Особенности функций иммунной системы. Клеточный и гуморальный иммунитет. Цитокины и интерлейкины

МЕХАНИЗМЫ ВРОЖДЁННОГО ИММУНИТЕТА

Врождённый иммунитет - наиболее ранний защитный механизм как в эволюционном плане (он существует практически у всех многоклеточных), так и по времени ответа, развивающегося в первые часы и дни после проникновения чужеродного материала во внутреннюю среду, т.е. задолго до развития адаптивной иммунной реакции. Значительную часть патогенов инактивируют именно врождённые механизмы иммунитета, не доводя процесс до развития иммунного ответа с участием лимфоцитов. И только если механизмы врождённого иммунитета не справляются с проникающими в организм патогенами, в «игру» включаются лимфоциты. При этом адаптивный иммунный ответ невозможен без вовлечения механизмов врождённого иммунитета. Кроме того, врождённый иммунитет играет главную роль в удалении апоптотических и некротических клеток и реконструировании повреждённых органов. В механизмах врождённой защиты организма важнейшую роль играют первичные рецепторы для патогенов, система комплемента, фагоцитоз, эндогенные пептиды-антибиотики и факторы защиты от вирусов - интерфероны. Функции врождённого иммунитета схематично представлены на рис. 3-1.

РЕЦЕПТОРЫ РАСПОЗНАВАНИЯ «ЧУЖОГО»

На поверхности микроорганизмов присутствуют повторяющиеся молекулярные углеводные и липидные структуры, которые в подавляющем большинстве случаев отсутствуют на клетках организма хозяина. Особые рецепторы, распознающие этот «узор» на поверхности патогена, - PRR (Pattern Recognition Receptors –РRP-рецептор) - позволяют клеткам врождённого иммунитета обнаруживать микробные клетки. В зависимости от локализации выделяют растворимые и мембранные формы PRR.

Циркулирующие (растворимые) рецепторы для патогенов - белки сыворотки крови, синтезируемые печенью: липополисахаридсвязывающий белок (LBP - Lipopolysaccharide Binding Protein), компонент системы комплемента C1q и белки острой фазы MBL и С-реактивный белок (СРБ). Они непосредственно связывают микробные продукты в жидких средах организма и обеспечивают возможность их поглощения фагоцитами, т.е. являются опсонинами. Кроме того, некоторые из них активируют систему комплемента.

Рис. 3-1. Функции врождённого иммунитета. Обозначения: PAMP (PathogenAssociated Molecular Patterns) - молекулярные структуры микроорганизмов, HSP (Heat Shock Proteins) - белки теплового шока, TLR (Toll-Like Receptors), NLR (NOD-Like Receptors), RLR (RIG-Like Receptors) - клеточные рецепторы

- СРБ, связывая фосфорилхолин клеточных стенок ряда бактерий и одноклеточных грибов, опсонизирует их и активирует систему комплемента по классическому пути.

- MBL принадлежит к семейству коллектинов. Имея сродство к остаткам маннозы, экспонированным на поверхности многих микробных клеток, MBL запускает лектиновый путь активации комплемента.

- Белки сурфактанта лёгких - SP-A и SP-D принадлежат к тому же молекулярному семейству коллектинов, что и MBL. Они, вероятно, имеют значение в опсонизации (связывании антител с клеточной стенкой микроорганизма) лёгочного патогена - одноклеточного грибка Pneumocystis carinii.

Мембранные рецепторы. Эти рецепторы расположены как на наружных, так и на внутренних мембранных структурах клеток.

- TLR (Toll-Like Receptor - Toll-подобный рецептор; т.е. сходный с Toll-рецептором дрозофилы). Одни из них непосредственно связывают продукты патогенов (рецепторы для маннозы макрофагов, TLR дендритных и других клеток), другие работают совместно с иными рецепторами: например, CD14 молекула на макрофагах связывает комплексы бактериального липополисахарида (ЛПС) с LBP, а TLR-4 вступает во взаимодействие с CD14 и передаёт соответствующий сигнал внутрь клетки. Всего у млекопитающих описано 13 различных вариантов TLR (у человека пока только 10).

Цитоплазматические рецепторы:

- NOD-рецепторы (NOD1 и NOD2) находятся в цитозоле и состоят из трёх доменов: N-концевого CARD-домена, центрального NOD-домена (NOD - Nucleotide Oligomerization Domain - домен олигомеризации нуклеотидов) и C-концевого LRR-домена. Различие между этими рецепторами заключается в количестве CARD-доменов. Рецепторы NOD1 и NOD2 распознают мурамилпептиды - вещества, образующиеся после ферментативного гидролиза пептидогликана, входящего в состав клеточной стенки всех бактерий. NOD1 распознаёт мурамилпептиды с концевой мезодиаминопимелиновой кислотой (meso-DAP), которые образуются только из пептидогликана грамотрицательных бактерий. NOD2 распознаёт мурамилдипептиды (мурамилдипептид и гликозилированный мурамилдипептид) с концевым D-изоглутамином или D-глутаминовой кислотой, являющиеся результатом гидролиза пептидогликана как грамположительных, так и грамотрицательных бактерий. Кроме того, NOD2 имеет сродство к мурамилпептидам с концевым L-лизином, которые есть только у грамположительных бактерий.

- RIG- подобные рецепторы (RLR, RIG-Like Receptors): RIG-I (Retinoic acid-Inducible Gene I ), MDA5 (Melanoma Differentiation-associated Antigen 5) и LGP2 (Laboratory of Genetics and Physiology 2).

Все три рецептора, кодируемые этими генами, имеют сходную химическую структуру и локализуются в цитозоле. Рецепторы RIG-I и MDA5 распознают вирусную РНК. Роль белка LGP2 пока неясна; возможно, он выполняет роль хеликазы, связываясь с двуцепочечной вирусной РНК, модифицирует её, что облегчает последующее распознавание с помощью RIG-I. RIG-I распознаёт односпиральную РНК с 5-трифосфатом, а также относительно короткие (<2000 пар оснований) двуспиральные РНК. MDA5 различает длинные (>2000 пар оснований) двуспиральные РНК. Таких структур в цитоплазме эукариотической клетки нет. Вклад RIG-I и MDA5 в распознавание конкретных вирусов зависит от того, образуют ли данные микроорганизмы соответствующие формы РНК.

ПРОВЕДЕНИЕ СИГНАЛОВ С TOLL-ПОДОБНЫХ РЕЦЕПТОРОВ

Все TLR используют одинаковую принципиальную схему передачи активационного сигнала в ядро (рис. 3-2). После связывания с лигандом рецептор привлекает один или несколько адапторов (MyD88, TIRAP, TRAM, TRIF), которые обеспечивают передачу сигнала с рецептора на каскад серин-треониновых киназ. Последние вызывают активацию факторов транскрипции NF-kB (Nuclear Factor of к-chain B-lymphocytes), AP-1 (Activator Protein 1), IRF3, IRF5 и IRF7(Interferon Regulatory Factor), которые транслоцируются в ядро и индуцируют экспрессию геновмишеней.

Все адапторы содержат TIR-домен и связываются с TIR-доменами TOLL-подобных рецепторов (Toll/Interleukin-1 Receptor, так же как рецептора для ИЛ-1) путём гомофильного взаимодействия. Все известные TOLL-подобные рецепторы, за исключением TLR3, передают сигнал через адаптор MyD88 (MyD88-зависимый путь). Связывание MyD88 с TLR1/2/6 и TLR4 происходит при помощи дополнительного адаптора TIRAP, который не требуется в случае TLR5, TLR7 и TLR9. В передаче сигнала с TLR3 адаптор MyD88 не участвует; вместо него используется TRIF (MyD88-независимый путь). TLR4 использует как MyD88зависимый, так и MyD88-независимый пути передачи сигнала. Однако связывание TLR4 с TRIF происходит при помощи дополнительного адаптора TRAM.

