Слуховые ощущения отражают громкость звука что определяется. Большая энциклопедия нефти и газа

Слуховые ощущения являются отражением воздействующих на слуховой рецептор звуковых волн, т.е. продольных колебаний частиц воздуха, распространяющихся во все стороны от колеблющегося тела, которое служит источником звука.

Все звуки, которые воспринимает человеческое ухо, могут быть разделены на две группы: музыкальные (звуки пения, звуки музыкальных инструментов и др.) и шумы (всевозможные скрипы, шорохи, стуки и т.д.). Строгой границы между этими группами звуков нет, так как музыкальные звуки содержат шумы, а шумы могут содержать элементы музыкальных звуков. Человеческая речь, как правило, одновременно содержит звуки обеих групп.

Основными качествами слуховых ощущений являются: а) громкость, б) высота, в) тембр, г) длительность, д) пространственное определение источника звука. Каждое из этих качеств слуховых ощущений отражает определенную сторону физической природы звука.

В ощущении громкости отражается амплитуда колебаний. Амплитудой колебаний является наибольшее отклонение звучащего тела от состояния равновесия или покоя. Чем больше амплитуда колебания, тем сильнее звук, и, наоборот, чем меньше амплитуда, тем звук слабее.

Сила звука и громкость — понятия неравнозначные. Сила звука объективно характеризует физический процесс независимо от того, воспринимается он слушателем или нет; громкость — качество воспринимаемого звука. Если расположить громкости одного и того же звука в виде ряда, возрастающего в том же направлении, что и сила звука, и руководствоваться воспринимаемыми ухом ступенями прироста громкости (при непрерывном увеличении силы звука), то окажется, что громкость вырастает значительно медленнее силы звука.

Для измерения силы звука существуют специальные приборы, дающие возможность измерять ее в единицах энергии. Единицами измерения громкости звука являются децибелы.

Громкость обычной человеческой речи на расстоянии 1 метра составляет 16-22 децибел, шум на улице (без трамвая) — до 30 децибел, шум в котельной — 87 децибел.

В ощущении высоты звука отражается частота колебаний звуковой волны (а, следовательно, и длины ее волны). Длина волны обратно пропорциональна числу колебаний и прямо пропорциональна периоду колебаний источника звука.

Высота звука измеряется в герцах, т.е. в количестве колебаний звуковой волны в секунду. Чем больше частота, тем более высоким кажется нам воспринимаемый сигнал. Человек способен воспринимать звуковые колебания, частота которых находится в пределах от 20-20 000 герц, причем у отдельных людей чувствительность уха может давать различные индивидуальные отклонения.

речевых и музыкальных звуков (по Р. Шошолю, 1966)

Верхняя граница слуха у детей — 22 000 герц. К старости эта граница понижается до 15 000 герц и ниже. Поэтому пожилые люди часто не слышат высоких звуков, например стрекотание кузнечиков.

У животных верхняя граница слуха значительно выше, чем у человека (у собаки она доходит до 38 000 Гц.) При повышении интенсивности высоких звуков возникает ощущение неприятного щекотания в ухе (осязание звука), а затем чувство боли.

В ощущении тембра звука отражается форма звуковой волны. В самом простом случае форма звукового колебания будет соответствовать синусоиде. Такие звуки получили название «простых». Их можно получить только с помощью специальных приборов. Близким и простому звуку является звучание камертона — прибора, используемого для настройки музыкальных инструментов. Окружающие нас звуки состоят из различных звуковых элементов, поэтому форма их звучания, как правило, не соответствует синусоиде. Но тем не менее музыкальные звуки возникают при звуковых колебаниях, имеющих форму строгой периодической последовательности, а у шумов — наоборот.

Таким образом, сочетание простых звуков в одном сложном придает своеобразие форме звукового колебания и определяет тембр звучания. Тембр звучания зависит от степени слияния звуков. Чем проще форма звукового колебания, тем приятнее звучание. Поэтому принято выделять приятное звучание — консонанс и неприятное звучание — диссонанс.

Тембром называется то специфическое качество, которое отличает друг от друга звуки одной и той же высоты и интенсивности, издаваемые разными источниками (рояль, скрипка, флейта). Очень часто о тембре говорят как об «окраске» звука.

Тембровая окраска приобретает особенное богатство благодаря так называемому вибрато (К.Сишор, 1935), придающему звуку человеческого голоса, скрипки большую эмоциональную выразительность. Вибрато отражает периодические изменения (пульсации) высоты, интенсивности и тембра звука. Вибрато специально изучалось К.Сишором с помощью фотоэлектрических снимков. По его данным, вибрато, будучи выражением чувства в голосе, не дифференцировано для различных чувств. Вибрато играет значительную роль в музыке и пении; оно представлено и в речи, особенно эмоциональной. Хорошее вибрато порождает впечатление приятной гибкости, полноты, мягкости и богатства.

Продолжительность действия звука и временные отношения между отдельными звуками отражаются в виде той или иной длительности слуховых ощущений.

Слуховое ощущение относит звук к его источнику, звучащему в определенной среде, т.е. определяет местоположение звука. В лаборатории Павлова было обнаружено, что после рассечения мозолистого тела собаки исчезает способность определения местоположения источника звука. Таким образом, пространственная локализация звука определяется парной работой больших полушарий.

