Провитамины, витаминоподобные вещества. Антивитамины. Что такое антивитамины

Мы все знаем, что такое витамины и как они важны для нашего здоровья. Но, оказывается, есть еще и антивитамины. Антивитамины - это химические соединения, по своей структуре похожие на витамины, но имеющие противоположные свойства.

Антивитамины были случайно открыты еще в 70-е годы прошлого века. Тогда, работая над синтезом фолиевой кислоты (витамина В9), ученые неожиданно получили фолиевую кислоту с прямо противоположными свойствами. Оказалось, что аналог полностью утратил витаминную ценность, но при этом он обладает важным свойством - тормозит развитие клеток, прежде всего раковых. Это новое синтезированное соединение стало впоследствии использоваться в медицине для лечения некоторых видов новообразований.

По способу действия антивитамины можно разбить на две группы. К первой группе можно отнести вещества, вступающие с витамином в прямое взаимодействие, в результате которого последний утрачивает свою биологическую активность. Сущность их антивитаминного действия сводится к тому, что тем или иным путем они разрушают молекулу витамина либо связывают ее таким образом, что она утрачивает свойства, придающие ей биологическую активность. Например, один из белков, содержащихся в яйцах, авидин , связывается с биотином (витамином Н) и образуется соединение (авидин-биотиновый комплекс), в котором биотин лишен активности, не растворим в воде, не всасывается из кишечника и не может быть использован организмом как кофермент. В результате развивается авитаминоз витамина Н. Следовательно, авидин является антивитамином Н.

В качестве еще одного примера антивитаминов первой группы можно привести фермент аскорба-токсидазу, под действием которой окисляется аскорбиновая кислота. Известны и другие ферменты, разрушающие витамины: тиаминаза - разрушает тиамин (витамин B1), липоксидаза - разрушает провитамин А, и другие.

Ко второй группе антивитаминов относятся структурные аналоги витаминов, в которых та или иная функционально важная группа замещена другой, что лишает молекулу ее витаминной активности. Это - частный случай типичных антиметаболитов. Антиметаболиты - вещества, близкие по химическому строению к метаболитам, то есть соединениям, играющим важную роль в обмене веществ. Классический пример таких антивитаминов (антиметаболитов) - сульфаниламид (противомикробное средство).

Антивитамины в нашей жизни играют положительную и отрицательную роль.

Отрицательная роль:

  • Нейтрализуют действие витаминов, блокируют их всасывание.

Положительная роль:

  • Антивитамины выполняют своеобразную регуляторную функцию в витаминном балансе организма, предохраняют последний от вредных последствий избыточного поступления с пищей или чрезмерного биосинтеза соответствующих витаминов. Эти «ограничители», вероятно, особенно важны в отношении тех витаминов, к избытку которых организм особенно чувствителен.
  • Изучение антивитаминов открывает замечательные перспективы в области создания новых лекарственных средств.

Очень многие лекарства являются антиметаболитами, ингибиторами (замедлителями, подавителями) ферментативных процессов. На таком принципе блокирования активных центров ферментов патогенных микроорганизмов основано лечебное действие антибиотиков. Некоторые химиотерапевтические препараты оказывают лечебное действие на отдельные виды злокачественных опухолей, потому что они подавляют ферменты, ответственные за избыточный при этих заболеваниях биосинтез нуклеиновых кислот и белков. И видное место среди таких лекарственных средств занимают антивитамины.

Ниже приведены некоторые примеры антивитаминов или антагонистов витамина.

Антагонисты витамина А

Разжижающие кровь препараты и другие лекарства, включая аспирин, фенобарбитал, дикумарол, разрушают витамин А в организме.

Антагонисты витамина К

Дефицит витамина К крайне маловероятен, потому что этот витамин находится в широком разнообразии среди обычно съедаемых растительных продуктов и синтезируется бактериями в кишечном тракте. Однако антибактериальная терапия (прием любых антибиотиков, таких как пенициллин, стрептомицин, тетрациклин, хлоромицин, терамицин и др.) подавляет рост бактерий, в том числе и синтез витамина К.