Рис. 3-2. Пути передачи сигналов с Toll-подобных рецепторов (TLR). Указанные на рисунке TLR3, TLR7, TLR9 - внутриклеточные эндосомальные рецепторы; TLR4 и TLR5 - мономерные рецепторы, встроенные в цитоплазматическую мембрану. Трансмембранные димеры: TLR2 с TLR1 или TLR2 с TLR6. Тип распознаваемого димерами лиганда зависит от их состава

MyD88-зависимый путь. Адаптор MyD88 состоит из N-концевого DD-домена (Death Domain - домен смерти) и С-концевого TIRдомена, связанного с рецептором с помощью гомофильного TIR- TIR взаимодействия. MyD88 привлекает киназы IRAK-4 (Interleukin-1 Receptor-Associated Kinase-4) и IRAK-1 через взаимодействие с их аналогичными DD-доменами. Это сопровождается их последовательным фосфорилированием и активацией. После этого IRAK-4 и IRAK-1 отделяются от рецептора и связываются с адаптером TRAF6, который, в свою очередь, привлекает киназу TAK1 и убиквитин-лигазный комплекс (на рис. 3-2 не показан), что приводит к активации TAK1. TAK1 активирует две группы мишеней:

IκB-киназу (IKK), состоящую из субъединиц IKKα, IKKβ и IKKγ. В результате фактор транскрипции NF-kB освобождается от ингибирующего его белка IκB и транслоцируется в клеточное ядро;

Каскад митоген-активируемых протеинкиназ (MAP-киназ), способствующий активации факторов транскрипции группы AP-1. Состав AP-1 варьирует и зависит от типа активирующего сигнала. Основные его формы - гомодимеры c-Jun или гетеродимеры c-Jun и c-Fos.

Результатом активации обоих каскадов является индукция экспрессии антимикробных факторов и медиаторов воспаления, в том числе фактора некроза опухолей альфа ФНОа (TNFa), который, воздействуя на клетки аутокринно, вызывает экспрессию дополнительных генов. Кроме того, AP-1 инициирует транскрипцию генов, ответственных за пролиферацию, дифференцировку и регуляцию апоптоза.

MyD88-независимый путь. Передача сигнала происходит через адаптер TRIF или TRIF:TRAM и приводит к активации киназы TBK1, которая, в свою очередь, активирует фактор транскрипции IRF3. Последний индуцирует экспрессию интерферонов I типа, которые, как и ФНОа в MyDSS-зависимом пути, воздействуют на клетки аутокринно и активируют экспрессию дополнительных генов (interferon response genes). Активация различных сигнальных путей при стимуляции TLR, вероятно, обеспечивает направленность врождённой иммунной системы на борьбу с тем или иным типом инфекции.

Сравнительная характеристика врождённых и адаптивных механизмов резистентности приведена в табл. 3-1.

Существуют субпопуляции лимфоцитов со свойствами, «промежуточными» между таковыми неклонотипных механизмов врождённого иммунитета и клонотипных лимфоцитов с большим разнообразием рецепторов для антигенов. Они не пролиферируют после связывания антигена (т.е. экспансии клонов не происходит), но в них сразу индуцируется продукция эффекторных молекул. Ответ не слишком специфичен и наступает быстрее, чем «истинно лимфоцитарный», иммунная память не формируется. К таким лимфоцитам можно отнести:

Внутриэпителиальные γδT-лимфоциты с перестроенными генами, кодирующими TCR ограниченного разнообразия, связывают лиганды типа белков теплового шока, нетипичные нуклеотиды, фосфолипиды, MHC-IB;

B1-лимфоциты брюшной и плевральной полостей имеют перестроенные гены, кодирующие BCR ограниченного разнообразия, которые обладают широкой перекрёстной реактивностью с бактериальными антигенами.

ЕСТЕСТВЕННЫЕ КИЛЛЕРЫ

Особая субпопуляция лимфоцитов - естественные киллеры (NKклетки, натуральные киллеры). Они дифференцируются из общей лимфоидной клетки-предшественника и in vitro способны спонтанно, т.е. без предварительной иммунизации, убивать некоторые опухолевые, а также инфицированные вирусами клетки. NK-клетки являются большими гранулярными лимфоцитами, не экспрессирующими линейных маркёров Т- и В-клеток (CD3, CD19). В циркулирующей крови нормальные киллеры составляют около 15% всех мононуклеарных клеток, а в тканях локализованы в печени (большинство), красной пульпе селезёнки, слизистых оболочках (особенно репродуктивных органов).

Большинство NK-клеток содержит в цитоплазме азурофильные гранулы, где депонированы цитотоксические белки перфорин, гранзимы и гранулизин.

Главными функциями NK-клеток являются распознавание и элиминация клеток, инфицированных микроорганизмами, изменённых в результате злокачественного роста, либо опсонизированных IgGантителами, а также синтез цитокинов ИФНу, ФНОа, GM-CSF, ИЛ-8, ИЛ-5. In vitro при культивировании с ИЛ-2 NK-клетки приобретают высокий уровень цитолитической активности по отношению к широкому спектру мишеней, превращаясь в так называемые LAK-клетки.

Общая характеристика NK-клеток представлена на рис. 3-3. Главные маркёры NK-клеток - молекулы CD56 и CD16 (FcγRIII). CD16 является рецептором для Fc-фрагмента IgG. На NK-клетках имеются рецепторы для ИЛ-15 - ростового фактора NK-клеток, а также для ИЛ-21 - цитокина, усиливающего их активацию и цитолитическую активность. Важную роль играют молекулы адгезии, обеспечивающие контакт с другими клетками и межклеточным матриксом: VLA-5 способствует прилипанию к фибронектину; CD11a/CD18 и CD11b/CD18 обеспечивают присоединение к молекулам эндотелия ICAM-1 и ICAM-2 соответственно; VLA-4 - к молекуле эндотелия VCAM-I; CD31, молекула гомофильного взаимодействия, ответственна за диапедез (выхождение через сосудистую стенку в окружающую ткань) NK-клеток через эпителий; CD2, рецептор для эритроцитов барана, является молекулой адгезии, которая

Рис. 3-3. Общая характеристика NK-клеток. IL15R и IL21R - рецепторы для ИЛ-15 и ИЛ-21 соответственно

взаимодействует с LFA-3 (CD58) и инициирует взаимодействие NKклеток с другими лимфоцитами. Помимо CD2, на NK-клетках человека выявляются и некоторые другие маркёры Т-лимфоцитов, в частности CD7 и гомодимер CD8a, но не CD3 и TCR, что отличает их от NKTлимфоцитов.

По эффекторным функциям NK-клетки близки к T-лимфоцитам: они проявляют цитотоксическую активность в отношении клетокмишеней по тому же перфорин-гранзимовому механизму, что и ЦТЛ (см. рис. 1-4 и рис. 6-4), и продуцируют цитокины - ИФНγ, ФНО, GM-CSF, ИЛ-5, ИЛ-8.

Отличие естественных киллеров от T-лимфоцитов состоит в том, что у них отсутствует TCR и они распознают комплекс антиген-

MHC иным (не вполне ясным) способом. NK не формируют клетки иммунной памяти.

На NK-клетках человека есть рецепторы, относящиеся к семейству KIR (Killer-cell Immunoglobulin-like Receptors), способные связывать молекулы MHC-I собственных клеток. Однако эти рецепторы не активируют, а ингибируют киллерную функцию нормальных киллеров. Кроме того, на NK-клетках есть такие иммунорецепторы, как FcyR, и экспрессирована молекула CD8, имеющая сродство к

На уровне ДНК гены KIR не перестраиваются, но на уровне первичного транскрипта происходит альтернативный сплайсинг, что обеспечивает определённое разнообразие вариантов этих рецепторов у каждой отдельной NK-клетки. На каждом нормальном киллере экспрессировано более одного варианта KIR.

H.G. Ljunggren и K. Karre в 1990 г. сформулировали гипотезу «missing self» («отсутствие своего»), согласно которой NK-клетки распознают и убивают клетки своего организма с пониженной или нарушенной экспрессией молекул MHC-I. Поскольку субнормальная экспрессия MHC-I возникает в клетках при патологических процессах, например при вирусной инфекции, опухолевом перерождении, NK-клетки способны убивать инфицированные вирусами или перерождённые клетки собственного организма. Гипотеза «missing self» схематично представлена на рис. 3-4.

СИСТЕМА КОМПЛЕМЕНТА

Комплемент - система сывороточных белков и нескольких белков клеточных мембран, выполняющих 3 важные функции: опсонизацию микроорганизмов для дальнейшего их фагоцитоза, инициацию сосудистых реакций воспаления и перфорацию мембран бактериальных и других клеток. Компоненты комплемента (табл. 3-2, 3-3) обозначают буквами латинского алфавита C, B и D с добавлением арабской цифры (номер компонента) и дополнительных строчных букв. Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (C1, C2 ... C9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (C1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b).