Каждое слуховое ощущение представляет собой взаимосвязь между основными качествами слуха, которые отражают взаимосвязь акустических и временно-пространственных свойств предметов и среды распространения исходящих от них звуковых волн.

8. Общее понятие об ощущениях. Виды ощущений (кожные, слуховые, обонятельные, зрительные, контактные, дистантные).

Общее понятие об ощущениях.

Ощущения позволяют человеку воспринимать сигналы и отражать свойства и признаки вещей внешнего мира и состояний организма. Они связывают человека с внешним миром и являются как основным источником познания, так и основным условием его психического развития.

Ощущение является одним из простейших познавательных психических процессов. Разнообразную информацию о состоянии внешней и внутренней среды человеческий организм получает в виде ощущений при помощи органов чувств. Ощущение является самой первой связью человека с окружающей действительностью.

Процесс ощущения возникает вследствие воздействия на органы чувств различных материальных факторов, которые называются раздражителями, а сам процесс этого воздействия – раздражением.

Ощущения возникают на основе раздражимости. Ощущение – продукт развития в филогенезе раздражимости. Раздражимость – общее свойство всех живых тел приходить в состояние деятельности под влиянием внешних воздействий (допсихический уровень), т.е. непосредственно влияющих на жизнь организма. Раздражение вызывает возбуждение, которое по центростремительным, или афферентным, нервам переходит в кору головного мозга, где и возникают ощущения. На ранней стадии развития живого простейшим организмам (пример – инфузория-туфелька) нет необходимости различать конкретные предметы для своей жизнедеятельности – раздражимость является достаточной. На более сложной стадии, когда живому необходимо определять какие-либо предметы, нужные ему для жизнедеятельности, а, следовательно, и свойства этого предмета как нужные для жизнедеятельности, – на этом этапе происходит преобразование раздражимости в чувствительность. Чувствительность – способность реагировать на нейтральные, опосредованные воздействия, не влияющие на жизнь организма (пример с лягушкой, реагирующей на шорох). Совокупность чувств создает элементарные психические процессы, процессы психического отражения.

Различают две основные формы чувствительности, из которых одна зависит от условия среды и называется адаптацией, а другая – от условий состояния организма, называется сенсибилизацией.

Адаптация (приспособление, настройка) – это изменение чувствительности в процессе приспособления к окружающим условиям.

Выделяют три ее направления:

1) повышение чувствительности под влиянием слабого раздражителя, например темновая адаптация глаза, когда в течение 10–15 мин. чувствительность возрастает более чем в 200 тыс. раз (сначала не видим предметов, но постепенно начинаем различать их очертания);

2) понижение чувствительности под влиянием сильного раздражитель, например, для слуха это происходит за 20–30 сек.; при непрерывном и длительном воздействии раздражителя соответствующие рецепторы приспосабливаются к нему, вследствие чего начинает снижаться интенсивность нервных возбуждений, передаваемых от рецепторов к коре, что и лежит в основе адаптации.

3) полное исчезновение ощущения в результате длительного воздействия раздражителя, например, через 1–1,5 мин., человек перестает ощущать какой-либо запах в помещении.

Адаптация особенно проявляется в сфере зрения, слуха, обоняния, осязания, вкуса и свидетельствует о большей пластичности организма, его приспособления к условиям среды.

Сенсибилизация – это обострение чувствительности в следствии изменения внутреннего состояния организма под влиянием воздействия раздражителей, которые поступают в это же самое время в другие органы чувств (к примеру, увеличение остроты зрения под воздействием слабых слуховых или обонятельных раздражителей).

Виды ощущений (кожные, слуховые, обонятельные, зрительные, контактные, дистантные).

Существуют различные подходы к классификации ощущений. Издавна принято различать пять (по количеству органов чувств) основных видов ощущений: обоняние, вкус, осязание, зрение и слух. Эта классификация ощущений по основным модальностям является правильной, хотя и не исчерпывающей. Б.Г. Ананьев говорил об одиннадцати видах ощущений. А.Р. Лурия считал, что классификация ощущений может быть проведена по крайней мере по двум основным принципам – систематическому и генетическому (иначе говоря, по принципу модальности, с одной стороны, и по принципу сложности или уровня их построения – с другой).

Как известно, человек обладает пятью органами чувств. Видов внешних ощущений на один больше, поскольку моторика не имеет отдельного органа чувств, однако ощущения тоже вызывает. Следовательно, человек может испытывать шесть видов внешних ощущений: зрительные, слуховые, обонятельные, тактильные (осязательные), вкусовые и кинестетические ощущения.

Основным источником информации о внешнем мире является зрительный анализатор . С его помощью человек получает до 80% от общего объема информации. Орган зрительных ощущений – глаз. На уровне ощущений он воспринимает информацию о свете и цвете. Воспринимаемые человеком цвета разделяют на хроматические и ахроматические. К первым относятся цвета, составляющие спектр радуги (т.е. расщепления света – всем известные «Каждый охотник желает знать, где сидит фазан»). Ко вторым – черный, белый и серый цвета. Цветовые оттенки, содержащие около 150 плавных переходов из одного в другой, воспринимаются глазом в зависимости от параметров световой волны.