Вряд ли в наши дни найдется человек, не знающий про инфаркт миокарда или про тромбоз сосудов мозга. В основе этих грозных явлений часто лежит повышенная свертываемость крови. Если по какой-либо причине сердечный сосуд становится непроходимым для крови, участок сердечной мышцы, снабжаемый этим сосудом, перестает получать необходимые ему вещества и некротизируется (отмирает). Сходным образом нарушается питание того или иного участка мозга при непроходимости сосуда, поставляющего ему кровь. Одной из частых причин такой непроходимости кровеносных сосудов является закупорка их просвета сгустком свернувшейся крови - тромбом. Такой тромб может сформироваться не только из крови, свернувшейся в самом закупоренном им сосуде - он иногда образуется в каком-либо другом место сосудистой системы. У здорового человека внутрисосудистое образование тромбов, способных закупорить их просвет, не происходит, но оно может возникнуть при нарушении нормального состояния стенок кровеносных сосудов, в частности, при атеросклерозе или повышенной свертываемости крови. Исключительно эффективным средством предупреждения тромбообразоваиия при повышенной свертываемости крови и лечения тромбозов оказался дикумарин - антагонист витамина К. Поскольку химическая структура дискумарина аналогична химической структуре витамина К, они действуют как антикоагулянты, препятствуя синтезу протромбина и других природных факторов свертывания крови.

Антагонисты витамина С

Хорошо известно, что у курильщиков сигарет уровень витамина C ниже, чем у некурящих. Канадский врач, д-р WJ McCormick (1), протестировал уровень витамина C в крови почти у 6000 курильщиков. У всех были ниже нормальных показаний. Аналогичные результаты были обнаружены и в других исследованиях. Фридрих Кленнер, доктор медицинских наук, уже много лет цитирует, что одна сигарета может истощить целых тридцать пять миллиграммов витамина C из организма. (Кальций и фосфор, оба минерала, также обедняются сигаретами). Поскольку витамин С реагирует с любым инородным веществом в крови, все препараты и загрязнители можно рассматривать как антагонисты витамина С. Некоторые из наиболее известных антагонистов витамина С включают хлорид аммония, тиурацил, атропин, барбитураты и антигистамины. Алкогольные напитки также являются антагонистами витамина С, равно как и все стрессы (эмоциональные всплески и расстройства, экстремальные температуры, наркотики).

Витаминные антагонисты витаминов группы B

Антифолаты - антагонисты фолиевых кислот. Как уже указывалось выше, обнаружено, что некоторые антифолаты угнетают деление клетки, что позволило применять их для лечения некоторых видов опухолей. Антифолаты привлекли к себе внимание еще по одной причине. Фолиевые кислоты являются необходимыми факторами роста и размножения всех микроорганизмов. Поэтому можно было рассчитывать на то, что антифолаты - структурные аналоги фолиевых кислот - окажутся ценными средствами борьбы с патогенными микроорганизмами. Эти надежды оправдались. Среди множества синтезированных аналогов фолиевых кислот обнаружили ингибиторы роста бактерий. Сегодня на основе антифолатов созданы эффективные препараты для лечения заболеваний человека и животных, вызываемых простейшими организмами и бактериями. Синтезированы антифолаты, не хуже хинина подавляющие рост возбудителя малярии, и один из них - пириметамин - применяется как антималярийный препарат. Этот же антифолат применяется для лечения токсоплазмоза - заболевания, вызываемого токсоплазмой. Синтезирован антифолат, который нашел применение как средство лечения холеры.

Антивитамин рибофлавина (витамин В2) - акрихин. Применяется для лечения малярии, гельминтозов.

Природные антивитамины, поступающие в организм человека с пищей могут стать причиной болезней. Еще в 1936 году было описано заболевание, наблюдавшееся среди содержавшихся на ферме лисиц, когда им давали с кормом сырую рыбу - карпов. Выяснилось, что зто был витаминоз В1. Оказалось, внутренности карпа богаты тиамипазой - ферментом, разрушающим тиамин (витамин В1). В последующих исследованиях этот фермент был обнаружен в телах других пресноводных рыб, моллюсков, некоторых растений, микроорганизмов. Это одна из многих причин не есть японское блюдо, сашими (сырая рыба) или любые другие сырые морепродукты.