Рис. 3-4. Гипотеза «missing self» (отсутствие своего). На рисунке представлены три типа взаимодействия NK-клеток с мишенями. На NK-клетках имеется два типа распознающих рецепторов: активационные и ингибиторные. Ингибиторные рецепторы различают молекулы MHC-I и угнетают сигнал от активационных рецепторов, которые, в свою очередь, определяют либо молекулы MHC-I (но с меньшей аффинностью, чем ингибиторные рецепторы), либо MHC-подобные молекулы: а - клетка-мишень не экспрессирует активационных лигандов, и лизиса не происходит; б - клетка-мишень экспрессирует активационные лиганды, но не экспрессирует MHC-I. Такая клетка подвергается лизису; в - клеткамишень содержит как молекулы MHC-I, так и активационные лиганды. Исход взаимодействия зависит от баланса сигналов, идущих от активационных и ингибиторных рецепторов NK-клеток

Активация комплемента (рис. 3-5). В норме, когда внутренняя среда организма «стерильна» и патологического распада собственных тканей не происходит, уровень активности системы комплемента невысок. При появлении во внутренней среде микробных продуктов происходит активация системы комплемента. Она может происходить по трём путям: альтернативному, классическому и лектиновому.

- Альтернативный путь активации. Его инициируют непосредственно поверхностные молекулы клеток микроорганизмов [факторы альтернативного пути имеют буквенное обозначение: P (пропердин), B и D].

Рис. 3-5. Активация системы комплемента и образование мембраноатакующего комплекса. Пояснения см. в тексте, а также в табл. 3-2, 3-3. Активированные компоненты, согласно международному соглашению, надчёркнуты

◊ Из всех белков системы комплемента в сыворотке крови больше всего C3 - его концентрация в норме составляет 1,2 мг/мл. При этом всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 с образованием C3a и C3b. Компонент C3b - опсонин, т.е. он способен ковалентно связываться как с поверхностными молекулами микроорганизмов, так и с рецепторами на фагоцитах. Кроме того, «осев» на поверхности клеток, C3b связывает фактор В. Тот, в свою очередь, становится субстратом для сывороточной сериновой протеазы - фактора D, который расщепляет его на фрагменты Ва и Bb. C3b и Bb образуют на поверхности микроорганизма активный комплекс, стабилизируемый пропердином (фактор Р).

◊ Комплекс C3b/Bb служит С3-конвертазой и значительно повышает уровень расщепления С3 по сравнению со спонтанным. Кроме того, после связывания с C3 он расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (наиболее сильный) и C3a - анафилатоксины комплемента, т.е. медиаторы воспалительной реакции. Они создают условия для миграции фагоцитов в очаг воспаления, вызывают дегрануляцию тучных клеток, сокращение гладких мышц. C5a также вызывает повышение экспрессии на фагоцитах CR1 и CR3.

◊ С C5b начинается формирование «мембраноатакующего комплекса», вызывающего перфорацию мембраны клеток микроорганизмов и их лизис. Сначала образуется комплекс C5b/C6/ C7, встраивающийся в мембрану клетки. Одна из субъединиц компонента C8 - C8b - присоединяется к комплексу и катализирует полимеризацию 10-16 молекул C9. Этот полимер и формирует неспадающуюся пору в мембране, имеющую диаметр около 10 нм. В результате клетки становятся неспособными поддерживать осмотический баланс и лизируются.

- Классический и лектиновый пути сходны друг с другом и отличаются от альтернативного способом активации C3. Главной C3конвертазой классического и лектинового пути служит комплекс C4b/C2a, в котором протеазной активностью обладает C2a, а C4b ковалентно связывается с поверхностью клеток микроорганизмов. Примечательно, что белок C2 гомологичен фактору В, даже их гены расположены рядом в локусе MHC-III.

◊ При активации по лектиновому пути один из белков острой фазы - MBL - взаимодействует с маннозой на поверхности клеток микроорганизмов, а MBL-ассоциированная сериновая протеаза (MASP - Mannose-bindingprotein-Associated Serine Protease) катализирует активационное расщепление C4 и C2.

◊ Сериновой протеазой классического пути служит C1s, одна из субъединиц комплекса C1qr 2 s 2 . Она активируется, когда по крайней мере 2 субъединицы C1q связываются с комплексом антиген-антитело. Таким образом, классический путь активации комплемента связывает врождённый и адаптивный иммунитет.

Рецепторы компонентов комплемента. Известно 5 типов рецепторов для компонентов комплемента (CR - Complement Receptor) на различных клетках организма.

CR1 экспрессирован на макрофагах, нейтрофилах и эритроцитах. Он связывает C3b и C4b и при наличии других стимулов к фагоцитозу (связывания комплексов антиген-антитело через FcyR или при воздействии ИФНу - продукта активированных T-лимфоцитов) оказывает пермиссивное действие на фагоциты. CR1 эритроцитов через C4b и C3b связывает растворимые иммунные комплексы и доставляет их к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При нарушении этого механизма иммунные комплексы выпадают в осадок - прежде всего в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), приводя к развитию гломерулонефрита.

CR2 B-лимфоцитов связывает продукты деградации C3 - C3d и iC3b. Это в 10 000-100 000 раз увеличивает восприимчивость B-лимфоцита к своему антигену. Эту же мембранную молекулу - CR2 - использует в качестве своего рецептора вирус Эпштейна-Барр - возбудитель инфекционного мононуклеоза.

CR3 и CR4 также связывают iC3b, который, как и активная форма C3b, служит опсонином. В случае если CR3 уже связался с растворимыми полисахаридами типа бета-глюканов, связывания iC3b с CR3 самого по себе достаточно для стимуляции фагоцитоза.

C5aR состоит из семи доменов, пенетрирующих мембрану клетки. Такая структура характерна для рецепторов, связанных с G-белками (белки, способные связывать гуаниновые нуклеотиды, в том числе ГТФ).

Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.

- C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.

- DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.

- Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.

- Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на C4c и C4d.

- Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.

- Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.

ФАГОЦИТОЗ

Фагоцитоз - особый процесс поглощения клеткой крупных макромолекулярных комплексов или корпускулярных структур.«Профессиональные» фагоциты у млекопитающих - два типа дифференцированных клеток - нейтрофилы и макрофаги, которые созревают в костном мозге из СКК и имеют общую промежуточную клетку-предшественник. Сам термин «фагоцитоз» принадлежит И.И. Мечникову, который описал клетки, участвующие в фагоцитозе (нейтрофилы и макрофаги), и основные стадии фагоцитарного процесса: хемотаксис, поглощение, переваривание.

Нейтрофилы составляют значительную часть лейкоцитов периферической крови - 60-70%, или 2,5-7,5х10 9 клеток в 1 л крови. Нейтрофилы формируются в костном мозге, являясь основным продуктом миелоидного кроветворения. Они покидают костный мозг на предпоследней стадии развития - палочкоядерной форме, или на последней - сегментоядерной. Зрелый нейтрофил циркулирует 8-10 ч и поступает в ткани. Общая продолжительность жизни нейтрофила -

2-3 сут. В норме нейтрофилы не выходят из сосудов в периферические ткани, но они первыми мигрируют (т.е. подвергаются экстравазации) в очаг воспаления за счёт быстрой экспрессии молекул адгезии - VLA-4 (лиганд на эндотелии - VCAM-1) и интегрина CD11b/CD18 (лиганд на эндотелии - ICAM-1). На их наружной мембране выявлены эксклюзивные маркёры - CD66а и CD66d (раково-эмбриональные антигены). На рисунке 3-6 представлено участие нейтрофилов в фагоцитозе (миграция, поглощение, дегрануляция, внутриклеточный киллинг, деградация, экзоцитоз и апоптоз) и основные процессы, происходящие в этих клетках при активации (хемокинами, цитокинами и микробными веществами, в частности РАМР) - дегрануляция, образование активных форм кислорода и синтез цитокинов и хемокинов. Апоптоз нейрофилов и их фагоцитоз макрофагами можно рассматривать как важную составную часть воспалительного процесса, так как своевременное их удаление препятствует деструктивному действию их ферментов и различных молекул на окружающие клетки и ткани.