Зрительные ощущения оказывают большое влияние на человека. Все теплые цвета положительно влияют на работоспособность человека, возбуждают его и вызывают хорошее настроение. Холодные цвета успокаивают человека. Темные цвета угнетающе действуют на психику. Цвета могут нести предупреждающую информацию: красный говорит об опасности, желтый – предостерегает, зеленый – сигнализирует о безопасности и т.п.

Следующим по своей важности в получении информации является слуховой анализатор . Ощущения звуков принято делить на музыкальные и шумовые. Их отличие состоит в том, что музыкальные звуки создаются периодическими ритмическими колебаниями звуковых волн, а шумы – неритмичными и нерегулярными колебаниями.

Слуховые ощущения тоже имеют большое значение в жизни человека. Источником слуховых ощущений являются разнообразные звуки, действующие на орган слуха. Слуховые ощущения отражают шумовые, музыкальные и речевые звуки.

Ощущения шума и шороха сигнализируют о наличии предметов и явлений, издающих звуки, о месте их нахождения, о приближении или удалении. Они могут предупреждать об опасности и вызывать определенное эмоциональное переживание.

Музыкальные ощущения характеризуются эмоциональным тоном и мелодичностью. Эти ощущения формируются у человека на основе воспитания и развития музыкального слуха и связаны с общей музыкальной культурой человеческого общества.

Речевые ощущения являются чувственной основой речевой деятельности человека. На базе речевых ощущений формируется фонематический слух, благодаря которому человек может различать и произносить звуки речи. Фонематический слух оказывает влияние не только на развитие устной и письменной речи, но и на овладение иностранным языком.

У многих людей существует интересная особенность – сочетание звукового и зрительного ощущений в одно общее ощущение. В психологии это явление называют синестезией. Это устойчивые ассоциации, возникающие между объектами слухового восприятия, например мелодиями, и цветовыми ощущениями. Часто люди могут сказать, «какого цвета» данная мелодия или слово.

Несколько реже встречается синестезия, основанная на ассоциации цвета и запаха. Она часто присуща людям с развитым обонянием. Таких людей можно найти среди дегустаторов парфюмерной продукции – для них важен не только развитый обонятельный анализатор, но и синестетические ассоциации, позволяющие сложный язык запахов перевести в более универсальный язык цвета. Вообще же обонятельный анализатор, к сожалению, чаще всего у людей не очень сильно развит. Люди, подобные герою романа Патрика Зюскинда «Парфюмер», – явление редкое и уникальное.

Обоняние – вид чувствительности, порождающий специфические ощущения запаха. Это одно из наиболее древних, простых, но жизненно важных ощущений. Анатомически орган обоняния расположен у большинства живых существ в наиболее выгодном месте – впереди, в выдающейся части тела. Путь о рецепторов обоняния до тех мозговых структур, где принимаются и перерабатываются получаемые от них импульсы, наиболее короткий. Нервные волокна, отходящие от обонятельных рецепторов, непосредственно без промежуточных переключений попадают в головной мозг.

Часть мозга, которая называется обонятельной, также является и наиболее древней, и чем ниже живое существо стоит на эволюционной лестнице, тем большее пространство в массе головного мозга она занимает. У рыб, например, обонятельный мозг охватывает практически всю поверхность полушарий, у собак – около одной ее трети, у человека его относительная доля в объеме всех мозговых структур равна примерно одной двадцатой части.

Указанные различия соответствуют развитости других органов чувств и тому жизненному значению, которое данный вид ощущений имеет для живых существ. Для некоторых видов животных значение обоняния выходит за пределы восприятия запахов. У насекомых и высших обезьян обоняние также служит средством внутривидового общения.

Ощущения вкусовые – отражение качества пищи, обеспечение индивида информацией о том, можно ли употребить внутрь данное вещество. Вкусовые ощущения (часто вместе с обонянием) вызываются действием химических свойств веществ, растворенных в слюне или воде, на вкусовые рецепторы (вкусовые почки), р Они располагаются в углах тетраэдра (четырехугольной пирамиды), а все другие ощущения вкуса располагаются на плоскостях Тетраэдра и представляют их как комбинации двух или более основных вкусовых ощущений.

Кожная чувствительность , или осязание , – это наиболее широко представленный и распространенный вид чувствительности. Всем нам знакомое ощущение, возникающее при прикосновении какого-либо предмета к поверхности кожи, не представляет собой элементарного осязательного ощущения. Оно есть результат сложного комбинирования четырех других, более простых видов ощущений: давления, боли, тепла и холода, причем для каждого из них существует специфический вид рецепторов, неравномерно расположенных в различных участках кожной поверхности.

На примерах кинестетических ощущений иощущений равновесия можно подтвердить тот факт, что далеко не все ощущения являются осознаваемыми. В повседневной речи, которой мы пользуемся, отсутствует слово, обозначающее ощущения, идущие, например, от рецепторов, расположенных в мышцах и работающих при их сокращении или растяжении. Тем не менее эти ощущения все же существуют, обеспечивая управление движениями, оценку направления и скорости движения, величину расстояния. Они формируются автоматически, поступают в мозг и регулируют движения на подсознательном уровне. Для их обозначения в науке принято слово, которое происходит от понятия «движение», – кинетика, и их поэтому называют кинестетическими.

