Сколько заживает перелом ноги. Рецепты народной медицины. Строение костной ткани

Как уже было отмечено во введении, рост травматизма в последние годы, вызванный производственными, бытовыми, автотранспортными и огнестрельными причинами, принимает характер эпидемии (государственный доклад МЗ РФ, 1999). Постоянно происходит увеличение тяжести характера травм, развившихся осложнений и смертности. Так, за последнее десятилетие количество повреждений конечностей увеличилось в среднем на 10-15% (Дьячкова, 1998; Шевцов, Ирьянов, 1998). Удельная доля переломов трубчатых костей у лиц, подвергнувшихся травме, составляет от 57 до 63,2%. Возрастает число высокоэнергетических, сложных, сочетанных и многооскольчатых переломов, которые трудно поддаются лечению. Большинством пострадавших с данной патологией (50-70%) являются лица трудоспособного возраста. В связи с этим организация правильной тактики лечения переломов и профилактики осложнений представляет не только важную медицинскую, но и социальную проблему (Попова, 1993, 1994).

Часто в процессе лечения переломов, даже при правильном соблюдении всех условий и наличия квалифицированной помощи, развиваются разного рода осложнения, включая псевдоартрозы, несращение перелома, деформацию и изменение длины конечности, замедление сроков консолидации, инфицирование и др., что может привести к инвалидности. Следует констатировать, что, несмотря на все достижения современной травматологии и ортопедии, количество осложнений после лечения переломов квалифицированными специалистами продолжает оставаться на уровне 2-7% (Барабаш, Соломин, 1995; Шевцов и др., 1995; Шапошников, 1997; Швед и др., 2000; Muller et al., 1990).

Стало очевидным, что дальнейший прогресс в травматологии и ортопедии невозможен без разработки новых подходов и принципов лечения травм опорно-двигательного аппарата, базирующихся на фундаментальных знаниях о биомеханике возникновения переломов и биологии процессов репаративной регенерации костной ткани. Вот почему мы посчитали, что целесообразно кратко остановиться на некоторых общих вопросах, связанных с характеристикой и патогенезом переломов, делая акцент на биомеханику и биологию травмы.

Характеристика переломов кости

В связи с тем, что кость представляет собой вязкоупругий материал, определяющийся его кристаллической структурой и ориентацией коллагена, то характер ее повреждения зависит от скорости, величины, площади, на которую действуют внешние и внутренние силы. Самая высокая прочность и жесткость кости наблюдается в направлениях, в которых наиболее часто прилагается физиологическая нагрузка (табл. 2.4).

Если воздействие происходит в течение короткого промежутка времени, то кость накапливает большое количество внутренней энергии, которая при высвобождении приводит к массивному разрушению ее структуры и повреждению мягких тканей. При низких скоростях нагружения энергия может рассеиваться за счет экранирования костными балками или путем образования единичных трещин. В данном случае кость и мягкие ткани будут иметь относительно небольшие повреждения (Frankel, Burstein, 1970; Sammarco et al., 1971; Nordin, Frankel, 1991).

Переломы костей являются результатом механических перегрузок и возникают в течение долей миллисекунд, нарушая структурную целостность и жесткость кости. Существуют многочисленные классификации переломов, которые хорошо представлены в ряде многочисленных монографий (Мюллер и др., 1996; Шапошников, 1997; Пчихадзе, 1999).

Следует отметить, что среди травматологов явно малое внимание уделяется классификациям, основанным на силе воздействия на кость. На наш взгляд, это не конструктивно, т.к. энергетика перелома кости в конечном счете определяет патогенез и характер перелома. В зависимости от количества энергии, выделившейся при переломе, они делятся на три категории: низкоэнергетические, высокоэнергетические и очень высокоэнергетические. В качестве примера низкоэнергетического перелома можно привести простой перелом лодыжки при кручении. Высокоэнергетические переломы встречаются при дорожно-транспортных проишествиях, переломы с очень высокой энергией наблюдаются при пулевых ранениях (Nordin, Frankel, 1991).