Рис. 3-6. Основные процессы, происходящие в нейтрофилах (НФ) при их активации и фагоцитозе

Моноциты и макрофаги. Моноциты являются «промежуточной формой», в крови их 5-10% от общего числа лейкоцитов. Их назначение - стать оседлыми макрофагами в тканях (рис. 3-7). Макрофаги локализуются в определённых участках лимфоидной ткани: медуллярных тяжах лимфатических узлов, красной и белой пульпы селезёнки. Клетки, производные моноцитов, присутствуют практически во всех нелимфоидных органах: клетки Купфера в печени, микроглия нервной системы, альвеолярные макрофаги, клетки Лангерганса кожи, остеокласты, макрофаги слизистых оболочек и серозных полостей, интерстициальной ткани сердца, поджелудочной железы, мезангиальные клетки почек (на рисунке не показаны). Макрофаги способствуют поддержанию гомеостаза, очищая организм от стареющих и апоптотических клеток, восстанавливая ткани после инфекции и травмы. Макрофаги

Рис. 3-7. Гетерогенность клеток, происходящих от моноцитов. Тканевые макрофаги (МФ) и дендритные клетки (ДК) происходят от моноцитов (МН) периферической крови

слизистых оболочек играют ведущую роль в защите организма. Для реализации этой функции они имеют набор распознающих рецепторов, кислородозависимые и кислородонезависимые механизмы киллинга микроорганизмов. Существенную роль в защите организма от инфекции играют макрофаги альвеолярные и слизистой оболочки кишечника. Первые «работают» в относительно бедной опсонинами среде, поэтому они экспрессируют большое количество паттернраспознающих рецепторов, включая скавенджер-рецепторы, маннозные рецепторы, β-глюканспецифические рецепторы, дектин-1 и др. При микробной инфекции в очаг проникновения микробов дополнительно мигрирует большое число воспалительных моноцитов, способных дифференцироваться в различные клеточные линии в зависимости от цитокинового окружения.

ЛЕКЦИЯ № 3. Иммунитет – щит здоровья. Механизмы иммунитета

Слаженная, хорошо регулируемая деятельность биологических защитных приспособлений организма позволяет ему без вреда для здоровья взаимодействовать с различными факторами внешней среды, в которой он существует и действует. Иммунное реагирование начинается сразу после проникновения чужеродного агента в организм, но только при прохождении через первую линию обороны иммунной системы. Неповрежденные слизистые оболочки и кожа сами по себе представляют значительные препятствия для болезнетворных микроорганизмов и сами вырабатывают много антимикробных веществ. Более специализированная защита включает высокую кислотность (pH – около 2,0) в желудке, слизь и подвижные реснички бронхиального дерева.

Диапазон безопасных воздействий среды ограничен спецификой вида и особенностями индивидуального человека, нормой адаптации индивида, его определенным фенотипом, т. е. совокупностью врожденных и приобретенных им в течение жизни свойств организма. Каждый человек наследует генетические признаки в разных объемах при сохранении генотипа в его определяющих чертах. Каждый человек в биологическом отношении уникален потому, что в пределах определенных генотипов возможны отклонения некоторых конкретных признаков, создающих неповторимость каждого организма, следовательно, и индивидуальную норму его адаптации при взаимодействиях с разнообразными факторами внешней среды, в том числе и различие в уровне защиты организма от повреждающих факторов.

Если качество среды соответствует норме адаптации организма, его защитные системы обеспечивают нормальную реакцию организма на взаимодействие. Но условия, в которых человек осуществляет свою жизнедеятельность, меняются, выходя в некоторых случаях за рамки нормы адаптации организма. И тогда в экстремальных для организма условиях включаются адаптивно-компенсаторные механизмы, обеспечивающие приспособление организма к повышенным нагрузкам. Защитные системы начинают осуществлять приспособительные реакции, конечными целями которых являются сохранение организма в его целостности, возвращение нарушенного равновесия (гомеостаза). Повреждающий фактор своим действием вызывает поломку какой-то определенной структуры организма: клетки, ткани, иногда органа. Наличие такой поломки включает механизм патологии, вызывает приспособительную реакцию защитных механизмов. Поломка структуры приводит к тому, что поврежденный элемент изменяет свои структурные связи, адаптируется, пытаясь сохранить свои «обязанности» относительно органа или организма в целом. Если это ему удается, то за счет такой адаптивной перестройки возникает местная патология, которая компенсируется защитными механизмами самого элемента и может не отразиться на деятельности организма, хотя и снизит его норму адаптации. Но при большой (в пределах нормы адаптации организма) перегрузке, если она превышает норму адаптации элемента, элемент может быть разрушен так, что изменит функции, т. е. дисфункционирует. Тогда осуществляется компенсаторная реакция со стороны более высокого уровня организма, функция которого может быть нарушена в результате дисфункции его элемента. Патология нарастает. Так, поломка клетки, если она не может компенсироваться ее гиперплазией, вызовет компенсаторную реакцию со стороны ткани. Если тканевые клетки разрушены так, что вынуждена адаптироваться сама ткань (воспаление), то компенсация будет идти со стороны здоровой ткани, т. е. включится орган. Так, поочередно в компенсаторную реакцию могут быть включены все более высокие уровни организма, что в конечном счете приведет к патологии всего организма – болезни, когда человек не может нормально осуществлять свои биологические и социальные функции.

Болезнь – явление не только биологическое, но и социальное в отличие от биологического понятия «патология». Согласно определению экспертов ВОЗ здоровье – это «состояние полного физического, психического и социального благополучия». В механизме развития заболевания различают два уровня иммунологической системы: неспецифический и специфический. Основоположниками иммунологии (Л. Пастером и И. И. Мечниковым) иммунитет первоначально определялся как невосприимчивость к инфекционным заболеваниям. В настоящее время иммунология определяет иммунитет как метод защиты организма от живых тел и веществ, несущих на себе признаки чужеродности. Разработка теории иммунитета дала возможность медицине решить такие проблемы, как безопасность переливания крови, создание вакцин против оспы, бешенства, сибирской язвы, дифтерии, полиомиелита, коклюша, кори, столбняка, газовой гангрены, инфекционного гепатита, гриппа и других инфекций. Благодаря этой теории была устранена опасность резус-гемолитической болезни новорожденных, в практику медицины введена пересадка органов, стала возможна диагностика многих инфекционных болезней. Уже из приведенных примеров ясно, какое громадное значение для сохранения здоровья человека имело познание законов иммунологии. Но еще большее значение для медицинской науки имеет дальнейшее раскрытие секретов иммунитета в профилактике и лечении многих опасных для здоровья и жизни человека болезней. Неспецифическая система защиты предназначена противостоять действию различных внешних для организма повреждающих факторов любой природы.

При возникновении заболевания неспецифическая система осуществляет первую, раннюю защиту организма, давая ему время для включения полноценного иммунного ответа со стороны специфической системы. Неспецифическая защита включает в себя деятельность всех систем организма. Она формирует воспалительный процесс, лихорадку, механическое выделение повреждающих факторов с рвотой, кашлем и прочее, изменение обмена веществ, активацию ферментных систем, возбуждение или торможение различных отделов нервной системы. Механизмы неспецифической защиты включают клеточные и гуморальные элементы, обладающие сами по себе или в комплексе бактерицидным действием.

Специфическая (иммунная) система на проникновение чужеродного агента реагирует следующим образом: при первичном попадании развивается первичный иммунный ответ, а при повторном проникновении в организм – вторичный. Они имеют определенные отличия. При вторичном ответе на антиген сразу вырабатывается иммуноглобулин J. Первое взаимодействие антигена (вируса или бактерии) с лимфоцитом вызывает реакцию, которая называется первичным иммунным ответом. В ходе него лимфоциты начинают постепенно развиваться, претерпевая дифференцировку: некоторая часть становится клетками памяти, другие преобразуются в зрелые клетки, продуцирующие антитела. При первой встрече с антигеном сначала появляются антитела класса иммуноглобулинов M, затем – J, а позже – А. Вторичный иммунный ответ развивается при повторном контакте с тем же самым антигеном. В данном случае происходит уже более быстрая выработка лимфоцитов с превращением их в зрелые клетки и быстрая выработка значительного количества антител, которые высвобождаются в кровь и тканевую жидкость, где они могут встретиться с антигеном и эффективно побороть болезнь. Рассмотрим обе (неспецифическую и специфическую) системы защиты организма подробнее.

Неспецифическая система защиты, как уже указывалось выше, включает клеточные и гуморальные элементы. Клеточные элементы неспецифической защиты – это описанные выше фагоциты: макрофаги и нейтрофильные гранулоциты (нейтрофилы, или макрофаги). Это высокоспециализированные клетки, дифференцирующиеся из стволовых клеток, вырабатываемых костным мозгом. Макрофаги составляют в организме отдельную мононуклеарную (одноядерную) систему фагоцитов, в которую входят промоноциты костного мозга, дифференцирующиеся из них моноциты крови и тканевые макрофаги. Их особенностью является активная подвижность, способность прилипать и интенсивно осуществлять фагоцитоз. Моноциты, созрев в костном мозге, циркулируют в течение 1-2-х суток в крови, а затем проникают в ткани, где дозревают до макрофагов и живут 60 и более суток.