В продуктах питания, которыми пользуется население Индонезии, был обнаружен антиметаболит витамина В2 - так называемый токсофлавин, который оказался причиной отравления людей. Сущность токсического действия этого антиметаболита состоит в следующем: он выключает действие дыхательных ферментов, содержащих в своем составе витамин В2.

Противозачаточные таблетки - антивитамины рибофлавина, витамина В6, витамина В12 и фолиевой кислоты. Было обнаружено, что женщины, принимающие оральные контрацептивы, имеют гораздо более низкие уровни рибофлавина, чем контрольная группа, которые не использовали оральных контрацептивов. Эти контрацептивы особенно вредны для витамина B12 и фолиевой кислоты. Эстроген в оральных контрацептивах также является антагонистом витамина Е.

Витаминные антагонисты витамина PP

В некоторых злаках присутствует аналог витамина РР - так называемый ацетил-3-пиридин, вызывающий у людей авитаминоз РР (пеллагру).

Практическое значение антивитаминов не ограничивается тем, что их все шире используют для лечения болезней человека н животных. Их способность блокировать жизненно важные звенья обмена веществ в последнее время стали использовать для борьбы против вредителей сельскохозяйственных культур и разносчиков инфекций. Так, один из антивитаминов B6, известный под наименованием «Кастрикс», широко применяется как мощный яд для борьбы с грызунами.

Литература
1. Antivitamins for Medicinal Applications Chembiochem. 2015 Jun 15;16(9):1264-78. doi: 10.1002/cbic.201500072. Epub 2015 May 25.
2. И.И.Матутсис. Витамины и антивитамины М., "Сов.Россия", 1975 г, 240 с

Администрация сайта сайт не дает оценку рекомендациям и отзывам о лечении, препаратах и специалистах. Помните, что дискуссия ведется не только врачами, но и обычными читателями, поэтому некоторые советы могут быть опасны для вашего здоровья. Перед любым лечением или приемом лекарственных средств рекомендуем обратиться к специалистам!

Что такое витамины, знают все, а вот о существовании антивитаминов — веществ, сходных с ними по структуре, но имеющих абсолютно противоположные свойства, — слышали немногие. Причем эти соединения могут занимать место в структуре витаминного кофермента (быть промежуточными переносчиками определенных химических групп), но не выполнять функции витаминов. Это приводит к нарушению биохимических процессов в организме и может стать причиной патологий обмена веществ.

Откажитесь от фреша в ресторанах — до подачи к столу он в лучшем случае потеряет 50 % аскорбиновой кислоты.

Самый яркий пример противостояния витаминов и антивитаминов — аскорбиновая кислота и аскорбиназа. Знакомая ситуация: разрезали огромное яблоко, половину съели, а вторую оставили на потом? Знайте, что потом от витамина С во фрукте не останется и следа. Под воздействием света в яблоке синтезируется аскорбиназа — вещество, вызывающее окисление и разрушающее витамин С. И это касается не только яблок! Свежевыжатый апельсиновый сок, например, нужно употреблять сразу же после приготовления. Так что откажитесь от фреша в ресторанах — до подачи к столу он в лучшем случае потеряет 50 % аскорбиновой кислоты.

Витамин В1 поддерживает работу сердечно-сосудистой, нервной и пищеварительной систем. Им богаты лесные орехи, помидоры, говядина и птица. Действие витамина В1 полностью подавляет тиаминаза, которой много в картофеле, шпинате, рисе, вишне, чайном листе. Вот почему картофель не лучший гарнир к куриному филе (и дело не только в высоком содержании крахмала).

Антивитамином ниацина (витамина В3) является аминокислота лейцин. Последняя содержится в сое, фасоли, буром рисе, грибах, грецких орехах, птице и молоке. Ниацином богаты брокколи, финики, яйца, печень. Так что ужин из отварной индейки и брокколи, как оказалось, не самый здоровый вариант.

По разные стороны баррикад

Для переваривания каждого вида пищи необходим разный ферментный состав желудочного сока. Например, белкам необходима кислая среда (соляная кислота), углеводам — щелочная. При взаимодействии кислоты со щелочью образуются соли, за счет которых увеличивается нагрузка на почки, печень и поджелудочную железу. Так что суши (рыба — белок, рис — углевод), макароны с сыром и бутерброды с бужениной (пусть даже и с цельнозерновым хлебом) не должны присутствовать в рационе адептов здорового питания.