Контактные ощущения вызываются непосредственным воздействием объекта на органы чувств. Примерами контактного ощущения являются вкус и осязание.

Дистантные ощущения отражают качества объектов, находящихся на некотором расстоянии от органов чувств. К таким ощущениям относятся слух и зрение. Следует отметить, что обоняние, по мнению многих авторов, занимает промежуточное положение между контактными и дистантными ощущениями, поскольку формально обонятельные ощущения возникают на расстоянии от предмета, но в то же время молекулы, характеризующие запах предмета, с которыми происходит контакт обонятельного рецептора, несомненно, принадлежат данному предмету. В этом и заключается двойственность положения, занимаемого обонянием в классификации ощущений.

В зависимости от сложности акустического сигнала воспринимаемые звуки могут быть простыми или сложными. Простые звуки возникают в ответ на синусоидальное колебание воздуха, физическими параметрами которого являются число колебаний в секунду или частота в герцах и амплитуда или интенсивность, измеряемая в децибелах (см. стр. 77).

Человек способен воспринимать звуковые колебания, частота которых находится в пределах от 20 до 20 000 герц (рис. 81). Колебания с частотой ниже 16--20 герц называются инфразвуком. Ранее уже отмечалось, что они воспринимаются не ухом, а костью, как вибрационные ощущения (см. стр. 54). В случае колебаний, частота которых превышает 20 000 герц, говорят об ультразвуке. Внутри зоны подлинных ощущений акустическая частота определяет прежде всего высоту воспринимаемого звука: чем больше частота, тем более высоким кажется нам воспринимаемый сигнал. На высоту звука влияет также и интенсивность раздражителя (см. стр. 181).

Из классических теорий восприятия высота звука наиболее известна резонансная теория Г. Гельмгольца. Согласно этой теории отдельные волокна основной мембраны представляют собой физические резонаторы, каждый из которых настроен на определенную частоту звукового колебания. Высокочастотные раздражители вызывают колебания участков мембраны вблизи овального окошка, где она наиболее узка (0,08 мм), а низкочастотные -- в области верхушки улитки, на участках с максимальной шириной основной мембраны (0,4 мм). Волосковые клетки и связанные с ними нервные волокна передают в мозг информацию о том, какой участок основной мембраны возбужден, а следовательно, и о частоте звукового колебания. В пользу этой гипотезы говорят факты о возможности путем хирургического удаления отдельных участков основной мембраны вызывать избирательную глухоту на определенные частоты. Однако эти же эксперименты показали, что практически невозможно найти участок мембраны, связанный с восприятием низких тонов.

Рис. 81.

Теория Г. Гельмгольца была поставлена под сомнение венгерским физиком Г. Бекеши, который показал, что основная мембрана не натянута и ее волокна не могут резонировать на подобие струн. По Бекеши, колебания перепонки овального окна передаются эндолимфе и распространяются на основной мембране в виде бегущей волны, вызывая ее максимальное смещение на большем или меньшем расстоянии от верхушки улитки в зависимости от частоты. Таким образом, было предложено новое объяснение активации различных по положению рецепторных элементов, но принцип связи высоты звука и акустической частоты через место раздражения сохранился.

На ином принципе кодирования частоты колебания в высоту звука основана теория американского физиолога Э. Уивера. В его экспериментах непосредственно от слухового нерва кошки отводились потенциалы действия и через усилитель подавались на телефонную аппаратуру. Оказалось, что в диапазоне от 20 до 1000 герц рисунок нервной активности полностью воспроизводит частоту раздражителя, так что по телефону можно было слышать произносимые в помещении фразы. В последствии были найдены и другие доказательства в пользу предположения, что кодирование высоты звука осуществляется по принципу частоты. В настоящее время большинство исследователей считает, что высокочастотные колебания воспринимаются по принципу места, а низкочастотные -- по принципу частоты. В среднем диапазоне частот от 400 до 4000 герц работают оба механизма (П. Линдсей и Д. Н. Норман, 1972).

В определении воспринимаемой громкости звука главную роль играет интенсивность звукового колебания. Важной, однако, является и его частота, что сказывается уже на порогах слышимости: если для частоты 1000 герц нижний абсолютный порог равен 0 дб, то для частоты 400 герц он поднимается до 25 дб (рис. 81). Верхний абсолютный порог или болевой порог громкости лежит в области 120--140 дб.

Кодирование интенсивности звуковых сигналов осуществляется в улитке за счет активации различных по своему положению и порогам наружных и внутренних волосковых клеток (рис. 78). Важные преобразования информации о громкости осуществляются на более высоких уровнях слуховой системы. Об этом свидетельствуют сильное сжатие шкалы громкостей (экспонента соответствующей степенной функции равна 0,6), а также феномен константности воспринимаемой громкости. Последний заключается в том, что громкость звукового сигнала не меняется или меняется очень слабо от того, подается ли он на одно или на оба уха (по Е. Н. Соколову).