Комплемент – ферментная система, которая состоит из 11 белков сыворотки крови, составляющих 9 компонентов (от С1до С9) комплемента. Система комплемента способствует стимуляции фагоцитоза, хемотаксиса (привлечения или отталкивания клеток), выделению фармакологически активных веществ (анафилотоксина, гистамина и др.), усиливает бактерицидные свойства сыворотки крови, активирует цитолиз (распад клеток) и совместно с фагоцитами принимает участие в уничтожении микроорганизмов и антигенов. Каждый из компонентов комплемента играет свою роль в иммунном ответе. Так, недостаточность комплемента С1вызывает снижение бактерицидности плазмы крови и способствует частому развитию инфекционных заболеваний верхних дыхательных путей, хронического гломерулонефрита, артрита, отита и др.

Комплемент С3подготавливает антиген к фагоцитозу. При его недостаточности значительно снижается ферментативная и регуляторная активность системы комплемента, что приводит к более тяжелым последствиям, чем недостаточность комплементов С1и С2, вплоть до смертельного исхода. Его модификация С3а откладывается на поверхности бактериальной клетки, что приводит к образованию отверстий в оболочке микроба и его лизису, т. е. растворению лизоцимом. При наследственной недостаточности компонента С5встречаются нарушение развития ребенка, дерматиты и диарея. Специфический артрит и нарушение свертываемости крови наблюдаются при дефиците С6. Диффузные поражения соединительной ткани возникают при снижении концентрации компонентов С2и С7. Врожденная или приобретенная недостаточность компонентов комплемента способствует развитию различных заболеваний как в результате снижения бактерицидных свойств крови, так и вследствие накопления в крови антигенов. Кроме недостаточности, встречается также и активация компонентов комплемента. Так, активация С1приводит к отеку Квинке и др. Активно потребляется комплемент при термическом ожоге, когда создается дефицит комплемента, что может определить неблагоприятный исход термической травмы. Нормальные антитела выявлены в сыворотке здоровых людей, которые ранее не болели. По-видимому, эти антитела возникают при наследовании или же антигены поступают с пищей, не возбуждая соответствующего заболевания. Обнаружение таких антител свидетельствует о зрелости и нормальном функционировании иммунной системы. К нормальным антителам относится, в частности, пропердин. Это высокомолекулярный белок, обнаруживаемый в сыворотке крови. Пропердин обеспечивает бактерицидное и вирусонейтрализирующее свойства крови (в совокупности с другими гуморальными факторами) и активизирует реакции специализированной защиты.

Лизоцим – это фермент ацетилмурамидаза, разрушающий оболочки бактерий, лизирующий их. Он находится почти во всех тканях и жидкостях организма. Способность к разрушению клеточных оболочек бактерий, с чего и начинается уничтожение, объясняется тем, что лизоцим в высокой концентрации находится в фагоцитах и его активность увеличивается при микробной инфекции. Лизоцим усиливает антибактериальное действие антител и комплемента. Он входит в состав слюны, слез, кожных выделений как средство, усиливающее барьерную защиту организма. Ингибиторы (замедлители) вирусной активности представляют собой первый гуморальный барьер, препятствующий контакту вируса с клеткой.

Люди с высоким содержанием ингибиторов высокой активности отличаются высокой устойчивостью к вирусным инфекциям, при этом для них малоэффективны вирусные вакцины. Неспецифические механизмы защиты – клеточные и гуморальные – защищают внутреннюю среду организма от различных повреждающих факторов органической и неорганической природы на тканевом уровне. Они достаточны для обеспечения жизнедеятельности низкоорганизованных (беспозвоночных) животных. Усложнение организма животных, в частности, привело к тому, что неспецифическая защита организма оказалась недостаточной. Усложнение организации привело к увеличению количества специализированных клеток, отличающихся друг от друга. На этом общем фоне в результате мутации могли появляться клетки, вредные для организма, или могли внедриться в организм похожие, но чужеродные клетки. Необходимым становится генетический контроль клеток, и появляется специализированная система защиты организма от клеток, отличающихся от его родных, необходимых. Вероятно, лимфатические механизмы защиты поначалу развивались не для защиты от внешних антигенов, а для обезвреживания и устранения внутренних элементов, которые ведут «подрывную работу» и угрожают целостности особи и выживанию вида. Видовая дифференциация позвоночных при наличии общей для любого организма основы-клетки, различающейся по структуре и функциям, привела к необходимости создания механизма различения и обезвреживания клеток организма, в частности клеток-мутантов, которые, размножаясь в организме, могли привести его к гибели.

Механизм иммунитета, возникший как средство внутреннего контроля над клеточным составом тканей органа, в силу своей высокой эффективности использован природой против повреждающих факторов-антигенов: клеток и продуктов их деятельности. С помощью этого механизма складывается и закрепляется генетически реактивность организма к одним видам микроорганизмов, к взаимодействию с которыми он не адаптирован, и иммунитет клеток, тканей и органов к другим. Возникают видовая и индивидуальная формы иммунитета, формирующиеся соответственно в адаптациогенезе и адаптациоморфозе как проявления компенсациогенеза и компенсациоморфоза. Обе формы иммунитета могут быть абсолютными, когда организм и микроорганизм практически не взаимодействуют ни при каких условиях, или относительными, когда взаимодействие вызывает патологическую реакцию в определенных случаях, ослабляющих иммунитет организма, делающих его восприимчивым к воздействию микроорганизмов, безопасных в нормальных условиях. Перейдем к рассмотрению специфической иммунологической системы защиты организма, задача которой заключается в том, чтобы компенсировать недостаточность неспецифических факторов органического происхождения – антигенов, в частности микроорганизмов и токсических продуктов их деятельности. Она начинает действовать тогда, когда неспецифические механизмы защиты не могут уничтожить антиген, близкий по своим характеристикам клеткам и гуморальным элементам самого организма или обеспеченный собственной защитой. Поэтому специфическая система защиты предназначена распознавать, обезвреживать и уничтожать генетически чужеродные вещества органического происхождения: инфекционные бактерии и вирусы, трансплантированные от другого организма органы и ткани, изменившиеся в результате мутации клетки собственного организма. Точность различения очень высокая, до уровня одного гена, отличающегося от нормы. Специфическая иммунная система – это совокупность специализированных лимфоидных клеток: Т-лимфоцитов и В-лимфоцитов. Различают центральные и периферические органы иммунной системы. К центральным относятся костный мозг и тимус, к периферическим – селезенка, лимфатические узлы, лимфоидная ткань кишок, миндалин и других органов, кровь. Все клетки иммунной системы (лимфоциты) являются высокоспециализированными, их поставщиком служит костный мозг, из стволовых клеток которого дифференцируются все формы лимфоцитов, так же как и макрофаги, микрофаги, эритроциты, тромбоциты крови.

Вторым важнейшим органом иммунной системы является вилочковая железа (тимус). Под влиянием гормонов тимуса стволовые клетки тимуса дифференцируются в тимусзависимые клетки (или Т-лимфоциты): они обеспечивают клеточные функции иммунной системы. Помимо Т-клеток, тимус секретирует в кровь гуморальные вещества, способствующие дозреванию Т-лимфоцитов в периферических лимфатических органах (селезенке, лимфоузлах), и некоторые другие вещества. Селезенка имеет структуру, сходную со структурой вилочковой железы, но в отличие от тимуса лимфоидная ткань селезенки участвует в иммунных реакциях гуморального типа. В селезенке содержится до 65 % В-лимфоцитов, которые обеспечивают накопление большого количества плазматических клеток, синтезирующих антитела. Лимфатические узлы содержат преимущественно Т-лимфоциты (до 65 %), а В-лимфоциты, плазмоциты (происходят от В-лимфоцитов) синтезируют антитела, когда иммунная система только созревает, особенно у детей первых лет жизни. Поэтому удаление миндалин (тонзилэктомия), произведенное в раннем возрасте, снижает способность организма к синтезу некоторых антител. Кровь относится к периферическим тканям иммунной системы и содержит, кроме фагоцитов, до 30 % лимфоцитов. Среди лимфоцитов преобладают Т-лимфоциты (50–60 %). В-лимфоциты составляют 20–30 %, около 10 % приходится на киллеры, или «нуль-лимфоциты», не имеющие свойств Т– и В-лимфоцитов (Д-клетки).