Без сожаления ставьте клеймо на сочетании продуктов с высоким содержанием белка и жиров. Последние блокируют выделение соляной кислоты. Из этого следует вывод, что рыбу, яйца, мясо и бобовые нельзя готовить с добавлением масла (даже оливкового).

Фруктовые десерты после еды (вне зависимости от состава меню) не лучший вариант. Фрукты перевариваются в кишечнике, и, если на пути через ЖКТ они встречают препятствие в желудке, брожения вместе с другими составляющими обеда им не избежать. Поэтому персики, бананы, яблоки, груши и иже с ними можно есть только за 30 минут до основного приема пищи.

В чайном листе содержатся дубильные вещества, блокирующие усвоение магния, кальция, меди, цинка и железа, а также негативно влияющие на усвоение белка

Любимый миллионами салат из огурцов и помидоров также пора исключить из рациона. Во-первых, огурцы щелочные, а помидоры кислые. Во-вторых, в огурцах содержится антивитамин аскорбиназа, который разрушает витамин С.

Чай в сочетании с изделиями из дрожжевого теста иди протеиновыми десертами употреблять крайне нежелательно. В чайном листе содержатся дубильные вещества, блокирующие усвоение магния, кальция, меди, цинка и железа, а также негативно влияющие на усвоение белка. Причем чем сильнее заварка, тем меньше у микро- и макроэлементов шансов принести пользу организму.

Таблицу совместимости продуктов можно найти .

Текст: Наталия Капица

Похожие материалы из рубрики

Те, кто регулярно читает наш блог, помнят, что в . А в самом начале той статьи я упоминал некую классификацию витаминоподобных веществ, одним из которых называл так называемые антивитамины! И знаете, меня настолько зацепила тема антивитаминов, что я решил написать отдельный пост на эту тему, в котором решил собрать и систематизировать информацию об этих веществах и вот теперь готов преподнести её Вам чтобы Вы пользовались и становились здоровее!)

Давайте начнём с того, что скажем несколько слов о том, что же такое витамины. Итак, витамины — это ускорители различных химических процессов в организме. Если схематично, то я сейчас объясню, как это происходит: витамин попадая в наш организм вступает во взаимодействие с соответствующим ферментом и ускоряет обмен веществ. Важным моментом здесь является то, что каждый конкретный витамин может встраиваться только в соответствующий ему фермент. А ферменты могут выполнять строго определённую функцию и не могут заменять друг друга.

Что же делают антивитамины?!

Сначала следует сказать о том, что существует 2 основных группы антивитаминов. Антивитамины из первой группы имеют схожую с соответствующим ему витамином структуру, поэтому просто занимают место настоящего витамина в ферменте. В дальнейшем этот псевдофермент со встроенным антивитамином пытается выполнять свои функции, но безрезультатно, т.к его состав уже другой. Поэтому биохимический процесс, выполняемый ранее благодаря оригинальному ферменту не состоится.

Антивитамины из второй группы не имеют схожей с витамином структуры и инактивируют витамины путём их разрушения, расщепления или связывания его молекул в неактивные формы

Зачем нужны антивитамины?!

Наверное у каждого, кто дочитал статью до этого места сформировалось отрицательное мнение об антивитаминах. Но на самом деле природа недаром создала антивитамин практически для каждого витамина — у этих веществ масса полезных свойств.

1. Так благодаря видоизменению некоторых витаминов те в свою очередь приобрели новые, отсутствующие у них ранее свойства.

Например витамин В9, который традиционно активизирует процессы кроветворения и участвует в биосинтезе белка под действием антивитаминов приобрёл новые свойства и стал выступать в роли блокатора для роста раковых клеток. Или например витамин В5 с изменённой структурой уже способен обладать противосудорожным и успокаивающим эффектом. Ещё одним примером является витамин К и его антивитамин дикумарин, оригинальный витамин К обладает свойством повышать свёртываемость крови, а дикумарин наоборот разжижает кровь — оба этих вещества нашли своё применение в медицине!

2. Антивитамины выступают в роли регулятора оптимального количества витаминов в организме, не допуская гипервитаминоза — переизбытка витаминов в организме.

Так что антивитамины также нужны нашему организму и их присутствие в составе продуктов — это неотъемлемая часть нашей пищевой системы!