Иногда, помимо высоты и громкости, выделяют еще два качества простых звуков, определяемые частотой и интенсивностью акустического сигнала. Это синестезические ощущения объемности и плотности звука. Объемностью называется ощущение полноты звука, в большей или меньшей степени "заполняющего" окружающее пространство. Так, низкие звуки кажутся более объемными, чем высокие. Под плотностью понимают качество звука, позволяющее различить "плотный" и рассеянный диффузный звук. Звук кажется тем плотнее, чем он выше; плотность возрастает также с увеличением громкости. Связь всех четырех качество простых звуков с частотой и интенсивностью видна из рис. 82. Каждая кривая показывает, каким образом надо менять физические параметры чистого тона, чтобы его высота, громкость, плотность или объемность остались неизменными.

Чистые тона или простые синусоидальное колебания, при всем их значении для лабораторных исследований звуковых ощущений, практически отсутствуют в повседневном жизни. Естественные звуковые раздражители имеют значительно более сложную структуру, отличаясь друг от друга по десяткам параметров. Это и делает возможным столь широкое использование акустических сигналов в деятельности, включая восприятие музыки и речи.

Сложность состава звукового колебания выражается прежде всего в той, что к основной или ведущей частоте, обладающей амплитудой, привешиваются дополнительные колебания, имеющие меньшую амплитуду. Дополнительные колебания, частота которых превышает частоту основного колебания в кратное число раз, называются гармониками. Типичным примером слухового восприятия акустического сигнала, все дополнительные колебания которого представляют собой гармоники ведущей частоты, является музыкальный тон. В зависимости от доли отдельных гармоник одного и того же ведущего колебания в звуковом разделителе он приобретает различный акустический оттенок или тембр. Одинаковые по высоте и интенсивности звуки скрипки, виолончели и фортепиано отличаются друг от друга своим тембром. К группе тембральных тонов относятся также и гласные звуки языка (рис. 83).

Рис. 82.

Каждая кривая показывает, как надо менять частоту и интенсивность, чтобы высота, громкость, плотность или объемность не отличались от соответствующих качеств стандартного тона частотой 500 гц и интенсивностью 60 дб.

От тембральных тонов отличаются звуки, называемые шумами. Это очень важный класс звуков. Примерами шума могут быть уличные шумы, шум машины, листвы и, наконец, согласные звуки языка. Энергия более или менее равномерно распределена между колебаниями, приводящими к восприятию шума, а их частоты находятся в нерегулярных отношениях друг к другу. Вследствие этого шум не имеет выраженной высоты. В акустике часто употребляется термин "белый шум" для обозначения шума, состоящего, подобно белому свету, из всего спектра слышимых частот.


Рис. 83.

Участки А, В, С и Д соответствуют гласным звукам. Видно наличие основной и одной или двух дополнительных частот

Особый класс звуков образуют щелчки, продолжающиеся иногда всего лишь тысячные доли секунды. Щелчки близки к шумам

по невозможности выделить в них ведущую частоту.

Воспринимаемые нами звуки не всегда бывают единичными. Часто они объединяются в одновременные или последовательные группы. В музыке одновременный комплекс звуков называетсяаккордом. Если частоты колебаний, составляющих акустический сигнал, находятся в кратных отношениях друг к другу, то аккорд воспринимается как благозвучный или консонантный. В противном случае аккорд теряет свою благозвучность, и говорят о диссонансе.

Звуки могут объединяться не только в одновременные комплексы, но и в последовательные серии или ряды. Типичным примером этого служат ритмические структуры. В такой простой ритмической структуре, как азбука Морзе, звуки отличаются только длительностью. В более сложных ритмических структурах еще одной варьируемой переменной оказывается интенсивность. К ним относятся, например, прозодические структуры: ямб, хорей, дактиль, -- применяемые в стихосложении. Наиболее сложны музыкальные мелодии, в которых ритмические структуры звуков разной продолжительности имеют также и различную высоту.

Сложные акустические эффекты возникают, когда частоты раздражителей одновременно действующих на слуховую систему, оказываются различными. Если это различие невелико, то слушатель воспринимает единый звук, громкость которого меняется с частотой, равной разности частот акустических сигналов. Эти изменения громкости называют биениями. При увеличении различий до 30 герц и выше появляются разнообразные комбинационные тона, частота которых равна сумме или разности частот раздражителей.

Одновременное присутствие одного звука оказывает влияние на пороги обнаружения другого. Как правило, они возрастают. Вследствие этого говорят о маскировке одного звука другим. Эффект маскировки тем выраженнее, чем ближе физические характеристики двух сигналов.

Слуховые ощущения, подобно зрительным, сопровождаются слуховыми последовательными образами. Высота и длительность слухового последовательного образа соответствует частоте и длительности раздражителя (И. С. Балонов, 1972).

Слух обеспечивает головной мозг богатством звуков, обилием информации, недоступной другим органам чувств. Слух собирает информацию, поступающую от всего, что окружает тело. Зрение, при всех его достоинствах, ограничено стимулами, находящимися перед глазами. Звуковые волны – ритмичные движения молекул воздуха создаются любым вибрирующим объектом: музыкальным инструментом, голосовыми связками и т.д. Другие среды – жидкости и твердые тела тоже могут передавать звук, но в вакууме звук не распространяется. Частота звуковых волн (количество волн в секунду) соответствует воспринимаемой высоте звука (повышенному или пониженному тону). Амплитуда звуковой волны соответствует количеству энергии, содержащемуся в ней, – ощущаемая громкость звука.