Как отмечалось выше, Т-лимфоциты образуют три основные субпопуляции:

1) Т-киллеры осуществляют иммунологический генетический надзор, разрушая мутированные клетки собственного организма, в том числе и опухолевые, и генетически чужеродные клетки трансплантатов. Т-киллеры составляют до 10 % Т-лимфоцитов периферической крови. Именно Т-киллеры своим воздействием вызывают отторжение пересаженных тканей, но это и первая линия защиты организма от опухолевых клеток;

2) Т-хелперы организуют иммунный ответ, воздействуя на В-лимфоциты и давая сигнал для синтеза антител против появившегося в организме антигена. Т-хелперы секретируют интерлейкин-2, воздействующий на В-лимфоциты, и γ-интерферон. Их в периферической крови до 60–70 % общего числа Т-лимфоцитов;

3) Т-супрессоры ограничивают силу иммунного ответа, контролируют активность Т-киллеров, блокируют деятельность Т-хелперов и В-лимфоцитов, подавляя избыточный синтез антител, которые могут вызывать аутоиммунную реакцию, т. е. обратиться против собственных клеток организма.

Т-супрессоры составляют 18–20 % Т-лимфоцитов периферической крови. Избыточная активность Т-супрессоров может привести к угнетению иммунного ответа вплоть до его полного подавления. Это бывает при хронических инфекциях и опухолевых процессах. В то же время недостаточная деятельность Т-супрессоров приводит к развитию аутоиммунных заболеваний в связи с повышенной активностью Т-киллеров и Т-хелперов, не сдерживаемых Т-супрессорами. Для регулирования иммунного процесса Т-супрессоры секретируют до 20 различных медиаторов, ускоряющих или замедляющих активность Т– и В-лимфоцитов. Кроме трех основных видов, существуют и другие виды Т-лимфоцитов, в том числе Т-лимфоциты иммунологической памяти, сохраняющие и передающие информацию об антигене. При повторной встрече с этим антигеном они обеспечивают его распознавание и тип иммунологического ответа. Т-лимфоциты, выполняя функцию клеточного иммунитета, кроме того, синтезируют и секретируют медиаторы (лимфокины), которые активизируют или замедляют деятельность фагоцитов, а также медиаторы с цитотоксилогическим и интерфероноподобным действиями, облегчая и направляя действие неспецифической системы. Другой тип лимфоцитов (В-лимфоциты) дифференцируется в костном мозге и групповых лимфатических фолликулах и выполняет функцию гуморального иммунитета. При взаимодействии с антигенами В-лимфоциты изменяются в плазмоциты, синтезирующие антитела (иммуноглобулины). На поверхности В-лимфоцита может содержаться от 50 до 150 тыс. молекул иммуноглобулинов. По мере созревания В-лимфоциты изменяют класс синтезируемых ими иммуноглобулинов.

Первоначально синтезируя иммуноглобулины класса JgM, при созревании 10 % В-лимфоцитов продолжают синтезировать JgM, 70 % переключаются на синтез JgJ, а 20 % – на синтез JgА. Так же как и Т-лимфоциты, В-лимфоциты состоят из нескольких субпопуляций:

1) В1-лимфоциты – предшественники плазмоцитов, синтезирующие антитела JgM без взаимодействия с Т-лимфоцитами;

2) В2-лимфоциты – предшественники плазмоцитов, синтезирующие иммуноглобулины всех классов в ответ на взаимодействие с Т-хелперами. Эти клетки обеспечивают гуморальный иммунитет на антигены, распознаваемые Т-хелперами;

3) В3-лимфоциты (К-клетки), или В-киллеры, убивают клетки-антигены, покрытые антителами;

4) В-супрессоры тормозят функцию Т-хелперов, а В-лимфоциты памяти, сохраняя и передавая память об антигенах, стимулируют синтез определенных иммуноглобулинов при повторной встрече с антигеном.

Особенностью В-лимфоцитов является то, что они специализируются на конкретных антигенах. При реакции В-лимфоцитов с антигеном, встреченным впервые, образуются плазмоциты, выделяющие антитела именно против этого антигена. Образуется клон В-лимфоцитов, ответственный за реакцию с этим конкретным антигеном. При повторной реакции размножаются и синтезируют антитела только В-лимфоциты, а точнее – плазмоциты, направленные против этого антигена. Другие клоны В-лимфоцитов не участвуют в реакции. В-лимфоциты непосредственно не участвуют в борьбе с антигенами. Под влиянием стимулов от фагоцитов и Т-хелперов они трансформируются в плазмоциты, которые и синтезируют антитела иммуноглобулины, обезвреживающие антигены. Иммуноглобулины – белки сыворотки крови и других жидкостей организма, которые действуют как антитела, связывающиеся с антигенами и обезвреживающие их. В настоящее время известно пять классов иммуноглобулинов человека (JgJ, JgM, JgА, JgD, JgЕ), которые существенно различаются по своим физико-химическим свойствам и биологическим функциям. Иммуноглобулины класса J составляют около 70 % от общего количества иммуноглобулинов. К ним относятся антитела против антигенов различной природы, вырабатываемые четырьмя подклассами. Они в основном выполняют противо-бактериальные функции и образуют антитела против полисахаридов бактериальных оболочек, а также противорезусные антитела, обеспечивают реакцию кожной чувствительности и связывания комплемента.

Иммуноглобулины класса М (около 10 %) – наиболее древние, синтезируются на ранних стадиях иммунного ответа на большинство антигенов. К этому классу относятся антитела против полисахаридов микро-организмов и вирусов, ревматоидный фактор и др. Иммуноглобулины класса D составляют менее 1 %. Их роль в организме почти не изучена. Есть сведения об увеличении их при некоторых инфекционных заболеваниях, остеомиелите, бронхиальной астме и т. п. Еще более низкую концентрацию имеют иммуноглобулины класса Е, или реагины. JgE играют роль пускового механизма в развертывании аллергических реакций немедленного типа. Связываясь в комплекс с аллергеном, JgE вызывают выброс в организм медиаторов аллергических реакций (гистамина, серотонина и др.) Иммуноглобулины класса А составляют около 20 % от общего количества иммуноглобулинов. К этому классу относятся антитела против вирусов, инсулина (при сахарном диабете), тирео-глобулина (при хроническом тиреоидите). Особенностью этого класса иммуноглобулинов является то, что существуют они в двух формах: сывороточной (JgА) и секреторной (SJgА). Антитела класса А нейтрализуют вирусы, обезвреживают бактерии, предупреждают фиксацию микроорганизмов на клетках эпителиальной поверхности слизистых оболочек. Подводя итог, сделаем следующий вывод: специфическая система иммунологической защиты – это многоуровневый механизм элементов организма, обеспечивающий их взаимодействие и взаимодополняемость, включающий по мере необходимости компоненты защиты против любого взаимодействия организма с повреждающими факторами, дублирующий в нужных случаях механизмы клеточной защиты гуморальными средствами, и наоборот.

Система иммунитета, сложившаяся в процессе адаптациогенеза, закрепившая генетически видовые реакции организма на повреждающие факторы, является гибкой системой. В процессе адаптациоморфоза она корректируется, включает новые виды реакций на повреждающие факторы, вновь появившиеся, с которыми организм не встречался ранее. В этом смысле она играет приспособительную роль, объединяя адаптивные реакции, в результате которых структуры организма меняются под действием новых факторов среды, и компенсаторные реакции, сохраняющие целостность организма, стремящиеся уменьшить цену адаптации. В качестве этой цены выступают необратимые адаптивные изменения, в результате которых организм, приспосабливаясь к новым условиям существования, теряет способность существовать при первоначальных условиях. Так, клетка-эукариот, приспособившаяся существовать в условиях кислородной атмосферы, уже не может обойтись без нее, хотя анаэробы могут это делать. Цена адаптации в этом случае – потеря способности к существованию в анаэробных условиях.