Конкурирующий и неконкурирующий антагонизм.

Антагонизм между витамином и антивитамином может носить конкурирующий и неконкурирующий характер. При конкурирующем антагонизме антивитамины попросту вытесняют витамины из их соединения с ферментами.

При неконкурирующем антагонизме антивитамин при образовании соединения с ферментом наделяет его новыми, отсутствующими ранее свойствами.

Несколько примеров об антивитаминах из «жизни каждого»:

1. Любимый многими «летний» салат из помидорчиков и огурчиков — это один из самых наглядных примеров лишения организма витамина С. Об этом мы уже писали в статье « «. Теперь, когда мы знакомы с витаминами и антивитаминами объяснить запрет на сочетание этих овощей становится проще: огурцы и кабачки — это лидеры среди овощей по содержанию аскорбиназы. Аскорбиназа — это антивитамин витамина С. Таким образом сколько бы ни было в томатах витамина С человеческий организм его не получит, т.к. при таком сочетании овощей он разрушится ещё в салатнике на Вашем столе! Вообще многие свежие фрукты и овощи содержат различные антивитамины, поэтому сочетание продуктов на Вашем столе — это отдельная тема для разговора!

2. Потемнение среза яблока при длительном хранении — наглядно показывает Вам работу аскорбиназы в действии: под воздействием света в яблоке начинает вырабатываться этот антивитамин и сразу же приступает к окислению, т.е. разрушению витамина С.

3. Если в Вашем рационе много бурого риса, сырой фасоли и сои, грецких орехов, шампиньонов и вешенок, а также коровьего молока, то может возникнуть риск дефицита витамина РР. Это происходит из-за того, что все названные продукты богаты его антивитамином — аминокислотой лейцином. Здесь же добавлю, что сырая фасоль и соя также сводят на нет действие витамина Е.

4. Здесь же отмечу, что антивитаминными свойствами обладают все антибиотики. А самым активным антивитамином является ацетилсалициловая кислота. Она полностью выводит витамин С, способствует вымыванию калия и кальция.

Как бороться с антивитаминами?!

Сразу скажу, кроме разумного подхода к Вашему питанию и образу жизни ничего делать не требуется!:) Во-первых, многие антивитамины в сырых овощах и других продуктах разрушаются при нагревании, но если говорить совсем откровенно, то при тепловой обработке от витаминов тоже остаётся незначительная часть… Поэтому тепловая обработка — это решение не для всех! А вот варианты, которые подойдут каждому:

Запомнить основные источники антивитаминов и не употреблять их с источниками соответствующих витаминов.

Стараться долго не хранить приготовленную или нарезанную еду — сразу употреблять в пищу!

Полностью отказаться от приёма антибиотиков (естественно, кроме ситуаций, где от этого зависит жизнь человека), перейти на альтернативные методы лечения — фитотерапия, натуропатия и др.

Полностью отказаться от употребления алкоголя и табакокурения. Алкоголь разрушает витамины В, С, К, а курение оставляет организм без витамина С.

Ну вот и всё, что я хотел рассказать Вам об антивитаминах. Если Вам понравилась статья, то подпишитесь на наш блог и вскоре мы порадуем Вас ещё чем-нибудь интересненьким!

Доброго времени суток, уважаемые посетители проекта «Добро ЕСТЬ! », раздела « »!

В сегодняшней статье речь пойдет о витаминах .

На проекте ранее уже была информация о некоторых витаминах, эта же статья посвящена общему пониманию этих, так сказать соединений, без которых жизнь человека имела бы множество трудностей.

Витамины (от лат. vita - «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы, необходимых для нормальной жизнедеятельности организмов.

Наука, которая изучает структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях называется – Витаминология .

Классификация витаминов

Исходя из растворимости, витамины делят на:

Жирорастворимые витамины

Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень.

Водорастворимые витамины

Водорастворимые витамины в существенных количествах не депонируются и при избытке выводятся с водой. Это объясняет большую распространённость гиповитаминозов водорастворимых витаминов и гипервитаминозов жирорастворимых витаминов.

Витаминоподобные соединения

Наряду с витаминами, известна группа витаминоподобных соединений (веществ), которые обладают теми или иными свойствами витаминов, однако, всех основных признаков витаминов не имеют.