Энергетику травмы необходимо всегда рассматривать в контексте структурно-функциональных особенностей костной ткани и биомеханики травмы. Так, если действующая сила мала и приложена к небольшой площади, то она вызывает незначительные повреждения костной и мягкой тканей. При большей величине силы, имеющей значительную площадь приложения, например при ДТП, наблюдается сокрушающий перелом с раздроблением кости и серьезными повреждениями мягких тканей. Высокая сила, действующая на небольшой площади с высокой или чрезвычайно высокой энергией, например пулевые ранения, приводит к глубоким повреждениям мягких тканей и некрозу костных отломков, вызванных молекулярным шоком.

Переломы кости под действием непрямой силы вызываются воздействиями, действующими на некотором расстоянии от места перелома. При этом каждое сечение длинной кости испытывает как нормальное напряжение, так и напряжение сдвига. При действии растягивающей силы возникают поперечные переломы, аксиально компрессионных - косые, сил кручения - спиральные, изгибающей силы - поперечные, и сочетании аксиальной компрессии с изгибом - поперечно-косые (Chao, Aro, 1991).

Несомненно, многие осложнения являются результатом неполной оценки биомеханических характеристик, связанных с типом перелома, свойствами поврежденной кости и выбранного метода лечения.

Процесс возникновения переломов длинных костей, как правило, происходит по следующей схеме. При изгибе выпуклая сторона испытывает растяжение, а внутренняя - сжатие. Поскольку кость более чувствительна к растяжению, чем сжатию, растянутая сторона ломается первой. После этого перелом растяжения распространяется через кость, приводя к поперечному разрушению. Разрушение на стороне сжатия часто приводит к образованию одиночного отломка в виде «бабочки» или множественных фрагментов. При повреждении в результате кручения всегда существует изгибающий момент, который ограничивает распространение трещин по всей кости. Клинически хорошо известно, что спиральный и косой переломы длинных костей срастаются быстрее, чем некоторые поперечные типы. Это различие во внутренней скорости заживления обычно связывают с различиями в степени повреждения мягких тканей, энергетикой перелома и площадью поверхности отломков (Крюков, 1977; Heppenstall et al., 1975; Whiteside, Lesker, 1978).

При растяжении внешние силы действуют в противоположные стороны. При этом структура кости удлиняется и сужается, разрыв протекает, в основном, на уровне цементной линии остеонов. Клинически эти переломы наблюдаются в костях с большей долей губчатого вещества. Во время компрессии, вызванной, например, падением с высоты, на кости действуют равные, но противоположные по направлению нагрузки. Под действием сжатия структура кости укорачивается и расширяется. Может произойти вдавливание фрагментов кости друг в друга. Если нагрузка приложена к кости таким образом, что заставляет ее деформироваться вокруг оси, то переломы возникают за счет изгиба. Геометрия кости определяет ее биомеханическое поведение при возникновении переломов. Установлено, что при растяжении и сжатии нагрузка до разрушения пропорциональна площади поперечного сечения кости. Чем больше эта площадь, тем прочнее и жестче кость (Мюллер и др., 1996; Moor et al., 1989; Aro, Chao, 1991; Nordin, Frankel, 1991).

Стадии заживления переломов кости

Заживление перелома кости можно рассматривать как одно из проявлений последовательно развивающихся общебиологических процессов. Можно выделить три основные фазы - повреждение, восстановление и ремоделирование кости (Шапошников, 1997; Grues, Dumont, 1975). После травмы наблюдается развитие острых циркуляторных расстройств, ишемии и некроза ткани, воспаления. При этом происходит дезорганизация структурно-функциональных и биомеханических свойств кости.

В эту фазу чрезвычайно важную роль приобретают нарушения со стороны кровоснабжения. При этом неправильное проведение остеосинтеза, связанного с повреждением сосудов, может ухудшить течение консолидации перелома. Так, при интрамедулярном остеосинтезе затрудняется питание кости из внутреннего бассейна кровоснабжения, а накостный остеосинтез может привести к повреждению сосудов, идущих от надкостницы, и мягких тканей. Такие повреждения могут протекать с развитием полной или неполной компенсации нарушенного кровотока, а также его декомпенсации.

В последнем случае наблюдается полное нарушение микроциркуляторных связей между смежными бассейнами кровоснабжения и разрушение сосудистых связей между костью и окружающими мягкими тканями. Если наблюдается декомпенсация кровотока, то создаются неблагоприятные условия для развития репаративных реакций и ее распространение к концам отломков. Процесс васкуляризации зон некроза замедляется на 1-2 недели. Кроме того, образующийся обширный слой фиброзной ткани, который ингибирует или даже полностью останавливает репаративные процессы (Омельянченко и др., 1997) повреждения кости и мягких тканей в результате травмы в начальной стадии заживления, обусловливая аваскулярность и некротичность кортикальных концов отломков в месте перелома, все же позволяет их использовать в качестве механических опорных элементов для любого фиксирующего устройства (Schek, 1986).

