущественно благодаря притоку сенсорной информации из рефлексогенных зон, отдельных групп интерорецепторов, а также соматических рецепторов. При этом не исключается и существование собственных водителей ритма - пейсмекеров локализованных в основном, в продолговатом мозге. Природа тонической активности симпатического, парасимпатического и метасимпатического отделов вегетативной нервной системы может быть связана также и с уровнем эндогенных модуляторов (прямого и косвенного действия), адренореактивности, холинореак-тивности и других видов хемореактивности. Тонус автономной нервной системы следует рассматривать как одно из проявлений гомеостатического состояния и одновременно один из механизмов его стабилизации.

Конституционная классификация тонуса ВНС у людей. Преобладание тонических влияний парасимпатической и симпатической частей автономной нервной системы послужило основанием для создания конституционной классификации. Еще в 1910 г. Эппингер и Гесс создали учение о симпатикотонии и ваготонии. Они разделили всех людей на две категории - симпатикотоников и ваготоников. Признаками ваготонии они считали редкий пульс, глубокое замедленное дыхание, сниженную величину АД, сужение глазной щели и зрачков, наклонность к гиперсаливации и к метеоризму. Сейчас уже имеется более 50 признаков ваготонии и симпатикотонии (лишь у 16% здоровых людей можно определить симпатикотонию или ваготонию). В последнее время A.M. Гринберг предлагает выделять семь типов вегетативной реактивности: общая симпатикотония; частичная симпатикотония; общая ваготония; частичная ваготония; смешанная реакция; общая интенсивная реакция; общая слабая реакция.

Вопрос о тонусе вегетативной (автономной) нервной системы требует дополнительных исследований, особенно с учетом того большого интереса, который проявляют к нему в медицине, физиологии, психологии и в педагогике. Полагают, что тонус вегетативной нервной системы отражает процесс биологической и социальной адаптации человека к различным условиям среды обитания и образу жизни. Оценка тонуса вегетативной нервной системы - это одна из сложных задач физиологии и медицины. Существуют специальные методы исследования вегетативного тонуса. Например, исследуя кожные вегетативные рефлексы, в частности пиломоторный рефлекс, или рефлекс «гусиной кожи» (он вызывается болевым или холодовым раздражением кожи в области трапециевидной мышцы), при нормотоническом типе реакции у здоровых людей происходит образование «гусиной кожи». При поражении боковых рогов, передних корешков спинного мозга и пограничного симпатического ствола этот рефлекс отсутствует. При исследовании потового рефлекса, или аспириновой пробы (прием внутрь 1 г аспирина растворенного в стакане горячего чая) у здорового человека появляется диффузное потоотделение (положительная аспириновая проба). При поражении гипоталамуса или путей, соединяющих гипоталамус с симпатическими нейронами спинного мозга, диффузное потоотделение отсутствует (отрицательная аспириновая проба).

При оценке сосудистых рефлексов часто исследуется местный дермографизм, т.е. ответ сосудов на штриховое раздражение кожи предплечья или других частей тела рукояткой неврологического молотка. При легком раздражении кожи через несколько секунд у нормотоников появляется белая полоска, что объясняется спазмом поверхностных кожных сосудов. Если раздражение наносится сильнее и медленнее, то у нормотоников появляется красная полоса, окруженная узкой белой каймой - это местный красный дермографизм, который возникает в ответ на снижение симпатических вазоконстрикторных воздействий на сосуды кожи. При повышенном тонусе симпатического отдела оба вида раздражения вызывают только белую полосу (местный белый дермографизм), а при повышении тонуса парасимпатической системы, т.е. при ваготонии, у человека оба вида раздражения (и слабое, и сильное) вызывают красный дермографизм.

Ортостатический рефлекс Превеля заключается в активном переводе испытуемого из горизонтального положения в вертикальное, с подсчетом пульса до начала пробы и спустя 10 - 25 с после ее выполнения. При нормотоническом типе реакции происходит учащение пульса на 6 ударов в минуту. Более высокое учащение пульса свидетельствует о симпатико-тоническом типе реакции, в то время как небольшое увеличение пульса (не более, чем на 6 ударов в минуту) или неизменность пульса указывает на повышенный тонус парасимптического отдела.