К витаминоподобным соединениям относят:

Жирорастворимые:

  • Кофермент Q (убихинон, коэнзим Q).

Водорастворимые:

Основной функцией витаминов в жизни человека является регулирующее влияние на обмен веществ и тем самым обеспечение нормального течения практически всех биохимических и физиологических процессов в организме.

Витамины участвуют в кроветворении, обеспечивают нормальную жизнедеятельность нервной, сердечно-сосудистой, иммунной и пищеварительной систем, участвуют в образовании ферментов, гормонов, повышают устойчивость организма к действию токсинов, радионуклидов и других вредных факторов.

Несмотря на исключительную важность витаминов в обмене веществ, они не являются ни источником энергии для организма (не обладают калорийностью), ни структурными компонентами тканей.

Функции витаминов

Гиповитаминоз (недостаточность витаминов)

Гиповитаминоз — заболевание, возникающее при неполном удовлетворении потребностей организма в витаминах.

Гипервитаминоз (передозировка витаминами)

Гипервитаминоз (лат. Hypervitaminosis) острое расстройство организма в результате отравления (интоксикации) сверхвысокой дозой одного или нескольких витаминов, содержащихся в пище или витаминосодержащих лекарствах. Доза и конкретные симптомы передозировки для каждого витамина свои.

Антивитамины

Возможно это будет и новость для некоторых людей, но все –же, у витаминов есть враги – антивитамины.

Антивитамины (греч. ἀντί - против, лат. vita - жизнь) - группа органических соединений, подавляющих биологическую активность витаминов.

Это соединения, близкие к витаминам по химическому строению, но обладающие противоположным биологическим действием. При попадании в организм антивитамины включаются вместо витаминов в реакции обмена веществ и тормозят или нарушают их нормальное течение. Это ведёт к витаминной недостаточности (авитаминоз) даже в тех случаях, когда соответствующий витамин поступает с пищей в достаточном количестве или образуется в самом организме.

Антивитамины известны почти для всех витаминов. Например, антивитамином витамина B1 (тиамина) является пиритиамин, вызывающий явления полиневрита .

Подробнее об антивитаминах будет написано в следующих статьях.

История витаминов

Важность некоторых видов еды для предотвращения определённых болезней была известна ещё в древности. Так, древние египтяне знали, что печень помогает от куриной слепоты. Ныне известно, что куриная слепота может вызываться недостатком . В 1330 году в Пекине Ху Сыхуэй опубликовал трёхтомный труд «Важные принципы пищи и напитков», систематизировавший знания о терапевтической роли питания и утверждавший необходимость для здоровья комбинировать разнообразные продукты.

В 1747 году шотландский врач Джеймс Линд, пребывая в длительном плавании, провел своего рода эксперимент на больных матросах. Вводя в их рацион различные кислые продукты, он открыл свойство цитрусовых предотвращать цингу. В 1753 году Линд опубликовал «Трактат о цинге», где предложил использовать и лаймы для профилактики цинги. Однако эти взгляды получили признание не сразу. Тем не менее, Джеймс Кук на практике доказал роль растительной пищи в предотвращении цинги, введя в корабельный рацион кислую капусту, солодовое сусло и подобие цитрусового сиропа. В результате он не потерял от цинги ни одного матроса - неслыханное достижение для того времени. В 1795 году лимоны и другие цитрусовые стали стандартной добавкой к рациону британских моряков. Это послужило появлением крайне обидной клички для матросов - лимонник. Известны так называемые лимонные бунты: матросы выбрасывали за борт бочки с лимонным соком.