Следующая стадия - стадия восстановления или регенерации кости, протекает за счет внутримембранного и (или) энхондрального окостенения. Ранее широко распространенное мнение о том, что регенерация кости обязательно проходит стадию резорбции костной ткани , оказалось не совсем верным. В ряде случаев, при стабильном остеосинтезе, аваскулярные и некротические области концов перелома могут замещаться новой тканью путем Гаверсового ремоделирования без резорбции некротической кости. Согласно теории биохимической индукции Гаверсовое ремоделирование кости или контактное заживление требует выполнения ряда принципов, среди которых важная роль принадлежит точному сопоставлению (аксиальному выравниванию) отломков, осуществлению стабильной фиксации и реваскуляризации некротических фрагментов. Если, например, отломки перелома лишены полноценного кровоснабжения, то процесс восстановления костной ткани замедляется. Все это сопровождается сложными метаболическими изменениями в костной ткани, фундаментальные основы которых остаются неясными. Предполагается, что образующиеся при этом продукты индуцируют процессы остеогенеза, ограниченные в строго определенных временных параметрах, определяющихся скоростью их утилизации (Schek, 1986).

Индукция и распространение недифференцированной остеогенной ткани периостальной костной мозоли является одним из первых ключевых моментов заживления переломов внешней костной мозолью. В опытах на кроликах было показано, что в течение первой недели после травмы, в глубоком слое надкостницы, зоне перелома, начинается активная пролиферация клеток. Формирующаяся при этом масса новых клеток, образующихся в поверхностной зоне, превышает таковую, наблюдаемую со стороны эндоста. В результате данного механизма образуется периостальная мозоль в виде манжеты. Следует подчеркнуть, что процесс дифференцировки клеток в направлении остеогенеза тесно связан с ангиогенезом. В тех зонах, где парциальное давление кислорода достаточно, наблюдается образование остеобластов и остеоцитов, там, где содержание кислорода низкое, формируется хрящевая ткань (Хэм, Кормак, 1983).

Какую тактику проведения остеосинтеза лучше всего использовать, в этот момент определить достаточно сложно, так как использование чрезмерно жесткой иммобилизации или, напротив, эластичной, создающей высокую подвижность костных отломков, замедляет процесс консолидации перелома. Если костная мозоль перелома, формирующаяся в результате деформации или микродвижений регенерата, нестабильна, то происходит стимуляция процессов пролиферации соединительнотканных элементов. Если напряжения в регенерате превысят допустимые пределы, то вместо образования костной мозоли может наблюдаться обратный процесс, связанный с остеолизом и стимуляцией образования стромальной ткани (Chao, Aro, 1991).

Следующая фаза начинается с формирования между отломками костных мостиков. В этот период происходит перестройка костной мозоли. При этом костные трабекулы, образующиеся в непосредственной близости от первоначальных отломков в виде своеобразной губчатой сети, достаточно прочно скрепляются между собой. Между этими трабекулами имеются полости с мертвым костным матриксом, который перерабатывается остеокластами, а затем замещается новой костью с помощью остеобластов. На этот период костная мозоль представлена в виде веретенообразной массы губчатой кости вокруг костных фрагментов, некротические участки которых в большей массе уже утилизированы. Постепенно костная мозоль трансформируется в губчатую кость. Во время процессов окостенения костной мозоли полное количество кальция на единицу объема возрастает примерно в четыре раза, а прочность мозоли на разрыв - в три раза. Костная мозоль накрывает фрагменты перелома и действует и как стабилизирующая структурная рамка, и как биологическая подложка, которая обеспечивает клеточный материал для срастания и ремоделирования.

Предполагается, что биомеханические свойства костной мозоли скорее зависят от количества новой костной ткани, соединяющей отломки перелома, и количества минерала, чем от полной величины соединительной ткани в ней (Aro et al., 1993; Black et al., 1984).