При исследовании болевого дермографизма , т.е. при штриховом раздражении кожи острой булавкой, нормотоников на коже появляется красная полоса шириной 1 - 2 см, окруженная узкими белыми линиями. Этот рефлекс обусловлен снижением тонических симпатических влияний на сосуды кожи. Однако он не возникает при поражении сосудорасширяющих волокон, идущих к сосуду в составе периферического нерва, или при поражении депрессорного отдела бульбарного сосудодвигательного центра.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

ОБЩИЕ ДАННЫЕ

Вегетативная (автономная) нервная система является составной частью единой нервной системы, осуществляющей иннервацию сосудов и внутренних органов, имеющих в своем составе гладкомышечные клетки и железистый эпителий. Она координирует работу всех внутренних органов, регулирует обменные, трофические процессы во всех органах и тканях тела человека, поддерживает постоянство внутренней среды организма.

По ряду морфофункциональных признаков в вегетативной нервной системе выделяют симпатический и парасимпатический отделы, которые во многих случаях действуют как антагонисты.

Вегетативная нервная система, как и соматическая, подразделяется на центральный и периферический отделы.

К центральному отделу относятся скопления нервных клеток, образующих ядра (центры), которые расположены в головном и спинном мозге.

К периферическому отделу вегетативной нервной системы относятся: 1) вегетативные волокна выходящие из головного и спинного мозга в составе корешков и соединительных ветвей;

    вегетативные узлы; 3) вегетативные ветви и нервы, начинающиеся от узлов; 4) вегетативные сплетения; 5) вегетативные нервные окончания.

Центры вегетативной нервной системы

Центры вегетативной нервной системы разделяют на сегментарные и надсегментарные (высшие вегетативные центры).

Сегментарные центры располагаются в нескольких отделах центральной нервной системы, где выделяют 4 очага:

    Мезенцефалический отдел в среднем мозге - добавочное ядро (Якубовича) глазодвигательного нерва (III пара).

    Бульбарный отдел в продолговатом мозге и мосту: 1) верхнее слюноотделительное ядропромежуточно-лицевого нерва (VII пара), 2) нижнее слюноотделительное ядро языкоглоточного нерва (IX пара) и 3) дорсальное ядро блуждающего нерва (X пара.

Оба этих отдела относятся к парасимпатическим центрам.

    Тораколюмбальный отдел - промежуточно-боковые ядра 16-ти сегментов спинного мозга от 8-го шейного до 3-го поясничного включительно (Ш 8 , Г 1-12 , П 1-3). Они являются симпатическими центрами.

    Сакральный отдел - промежуточно-боковые ядра 3-х крестцовых сегментов спинного мозга от 2-го до 4-го включительно (К 2-4) и относятся к парасимпатическим центрам.

Высшие вегетативные центры (надсегментарные) объединяют и регулируют деятельность симпатического и парасимпатического отделов, к ним относятся:

1. Ретикулярная формация , ядра которой формируют центры жизненно-важных функций (дыхательный и сосудодвигательный центры, центры сердечной деятельности, регуляции обмена веществ и т.д.).

2. Мозжечок , в котором имеются трофические центры.

    Гипоталамус - главный подкорковый центр интеграции вегетативных функций, имеет существенное значение в поддержании оптимального уровня обмена веществ (белкового, углеводного, жирового, минерального, водного) и терморегуляции.

    Полосатое тело имеет ближайшее отношение к безусловнорефлекторной регуляции вегетативных функций. Повреждение или раздражение ядер полосатого тела вызывает изменение кровяного давления, усиление слюно- и слезоотделения, усиление потоотделения.

Высшим центром регуляции вегетативных и соматических функций, а также их координации является кора полушарий большого мозга .

Вегетативная Рефлекторная дуга

Вегетативная нервная система, как и соматическая нервная система, реализует свои функции по принципу рефлексов.