В 1880 году русский биолог Николай Лунин из Тартуского университета скармливал подопытным мышам по отдельности все известные элементы, из которых состоит коровье молоко: сахар, белки, жиры, углеводы, соли. Мыши погибли. В то же время мыши, которых кормили молоком, нормально развивались. В своей диссертационной (дипломной) работе Лунин сделал вывод о существовании какого-то неизвестного вещества, необходимого для жизни в небольших количествах. Вывод Лунина был принят в штыки научным сообществом. Другие учёные не смогли воспроизвести его результаты. Одна из причин была в том, что Лунин использовал тростниковый сахар, в то время как другие исследователи использовали молочный сахар, плохо очищенный и содержащий некоторое количество витамина B.
В последующие годы накапливались данные, свидетельствующие о существовании витаминов. Так, в 1889 году голландский врач Христиан Эйкман обнаружил, что куры при питании варёным белым рисом заболевают бери-бери, а при добавлении в пищу рисовых отрубей - излечиваются. Роль неочищенного риса в предотвращении бери-бери у людей открыта в 1905 году Уильямом Флетчером. В 1906 году Фредерик Хопкинс предположил, что помимо белков, жиров, углеводов и т. д., пища содержит ещё какие-то вещества, необходимые для человеческого организма, которые он назвал «accessory food factors». Последний шаг был сделан в 1911 году польским учёным Казимиром Функом, работавшим в Лондоне. Он выделил кристаллический препарат, небольшое количество которого излечивало бери-бери. Препарат был назван «Витамайн» (Vitamine), от латинского vita - «жизнь» и английского amine - «амин», азотсодержащее соединение. Функ высказал предположение, что и другие болезни - цинга, рахит - тоже могут вызываться недостатком определенных веществ.

В 1920 году Джек Сесиль Драммонд предложил убрать «e» из слова «vitamine», потому что недавно открытый не содержал аминового компонента. Так «витамайны» стали «витаминами».

В 1923 году доктором Гленом Кингом была установлена химическая структура витамина С, а в 1928 году доктор и биохимик Альберт Сент-Дьёрди впервые выделил витамин С, назвав его гексуроновой кислотой. Уже в 1933 швейцарские исследователи синтезировали идентичную витамину С столь хорошо известную аскорбиновую кислоту.

В 1929 году Хопкинс и Эйкман за открытие витаминов получили Нобелевскую премию, а Лунин и Функ - не получили. Лунин стал педиатром, и его роль в открытии витаминов была надолго забыта. В 1934 году в Ленинграде состоялась Первая всесоюзная конференция по витаминам, на которую Лунин (ленинградец) не был приглашён.

В 1910-х, 1920-х и 1930-х годах были открыты и другие витамины. В 1940-х годах была расшифрована химическая структура витаминов.

В 1970 году Лайнус Полинг, дважды лауреат Нобелевской премии, потряс медицинский мир своей первой книгой «Витамин С, обычная простуда и », в которой дал документальные свидетельства об эффективности витамина С. С тех пор «аскорбинка» остается самым известным, популярным и незаменимым витамином для нашей повседневной жизни. Исследовано и описано свыше 300 биологических функций этого витамина. Главное, что, в отличие от животных, человек не может сам вырабатывать витамин С и поэтому его запас необходимо пополнять ежедневно.

Заключение

Хочу обратить Ваше внимание, дорогие читатели, что к витаминам следует относится очень внимательно. Неправильное питание, недостаток, передозировка, неправильные дозы приема витаминов могут серьезно навредить здоровью, поэтому, для окончательных ответов на тему о витаминах, лучше проконсультироваться с врачом – витаминологом, иммунологом .

Источник: http://www.gettyimages.com

Витамины и антивитамины: двойники и соперники

Эти вещества могут свести на нет действие витаминов и привести к авитаминозу. А могут стать основным средством лечения многих болезней. Встречайте: антивитамины.


Эти вещества могут свести на нет действие витаминов и привести к авитаминозу. А могут стать основным средством лечения многих болезней. Встречайте: антивитамины.

Привычная ситуация: разрезали яблоко пополам - себе и ребенку. Вы свою половинку съели сразу, а ребенок мусолит, его часть яблока потихоньку темнеет. «Это же натуральная аскорбинка!» - увещеваете вы, но на самом деле витамина С там почти не осталось. Под воздействием света в яблоке вырабатывается аскорбиназа - вещество, сходное по химической структуре с витамином С, но обладающее противоположным действием. Оно вызывает окисление витамина С и его разрушение.

ДВЕ СТОРОНЫ ОДНОЙ МЕДАЛИ

Аскорбиновая кислота и аскорбиназа - самый яркий пример существования витаминов и антивитаминов. Такие вещества имеют схожую химическую структуру и абсолютно противоположные свойства.