Ушная раковина действует подобно воронке, концентрирующей звуки. Попадая в ухо, звуковые волны наталкиваются на барабанную перепонку – тонкую мембрану внутри звукового прохода. Звуковые волны приводят барабанную перепонку в движение, она заставляет вибрировать слуховые косточки, соединяющие ее с улиткой – органом, образующим внутреннее ухо. Средне ухо заполнено вязкой жидкостью, а на его поверхности расположены нервные окончания – волосковые нервные клетки - именно они кодируют полученную информацию в нервный импульс и передают в мозг.

Для понимания механизма слуховых ощущений огромное значение имеет метод наблюдения клинического случая, а именно исследования расстройств слуха. Выделяют два вида глухоты. Глухота проводимости имеет место, когда ухудшена передача звуков от барабанной перепонки к внутреннему уху. Например, могут быть повреждены или обездвижены из-за болезни или травмы барабанные перепонки или слуховые косточки. Во многих случаях этот вид глухоты можно исправить при помощи слухового аппарата, который делает звуки более громкими и четкими. Нервная глухота является следствием повреждения волосковых клеток или слухового нерва. Слуховые аппараты в этом случае не помогают, т.к. сигналы блокируются и не достигают головного мозга. Особенно интересен такой вид нервной глухоты, как глухота раздражимости – имеет место, когда очень громкие звуки повреждают волосковые клетки в улитке. Как частный случай рассматривается охотничья глухота. Она возникает, если охотники не защищают органы слуха от звука выстрела. Слух сохраняется для всех звуков, кроме выстрела – он не воспринимается. Этот феномен позволил предположить, что за восприятие определенных звуков отвечают определенные рецепторы – волосковые нервные окончания.

Каждый из нас начинает жизнь примерно с 32000 волосковых клеток. Однако мы начинаем терять их уже в момент рождения. К 65 годам даже при бережном отношении к рецепторам слуха утрачивается почти 40% волосковых нервных окончаний. Если вы работаете в шумной обстановке или наслаждаетесь громкой музыкой, увлекаетесь мотоциклами и подобными развлечениями, вам может грозить глухота раздражимости (нервная). Волосковые клетки толщиной примерно с паутинку, они очень хрупкие и легко повреждаются. После их гибели их ничто не заменит. Угроза потери слуха зависит от громкости звука и от того, как долго он на вас воздействует. Ежедневное воздействие 85 децибелов и более может привести к хронической глухоте. Даже кратковременные воздействия звука громкостью 120 децибелов (рок-концерт) могут вызвать временное смещение порога (частичную обратимую потерю слуха). Кратковременное воздействие 150 дц. Реактивный самолет – может вызвать хроническую глухоту. Музыка и шум способны причинить вред, а танцы увеличивают этот риск, направляя кровяной поток от внутреннего уха к конечностям. Стереонаушники плеера также представляют опасность, достигая громкости примерно в 115 дц. Если вы слышите звук, идущий из наушников человека, находящегося радом, то скорее всего громкость причиняет необратимый вред ушам пользователя. Воздействие громких звуков, вызывающее шум в ушах, делает очень вероятным повреждение волосковых клеток. Если звуки, вызывающие это повреждение, будут повторяться, то вероятна хроническая тугоухость. Исследование людей, которые регулярно ходят на шумные концерты, показало, что 44% из них страдают от шума в ушах и у большинства отмечается частичная потеря слуха.


5.2.4. Ощущения обоняния и вкуса. Если вы не дегустатор, парфюмер или повар, то вы можете посчитать, что обоняние и вкус – второстепенные ощущения. Разумеется, человек может прожить без двух химических органов чувств, рецепторов, которые реагируют на молекулы химических веществ. Тем не менее, обоняние и вкус время от времени предотвращают отравления и делают нашу жизнь более приятной.

Рецепторы запаха реагируют главным образом на молекулы газообразных веществ. Когда воздух попадает к нам в нос, он проходит примерно поверх 5 миллионов нервных волокон, внедренных в покров носовых путей. Переносимые воздухом молекулы, проходя мимо оголенных нервных волокон, посылают нервные сигналы, которые направляются в головной мозг. Вопрос о том, как именно продуцируются определенные запахи, сегодня остается открытым. Одну из подсказок дает расстройство, называемое аносмией – обонятельная слепота. Аносмия позволяет предположить, что обонятельные волокна имеют рецепторы, чувствительные к специфическим запахам. Имеется по меньшей мере 100 видов рецепторов запаха. Каждый обонятельный рецептор чувствителен только к какой-то части структуры молекулы, посылая сигналы о выявлении определенных видов молекул, рецепторы дают возможность мозгу распознавать молекулярные отпечатки, указывающие на определенный запах. Эту теорию запаха называют теорией замка и ключа, т.к. можно предположить, что определенные обонятельные рецепторы воспринимают специфичные, только им предназначенные молекулы запаха по принципу мозаики. Запахи также частично идентифицируются местонахождением в носу рецепторов, активизирующих запах. И наконец, число активизированных рецепторов сообщает мозгу, насколько резок запах. Один широкомасштабный тест показал, что ощущать запахи неспособен один человек из 100. Люди с полной аносмией, как правило, обнаруживают, что обоняние далеко не второстепенное чувство. Если вы дорожите обонянием, то следите за тем, что вы вдыхаете. Опасность для обонятельных нервов представляют химические вещества, такие как аммиак, фотопроявители, средства для укладки волос, а также инфекции, аллергии и удары по голове, которые могут вызвать разрыв нервных волокон.