В простой вегетативной рефлекторной дуге, как и в соматической, выделяют три звена, а именно: 1) рецепторное , образованное чувствительным (афферентным) нейроном, 2) ассоциативное , представленное вставочным нейроном и 3) эффекторное звено, образованное двигательным (эфферентным) нейроном, передающим возбуждение на рабочий орган.

Нейроны связаны между собой синапсами, в которых с помощью медиаторов происходит передача нервного импульса с одного нейрона на другой.

Чувствительные нейроны (I нейрон ) представлены псевдоуниполярными клетками спинномозгового узла. Их периферические отростки заканчиваются рецепторами в органах. Центральный отросток чувствительного нейрона в составе заднего корешка вступает в спинной мозг и нервный импульс переключается на вставочный нейрон , клеточное тело которого расположено в боковых рогах (латерально-промежуточное ядро тораколюмбального или сакрального отделов) серого вещества спинного мозга (II нейрон ).

Аксон вставочного нейрона покидает спинной мозг в составе передних корешков и достигает одного из вегетативных узлов, где вступает в контакт с двигательным нейроном (III нейрон ).

Таким образом, вегетативная рефлекторная дуга отличается от соматической, во-первых , местом локализации вставочного нейрона (в боковых рогах, а не в задних), во-вторых , протяженностью и положением аксона вставочного нейрона, который в отличие от соматической нервной системы выходит за пределы спинного мозга, в-третьих, тем, что двигательный нейрон расположен не в передних рогах спинного мозга, а в вегетативных узлах (ганглиях), а это значит, что весь эфферентный путь подразделяется на два участка: предузловой (преганглионарный) - аксон вставочного нейрона и послеузловой (постганглионарный) - аксон двигательного нейрона вегетативного узла.

ВЕГЕТАТИВНЫЕ УЗЛЫ

Узлы вегетативной нервной системы по топографическому признаку делят условно на три группы (порядка).

Узлы I порядка , околопозвоночные, образуют симпатический ствол, расположенный по сторонам позвоночного столба.

Узлы II порядка , предпозвоночные или промежуточные, расположены впереди позвоночника, входят в состав вегетативных сплетений. Узлы I и II порядка относятся к симпатическому отделу вегетативной нервной системы.

Узлы III порядка составляют конечные узлы. Они в свою очередь разделяются на околоорганные и внутриорганные и относятся к парасимпатическим узлам.

Преганглионарные волокна покрыты миелиновой оболочкой, благодаря чему имеют белый цвет. Постганглионарные волокна лишены миелина, серого цвета.

В узлах выделяют три типа нейронов:

    Клетки Догеля первого типа - двигательные нейроны.

    Клетки Догеля второго типа - чувствительные нейроны. Благодаря наличию чувствительных клеток в узле, рефлекторные дуги могут замыкаться через вегетативный узел - периферические рефлекторные дуги.

    Клетки Догеля третьего типа представляют ассоциативные нейроны.

РАЗЛИЧИЯ ВЕГЕТАТИВНОЙ И СОМАТИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ

Вегетативная нервная система отличается от соматической следующими признаками:

    Вегетативная нервная система иннервирует гладкую мускулатуру и железы, и кроме того она обеспечивает трофическую иннервацию всех тканей и органов, включая скелетную мускулатуру, т.е.иннервирует все органы и ткани, а соматическая иннервирует только скелетную мускулатуру.

    Важнейший отличительный признак вегетативного отдела - это очаговый характер расположения центров (ядер) в стволе головного мозга (мезенцефалический и бульбарный отделы) и спинном мозге (тораколюмбальный и сакральный отделы). Соматические же центры располагаются в пределах центральной нервной системы равномерно (сегментарно).

    Различия в строении рефлекторной дуги (см. выше).

    Деятельность вегетативной нервной системы основана не только на центральных рефлекторных дугах, но и на периферических, двухнейронных, замыкающихся в вегетативных узлах.

    Вегетативная нервная система обладает избирательной чувствительностью к гормонам. Это обусловлено тем, что переключение импульса в синапсах осуществляется с помощью химического вещества - медиатора.