Таким образом, иммунная система включает ряд компонентов, самостоятельно вступающих в борьбу с любыми чужеродными факторами органического или неорганического происхождения: фагоциты, Т-киллеры, В-киллеры и целую систему специализированных, нацеленных на конкретного врага средств-антител. Проявление иммунного ответа специфической иммунной системы разнообразно. В случае, если мутировавшая клетка организма приобретает свойства, отличные от свойств генетически присущих ему клеток (например, опухолевые), Т-киллеры поражают клетки самостоятельно, без вмешательства других элементов иммунной системы. В-киллеры также уничтожают распознанные антигены, покрытые нормальными антителами, самостоятельно. Полный иммунный ответ возникает против некоторых антигенов, впервые проникших в организм. Макрофаги, фагоцитируя такие антигены вирусного или бактериального происхождения, не могут их полностью переварить и через некоторое время выбрасывают. Антиген, прошедший через фагоцит, несет на себе метку, свидетельствующую о его «неперевариваемости». Фагоцит таким образом подготавливает антиген к «подаче» в систему специфической иммунной защиты. Он распознает антиген и соответствующим образом его метит. Кроме того, макрофаг одновременно секретирует интерлейкин-1, активирующий Т-хелперы. Т-хелпер, столкнувшись с таким «меченым» антигеном, подает сигнал В-лимфоцитам о необходимости их вмешательства, секретируя интерлейкин-2, активирующий лимфоциты. Сигнал Т-хелпера включает две составляющие. Во-первых, это команда о начале действия; во-вторых, это информация о виде антигена, полученная от макрофага. Получив такой сигнал, В-лимфоцит превращается в плазмоцит, синтезирующий соответствующий специфический иммуноглобулин, т. е. конкретное антитело, предназначенное для противодействия этому антигену, которое связывается с ним и обезвреживает его.

Следовательно, в случае полного иммунного ответа В-лимфоцит получает команду от Т-хелпера и информацию об антигене от макрофага. Возможны и другие варианты иммунного ответа. Т-хелпер, столкнувшись с антигеном до обработки его макрофагом, дает сигнал В-лимфоциту о выработке антител. В этом случае В-лимфоцит превращается в плазмоцит, вырабатывающий неспецифические иммуноглобулины класса JgМ. Если же В-лимфоцит взаимодействует с макрофагом без участия Т-лимфоцита, то, не получив сигнала о выработке антител, В-лимфоцит не включается в иммунную реакцию. В то же время иммунная реакция синтеза антител начнется, если В-лимфоцит вступит во взаимодействие с антигеном, соответствующим его клону, обработанным макрофагом, даже при отсутствии сигнала от Т-хелпера, поскольку он специализирован по этому антигену.

Таким образом, специфический иммунный ответ предусматривает различные случаи взаимодействия антигена и иммунной системы. В нем участвуют комплемент, подготавливающий антиген к фагоцитозу, фагоциты, обрабатывающие антиген и подающие его лимфоцитам, Т– и В-лимфоциты, иммуноглобулины и другие составляющие. В процессе эволюции выработались различные сценарии борьбы с чужеродными клетками. Еще раз следует подчеркнуть, что иммунитет является сложной многоэлементной системой. Но, как и любая сложная система, иммунитет имеет недостаток. Дефект одного из элементов приводит к тому, что может отказать вся система. Возникают болезни, связанные с иммунодепрессией, когда организм не может самостоятельно противодействовать инфекции.

Механизмы иммунитета - это процессы формирования защитной реакции против внедрения в организм чужеродных агентов. От правильности их протекания зависит здоровье и жизнеспособность организма. Бывают специфические и неспецифические механизмы иммунитета. Специфические - это те, которые работают против конкретного антигена, обеспечивая защиту от него длительное время, иногда на протяжении всей жизни. Неспецифические механизмы иммунитета можно назвать в некотором роде универсальными, поскольку они реагируют на проникновение в организм любых чужеродных агентов, а также обеспечивают первоначальную эффективную защиту до тех пор, пока не включатся антиген-специфические реакции.

Клеточный и гуморальный иммунитет

Исторически, в процессе изучения иммунной системы, сложилось разделение на клеточный и гуморальный иммунитет. Клеточный иммунитет обеспечивается лимфоцитами и фагоцитами и протекает без участия антител, которые относятся к гуморальным механизмам. Этот тип иммунитета осуществляет защиту от инфекций и опухолей. Основа клеточного иммунитета - это лимфоциты, которые образуются в костном мозге , а затем перемещаются для окончательного созревания в тимус, или вилочковую железу . По этой причине их называют тимус-зависимыми, или Т-лимфоцитами. В течение своей жизни лимфоцитам много раз приходится покидать лимфоидные органы и поступать в кровь, а затем возвращаться обратно. Благодаря такой мобильности эти клетки могут появляться в местах воспаления достаточно быстро. Т-лимфоциты бывают трех видов, каждый из которых выполняет свою важную функцию. Т-киллеры - это клетки, которые могут уничтожать антигены. Т-хэлперы первыми узнают о том, что в организм вторгся враг и реагируют на это выработкой особых ферментов, которые вызывают размножение и созревание Т-киллеров и В-клеток. И, наконец, Т-супрессоры нужны для того, чтобы подавлять активность иммунного ответа, когда в нем исчезает необходимость. Это очень важно для того, чтобы остановить развитие аутоиммунных реакций . Вообще, оказывается, что поставить четкую границу, разделяющую клеточный и гуморальный иммунитет, нельзя. В образовании антигенов участвуют клетки, а некоторые реакции клеточного иммунитета невозможны без антител.

Гуморальный иммунитет строится на образовании антител к каждому антигену, попадающему в организм человека. Он представлен различными белками, присутствующими в крови и других биологических жидкостях. К ним относятся интерфероны, способные делать клетки невосприимчивыми к воздействию вирусов; С-реактивный белок крови, который запускает систему комплемента; лизоцим - это фермент, который повреждает стенки чужеродных микроорганизмов, растворяя их. Названные белки относятся к неспецифическому гуморальному иммунитету. Но есть также специфический, который представлен интерлейкинами, а также специфическими антителами и другими образованиями.

Как видим, клеточный и гуморальный иммунитет тесно связаны между собой, и сбой в одном звене неизбежно потянет за собой проблемы в работе другого.

Противовирусный и инфекционный иммунитет

Инфекционный иммунитет может еще по-другому называться нестерильным. Его суть состоит в том, что человек не может повторно заразиться болезнью, возбудитель которой уже есть в организме. Он может быть врожденным либо приобретенным, а приобретенный, в свою очередь, активным или пассивным. Инфекционный иммунитет существует лишь до тех пор, пока в крови находится антиген и антитела к нему, то есть в течение болезни. Когда этот период заканчивается, данная защита перестает действовать и человек снова может заразиться тем, чем недавно переболел. Инфекционный иммунитет может быть кратковременным, длительным или пожизненным. Так, например, кратковременный обеспечивается во время болезни гриппом, длительный может быть при брюшном тифе, а пожизненный приобретается после кори, краснухи, ветрянки и прочих болезней.

Противовирусный иммунитет на первом этапе обеспечивается механическими барьерами - кожными покровами, слизистыми оболочками. Повреждение их, или сухость слизистых облегчают проникновение вируса в организм. После того, как враг попал, куда стремился и начал повреждать клетки, огромное значение играет выработка интерферонов, которые обеспечивают их невосприимчивость к действию вируса. Далее противовирусный иммунитет действует благодаря зову гибнущих клеток. Погибая, они выделяют цитокины, которые являются признаком воспаления. На этот зов сбегаются лейкоциты, которые и формируют очаг воспаления. Примерно на 4-й день болезни начинают вырабатываться антитела, которые, в конце-концов и победят вирус. Им на помощь приходят также макрофаги - клетки, обеспечивающие фагоцитоз , уничтожение и переваривание вражеских клеток. Противовирусный иммунитет - это очень сложный процесс, в котором участвует множество ресурсов иммунной системы.

К сожалению, иммунные реакции не всегда срабатывают так, как об этом пишут в учебниках по биологии. Часто какой-либо процесс может быть нарушен, что приводит к осложнениям и проблемам. Когда снижен иммунный ответ, нужны средства, поднимающие иммунитет. Они могут быть природными, либо купленными в аптеке, главное - это эффективность и безопасность. В активизации иммунной защиты нуждаются люди разных возрастов, включая стариков и детей, а эти категории населения особенно нуждаются в мягком и безопасном подходе к лечению. Многие современные средства, поднимающие иммунитет, не отвечают этому требованию. Они вызывают побочные эффекты, привыкание, синдром отмены, что, в конце концов, ставит под вопрос целесообразность их приема. Конечно же, медицинское обследование и назначение лечащего врача - это основание для того, чтобы принимать средства, поднимающие иммунитет . Самолечение недопустимо.