Существует по крайней мере четыре базовых ощущения вкуса: сладкого, соленого, кислого и горького. Мы наиболее чувствительны к горькому и кислому, менее к соленому, и в наименьшей степени к сладкому. Возможно этот порядок существует для предотвращения отравлений, поскольку горькие и кислые продукты бывают чаще всего несъедобными. Но, если существует 4 вкуса, то откуда такое богатство привкусов. Привкусы кажутся особенно разнообразными потому, что мы примешиваем к вкусу ощущения структуры материала, температуры, запаха и даже боли (обжигающий перец). Особенно влияет на вкус запах. Маленькие кусочки картофеля и яблок могут показаться совершенно одинаковыми на вкус, когда заложен нос. Рецепторы вкуса – вкусовые почки расположены главным образом на верхней стороне языка по его краям. Однако в небольшом количестве они находятся внутри ротовой полости. Когда растворенная пища попадает на вкусовые почки, она отправляет нервный импульс в головной мозг. Вкусовая чувствительность связана с тем, сколько вкусовых почек имеется на вашем языке, их может быть от 500 до 10 000. В последнем случае людям достаточно положить в кофе половину обычного количества сахара. Во многом подобно обонянию, сладкие и горькие вкусовые ощущения основываются на замково-ключевом соответствии между молекулами и имеющими замысловатую форму рецепторами.

5.2.5. Соместетические ощущения. Такие повседневные виды деятельности, как ходьба или бег, были бы невозможны без ощущений, идущих от тела, которые включают в себя кожные ощущения (прикосновение, давление, боль и температура), кинестетические ощущения (рецепторы в мышцах и суставах, определяющие положение движение тела) и вестибулярные ощущения (репторы внутреннего уха, отвечающие за равновесие, тяготение и ускорение).

Вестибулярная система известна, прежде всего, морской болезнью и другими разновидностями укачивания. Наполненные жидкостью мешочки вестибулярной системы (отолитовые органы) чувствительны к движению, ускорению и тяготению. Сильное гравитационное воздействие способно вызвать передвижение массы жидкости, которое в свою очередь сообщает раздражение волосковым рецепторным клеткам, позволяя ощущать силу тяготения. Вот почему инфекция внутреннего уха способна вызвать сильное головокружение. Наилучшим объяснением укачивания является теория сенсорного конфликта. Согласно ей, головокружение и тошнота имеют место, когда ощущения вестибулярной системы не соответствуют информации, получаемой от глаз и тела. На твердой поверхности информация, идущая от вестибулярной системы, органа зрения и кинестетической системы обычно совпадает, но в автомобиле, самолете, лодке эти сигналы могут иметь значительное расхождение. Многие яды также нарушают согласованность сведений вестибулярной системы и органов зрения и тела. Поэтому в процессе эволюции человечество научилось реагировать на сенсорный конфликт рвотными позывами, способствующими удалению яда.

Кожные рецепторы продуцируют по меньшей мере пять ощущений: легкого касания, давления, боли, холода и тепла. Рецепторы определенной формы специализируются на различных ощущениях, однако четкой специфики нет, так рецепторы температуры при очень сильном воздействии становятся рецепторами боли. В целом на поверхности тела находятся 200 тысяч нервных окончаний, реагирующих на температуру, 500 тысяч – на прикосновение и давление, 3 миллиона на боль. Количество рецепторов на каждом участке кожи различно. В среднем под коленом на кв. см. поверхности тела приходится около 232 болевых точек, на подушке большого пальца 60, на кончике носа –44. Фактически существует два вида боли – предаваемая большими нервными волокнами, она отличается резкостью, отчетливостью и быстродействием, ее передает предупреждающая система тела. И боль, передаваемая малыми нервными волокнами, – замедленная, ноющая, тупая, отличается широким распространением и очень неприятна – боль напоминающей системы. Она напоминает головному мозгу, что телу нанесено повреждение. Она вызывает сильную боль даже когда напоминание уже бесполезно – при неизлечимой форме рака, например.

Одной из важнейших характеристик сенсорных анализаторов является возможность адаптации. Чувствительность многих ощущений меняется на несколько порядков. Наименьшая степень адаптации свойственна боли, т.к. свидетельствует о нарушениях в организме, и быстрая адаптация к ней может грозить гибелью.

Раздражителями для слухового анализатора являются колебания воздушной среды, представляющие собой звуковые волны - чередующиеся сгущения и разрежения воздуха. Эти колебания распространяются во все стороны от порождающих их звучащих тел (источников звука).

Звуковые волны имеют сложное физическое строение. В них различают частоту колебаний, их амплитуду и форму.