В организме витамины превращаются в коферменты и вступают во взаимодействие со специфическими белками, таким образом регулируя различные биохимические процессы. Причем все роли расписаны заранее: витамин может встроиться лишь в соответствующий ему белок. Последний, в свою очередь, выполняет строго определенную функцию, не допуская никаких замен.

Антивитамины также превращаются в коферменты, только ложные. Специфические белки не замечают подмены и пытаются осуществлять привычные функции. Но это уже невозможно: действие витаминов может полностью или частично блокироваться, их биологическая активность снижается или вовсе сводится на нет. Процессы обмена веществ останавливаются.

Более того, сейчас уже известно, что антивитамины не просто тормозят биохимические процессы в организме. В некоторых случаях они изменяют химическую структуру витаминов , и тогда ложный кофермент начинает играть свою собственную биохимическую роль. В этом возможны и плюсы.

ИЗ МИНУСОВ В ПЛЮСЫ

Антивитамины открыли случайно, когда ученые пытались усилить биологические свойства витамина В9 (фолиевой кислоты), который активизирует процессы . Но в результате различных химических процессов витамин В9 преобразовался, утратил свои привычные свойства, зато приобрел новые - стал тормозить рост раковых клеток.

Также благодаря случаю был обнаружен и дикумарин - антагонист витамина К. Оба эти вещества участвуют в процессах кроветворения, только витамин К способствует свертываемости крови, а дикумарин нарушает ее. Теперь это его свойство используют для лечения соответствующих заболеваний. За последние десятилетия химики синтезировали сотни производных витаминов, и у многих были обнаружены антивитаминные свойства. Так, незначительно изменив химическую структуру пантотеновой кислоты, обеспечивающей клетки энергией, химики получили антивитамин В3, который оказывает успокаивающее действие.

Эксперименты на животных показали, что соевые бобы содержат белковые соединения, полностью разрушающие , кальций и фосфор, провоцируя развитие рахита. Но при нагревании соевой муки действие антивитаминов нейтрализуется. Применение этой антагонистической пары в медицине - вопрос времени.

ВИТАМИННЫЙ КОНФЛИКТ

Интересно, что подобные антиподы есть у всех витаминов. И рекомендации по правильному питанию просто обязаны учитывать возможные витаминные конфликты.

* Взять тот же витамин С, который содержится в большинстве свежих овощей и фруктов. Стоит нарезать салат и оставить его на некоторое время на столе либо выжать сок и оставить его в бокале, как в процессы вступает аскорбиназа. В результате теряется до 50% витамина С. Так что все это полезнее съедать сразу после приготовления.

* Витамин В1 (тиамин) отвечает за процессы роста и развития, помогает поддерживать работу сердца, нервной и пищеварительной систем. Но все его положительные свойства разрушает тиаминаза. Этого вещества много в сырых продуктах: в основном в пресноводной и морской рыбе, а также в рисе, шпинате, картофеле, вишне, чайном листе. Так что у фанатов есть риск заработать дефицит витамина В1.

* Сырая фасоль нейтрализует действие витамина Е, так же как и соя. Вообще именно в сырых продуктах особенно много антивитаминов.

* Еще один очень популярный антивитамин, о котором многие даже не догадываются, - это кофеин. Он мешает усвоению витаминов С и группы B. Чтобы разрешить этот конфликт, чай или кофе лучше пить через час-полтора после еды.

* Родственные имеют биотин (витамин Н) и авидин. Первый отвечает за здоровую кишечную микрофлору и стабилизирует уровень сахара в крови, второй препятствует его всасыванию. Оба вещества содержатся в яичном желтке, но авидин - лишь в сыром яйце (он разрушается при нагревании). Поэтому при диабете или проблемах с кишечной микрофлорой яйца нужно варить вкрутую, а не «в мешочек».

* Если в вашем рационе много , фасоли, сои, грецких орехов, шампиньонов и вешенок, коровьего молока и говядины, то возникает риск дефицита витамина РР (ниацина). Все названные продукты богаты его антиподом - аминокислотой лейцином.

* Витамин А (ретинол) хоть и относится к жирорастворимым, но плохо усваивается при избытке маргарина и кулинарных жиров. Когда готовите печенку, рыбу, яйца и другие продукты, богатые ретинолом, используйте минимальное количество жира, желательно оливкового или сливочного масла.