Ученые давно пытались создать «волшебные» таблетки для иммунитета, которые бы могли восстанавливать его функции. Более полувека тому назад было проведено исследование, которое позволяет сегодня говорить о том, что такие таблетки изобретены. Это учение о трансфер факторах - информационных соединениях, которые способны обучать клетки иммунной системы, разъяснять им, как именно, когда, и против кого нужно действовать. Результатом многолетней работы стали таблетки для иммунитета, которые регулируют и восстанавливают его функции, что раньше казалось недосягаемым. Речь идет о Трансфер факторе - препарате, который восполняет недостаток иммунной информации, благодаря входящим в его состав информационным соединениям, взятым из коровьего молозива. Натуральность, безопасность и небывалая эффективность - ни одни таблетки для иммунитета, кроме Трансфер фактор а, на такое не способны.

Данный препарат - лучшее, что есть на сегодняшний день для восстановления иммунной системы . Он хорош и для профилактики, и для лечения, и в период восстановления. Даже младенцы, беременные женщины и пожилые люди могут его принимать, не опасаясь побочных эффектов или привыкания, а это серьезный показатель безопасности.

– это комплексный процесс, состоящий в защите организма от проникновения чужеродных объектов, а также в устойчивости к отравляющим веществам. Такими чужеродными объектами являются бактерии и их отходы, вирусы, одноклеточные, паразитарные организмы, чужеродные ткани и органы (внедренные хирургическим путем), опухолевые клетки и т.д.

Вместе с тем иммунная реакция может происходить по разным сценариям. Вначале иммунная система блокирует деятельность чужеродных объектов (иммуногенов), создавая особые химически реактивные молекулы (иммуноглобулины), ингибирующие деятельность иммуногенов.

Иммуноглобулины создаются лимфоцитами, которые являются основными клетками иммунной системы. Существует два основных вида лимфоцитов, при совместной активности создающих все виды иммунных реакций: T-лимфоциты (T-клетки) и B-лимфоциты (B-клетки). T-лимфоциты при восприятии чужеродного материала сами осуществляют иммунный ответ – уничтожают генетически чужеродные клетки. T-лимфоциты – это основа клеточного иммунитета.

Гуморальный иммунитет

B-лимфоциты нейтрализуют чужеродные объекты дистанционно, создавая особые химически реактивные молекулы – антитела. B-лимфоциты – это основа гуморального иммунитета.

Существует пять классов антител: IgM, IgD, IgE, IgG, IgA. Основным классом иммуноглобулинов ялвятеся IgG. Антитела IgG составляют около 70% от всех антител. Иммуноглобулины IgA составляют около 20% всех антител. Антитела остальных классов составляют всего 10% от всех антител.

Когда происходит гуморальная иммунная реакция, уничтожение чужеродного материала происходит в плазме крови в виде химической реакции. Иммуноглобулины, созданные вследствие иммунной реакции, могут оставаться на многие годы и десятилетия, обеспечивая организм защитой от повторного заражения, например свинкой , ветрянкой , краснухой . Благодаря этому процессу возможна вакцинация .

T-клетки отвечают за иммунный ответ на двух уровнях. На первом уровне они способствуют обнаружению чужеродного материала (иммуногена) и активируют B-клетки к синтезу иммуноглобулинов. На втором уровне, после стимуляции B-клеток к выработке иммуноглобулинов, T-клетки начинают расщеплять и разрушать чужеродный материал напрямую.

Такая активированная T-клетка уничтожает вредоносную клетку, сталкиваясь и прикрепляясь к ней вплотную – поэтому их стали называть клетками-убийцами или T-киллерами.

Клеточный иммунитет

Клеточная иммунная защита была открыта И.И. Мечниковым в конце XIX века. Он доказал, что защита организма от заражения микроорганизмами происходит благодаря способности особых клеток крови прикрепляться и расщеплять вредоносные микроорганизмы.

Этот процесс назвали фагоцитозом, а клеток-убийц, выслеживающих чужеродные микроорганизмы – фагоцитами. Синтез иммуноглобулинов и процесс фагоцитоза являются специфическими факторами иммунитета человека.

Неспецифический иммунитет

Помимо специфических, имеются неспецифические факторы иммунитета. Среди них:
непропускание возбудителей инфекции эпителием;
присутствие в кожных выделениях и желудочном соке веществ, негативно воздействующих на инфекционные агенты;
наличие в плазме крови, слюне, слезах и т.д. особых энзимных систем, расщепляющих бактерий и вирусов (например, мурамидаза).

Защита организма осуществляется не только разрушением внедряющегося в него генетически чужеродного материала, но и выведением из органов и тканей уже локализовавшихся в них иммуногенов. Известно, что вирусы , бактерии и отходы их жизнедеятельности, а также погибшие бактерии транспортируются наружу через потовые железы, мочевыделительную систему и кишечник.

Еще одним неспецифическим механизмом защиты служит интерферон – антивирусная белковая структура, синтезируемая инфицированной клеткой. Перемещаясь по внеклеточному матриксу и попадая в здоровые клетки, этот белок защищает клетку от вируса и от системы комплемента – комплекса белков, постоянно присутствующих в плазме крови и других жидкостях организма, которые уничтожают клетки, содержащие чужеродный материал.

Защита организма ослабевает чаще всего из-за несоблюдения

Честь открытия одного из основных механизмов иммунитета принадлежит нашему соотечественнику И. И. Мечникову, создавшему и обосновавшему учение о фагоцитозе - клеточном иммунитете, согласно которому в основе невосприимчивости организма лежит фагоцитарная деятельность его клеточных элементов, захватывающих и переваривающих микробов. Фагоцитоз осуществляется в основном подвижными клетками крови - лейкоцитами, а также неподвижными клетками эндотелия кровеносных сосудов, ретикулоэндотелиальных клеток селезенки, печени, костного мозга, лимфатических узлов и других органов. При внедрении в организм микробов фагоцитоз резко усиливается, и течение инфекционного процесса приобретает специфический характер.

Параллельно с клеточной теорией создавалась теория гуморального иммунитета (Эрлих и др.), которая усматривает причину невосприимчивости в бактерицидном действии особых веществ, находящихся в крови и других жидкостях организма человека и животных. Некоторые из этих веществ находятся в сыворотке крови постоянно и оказывают губительное неспецифическое действие на микробов. Другие образуются только в процессе развития инфекции и остаются в организме на более или менее продолжительное время, оказывая специфическое губительное действие на микробы, выделяемые ими токсины и другие чужеродные для данного организма вещества, объединяемые под общим названием антигенов.

Образующиеся в организме специфические защитные вещества получили название антител. К ним относятся: агглютинины - склеивающие бактерий; бактериолизины - растворяющие бактерий; преципитины - осаждающие бактерий и створаживающие чужеродную сыворотку; антитоксины - нейтрализующие токсины; гемолизины - растворяющие эритроциты чужеродной крови и др.

Около 30 лет продолжались дискуссии между сторонниками клеточной и гуморальной теорий иммунитета, пока наконец не выяснилось, что ни та, ни другая теория, взятая в отдельности, не в состоянии объяснить всего многообразия явлений при иммунитете. Как фагоцитоз, так и защитные гуморальные реакции организма стали твердо установленными, не вызывающими сомнений фактами; в то же время установлено, что фагоцитарная деятельность и антитела находятся между собой в неразрывной взаимосвязи и взаимодействии, что фагоцитоз усиливается при одновременном воздействии гуморальных факторов иммунитета.

Оба эти явления регулируются и направляются центральной нервной системой.

За последние годы обнаружено, что в крови человека и животных циркулируют два типа лимфоцитов: 1) В-лимфоциты, - образующиеся в костном мозге, способные вырабатывать антитела, соединяющиеся с бактериальными антигенами или с бактериальными токсинами и обезвреживающие их; 2) Т-лимфоциты, образующиеся в тимусе (вилочковой железе), под воздействием которых осуществляется отторжение чужеродных тканей и уничтожение собственных клеток организма, изменивших свою наследственную (генетическую) структуру под влиянием, например, нуклеиновой кислоты вирусов и других малоизученных причин. Вилочковая железа может осуществлять свои функции только во взаимодействии с костным " мозгом.

Помимо уже известных белковых антител (иммуноглобулинов), обнаружен особый тип антител - иммуноглобулины Е, которые дают резко усиленные, искаженные реакции с различными антигенами. Этот I тип антител является одним из основных факторов, вызывающих аллергические реакции организма и заболевания аллергического характера (крапивница, ревматизм, бронхиальная астма, бруцеллез и др.). Причина образования в организме иммуноглобулина Е пока неизвестна.