Частота колебаний определяется их количеством в одну единицу времени. Слуховой анализатор человека может воспринимать в среднем звуки с частотой от 16 до 20 000 колебании в секунду.

Амплитуда колебаний измеряется расстоянием между высшей и низшей точками звуковой волны.


А — частота колебаний; б — амлитуда

По форме колебаний различают простые и сложные звуки. Первые состоят из однообразных колебательных движений определенной частоты и длины звуковых волн и имеют синусоидальную форму. Сложные звуки соединяют в себе несколько простых; они образуются в результате механического слияния нескольких волн.

Различают музыкальные тоны и шумы . Последние характеризуются отсутствием определенной периодичности колебаний звуковых волн, свойственной музыкальным тонам.

Слуховой анализатор осуществляет очень дифференцированный анализ звуковых раздражителей. С помощью него мы получаем слуховые ощущения, которые позволяют различать высоту, громкость и тембр .

Ощущения высоты звука отражают частоту колебаний звуковых волн; ощущение громкости звука отражает его интенсивность , или амплитуду колебаний звуковых волн; ощущение тембра или своеобразной окраски звука связано с отражением формы колебаний.

Рецептор слухового анализатора очень сложен, что, естественно, находится в связи со сложностью действующих на него раздражителей. Орган слуха имеет три части: наружное ухо , облегчающее улавливание звуковых волн, среднее ухо , проводящее звуковые волны в центральную часть органа, и внутреннее ухо , в котором расположен специальный рецеп-торный аппарат, так называемый кортиев орган, воспринимающий звуковые колебания.


Радиальный разрез кортиева органа:


1-мембрана;2-внутренние чувствительные клетки; 3-наружные чувствительные клетки


4-поддерживающие клетки; 5-6 — наружные и внутренние клетки столбов; 7-слуховой нерв

Главную часть внутреннего уха составляет улитка, состоящая из 2,5-2,75 витков и расположенная глубоко в височной части черепа. В улитке находится основная мембрана, состоящая примерно из 24 000 эластических волокон, способных резонировать в соответствии с частотой колебаний воздушных волн, что вызывает нервное возбуждение в разветвлениях слухового нерва, находящихся в кортиевом органе.

По своему строению слуховой рецептор напоминает струнный музыкальный инструмент типа арфы или рояля. Волокна его основной мембраны имеют разную длину - от 0,05 до 0,5 мм и раздражаются звуковыми волнами разной длины и частоты по принципу резонанса.

Резонансная теория слуха.

Звуки, исходящие извне, вызывают колебания жидкости во внутреннем ухе, доходящие до основной мембраны, волокна которой начинают резонировать строго определенным образом на соответствующие колебания. Под влиянием этих резонирующих колебаний возникает возбуждение в нервных клетках, которое по нервным волокнам передается дальше - в мозговой отдел слухового анализатора, помещающийся в височных долях коры больших полушарий головного мозга.

Благодаря такому устройству слухового анализатора человек может очень точно дифференцировать внешние звуковые раздражения. Обычно лучше всего дифференцируются средние по высоте звуки. Люди с хорошим музыкальным слухом могут с очень большой точностью дифференцировать музыкальные тоны. Музыкальный слух в известной степени зависит от устройства слухового рецептора. Если резонирующий аппарат в его отдельных частях анатомически имеет те или другие недостатки, резонанс получается неточный. Наоборот, если анатомическое устройство слухового аппарата очень точное, оно обеспечивает и более дифференцированные ощущения музыкальных тонов. Некоторые музыканты способны различать звуки, отличающиеся друг от друга на 1/16 тона.


Схема резонансной теории слуха:


1-волокна основной перепонки; 2-короткие волокна, воспринимающие высокие тоны; 3-длинные волокна, воспринимающие низкие тоны

Наряду с этим правильное различение звуков зависит и от состояния коркового отдела звукового анализатора, разрушение или отдельные дефекты которого приводят к определенным нарушениям слуховых ощущений.

Слуховые ощущения играют огромную роль в жизни человека. С помощью слуховых ощущений мы локализуем звуки в пространстве, определяя направление и источники звука, что очень важно во многих видах практической деятельности, связанных с ориентировкой в пространстве. Способность различать музыкальные тоны, состоящие из звуков, располагаемых в определенной последовательности по шкале частоты, от очень низких по высоте (от 24 колебаний в секунду) до очень высоких (до 4 600 колебаний), имеет большое значение для развития музыкальных способностей и деятельности в области музыкального искусства.

Но самое главное значение слуховые ощущения имеют для устной речи. С помощью тонких слуховых ощущений человек дифференцирует различные звуки речи, называемые фонемами, а также различную интонацию речи, что позволяет ему точнее понять или выразить то или иное содержание своих мыслей и чувств. Развитие речи имело своим следствием совершенствование слуховых ощущений у человека. В деятельности человека слуховые ощущения играют качественно иную, значительно большую роль, чем у животных. Правда, животные, например собаки, отличаются очень большой остротой слуха, позволяющей им воспринимать звуки слабой интенсивности, недоступные человеческому уху. Но животное никогда не может иметь таких дифференцированных слуховых ощущений, которыми пользуется человек в своей речи.