Считается, что в этот период времени вся система иммобилизации костных отломков должна быть максимально неподвижна. Оказалось, что при этом неэффективен остеосинтез с помощью систем с низким аксиальным изгибом и жесткостью кручения. Рядом авторов было показано, что существуют достаточно узкие пределы допустимых микродвижений костных отломков, нарушение которых приводит к замедлению процессов консолидации. В качестве одного из механизмов могут служить конкурентные взаимоотношения между фиброзной и костной тканями. Это необходимо учитывать при выработке тактики лечения переломов костей. Так, при наличии избыточного зазора в сочетании с нестабильностью системы может наблюдаться гипертрофическое несрастание, за счет перерождения костных клеток в соединительнотканные элементы (Илизаров, 1971, 1983; Мюллер и др., 1996; Шевцов, 2000).

Даже после «идеального» сопоставления отломков, например, при поперечном переломе диафиза длинных костей, в месте перелома всегда остаются зазоры, которые чередуются с участками прямых костных контактов. При этом рост вторичных остеонов от одного отломка к другому не требует обязательного тесного контакта между ними. В результате этого процесса формируется ламеллярная или губчатая кость, заполняющая зоны зазора между отломками. Образующаяся новая кость имеет порозную структуру, что следует учитывать при проведении рентгенологического исследования и определения сроков снятия систем для остеосинтеза (Aro et al., 1993).

Согласно теории межотломочных напряжений, считается, что баланс между локальными межотломочными напряжениями и механическими характеристиками костной мозоли является определяющим фактором в ходе как первичного, так и спонтанного заживления перелома кости. Так, в эксперименте на животных было установлено, что при создании компрессии в 100 кгс во всех случаях наблюдается вначале быстрое, а затем медленное снижение силы компрессии. Через 2 месяца после остеосинтеза эта величина снижалась на 50% и на этом уровне сохранялась до консолидации перелома. Эти опыты подтвердили факт, что при нестабильной фиксации сращение перелома сопровождается резорбцией кости по линии перелома, тогда как при стабильной фиксации этого не происходит. Нестабильная фиксация и подвижность костных отломоков приводит к образованию большой костной мозоли, тогда как стабильная жесткая фиксация к формированию небольшой мозоли гомогенной структуры (Perren, 1979). Межотломочное напряжение обратно пропорционально величине зазора. Трехмерный анализ показал, что граница раздела между концами отломков перелома и тканью зазора представляет критическую зону высоких возмущений, содержащую максимальные величины основных напряжений и значительные градиенты напряжений от эндостальной к периостальной стороне. Если величина напряжения превысит критический уровень, например при небольшом зазоре между костными отломками, то процессы дифференцирования тканей становятся невозможными. Для того, чтобы обойти эту ситуацию, можно, например, использовать небольшие сечения кости около зазора перелома, стимулируя процессы резорбции и уменьшая полное напряжение в кости. Очевидно, необходимо разрабатывать новые патогенетические подходы, влияющие на процессы ремоделирования и минерализации костной ткани. Указанная биологическая реакция часто наблюдается при использовании жесткой внешней фиксации во время лечения переломов трубчатых костей (DiGlota et al., 1987; Aro et al., 1989, 1990).

Типы сращения переломов кости

Существуют различные типы сращения переломов кости. В общем случае используются термины первичного и вторичного заживления кости. При первичном заживлении, в отличие от вторичного, не наблюдается образование костной мозоли.

Клинические наблюдения позволяют выделить следующие типы сращения:

  1. Сращение кости за счет процессов внутреннего ремоделирования или контактного заживления в зонах плотного контакта с нагрузкой;
  2. Внутреннее ремоделирование или «контактное заживление» кости в контактирующих зонах без нагрузки;
  3. Рассасывание по поверхности перелома и непрямое сращение с образованием костной мозоли;
  4. Замедленная консолидация. Щель по линии перелома заполняется посредством непрямого образования костной ткани.

В 1949 г. Danis столкнулся с явлением первичного заживления переломов кости, которые жестко стабилизировались с целью предотвращения каких-либо движений между фрагментами, практически без формирования костной мозоли. Такой тип ремоделирования получил название контактное или Гаверсовое и реализуется преимущественно через точки контакта и зазоры перелома. Контактное заживление наблюдается при узкой щели перелома, стабилизированной, например, посредством межфрагментарной компрессии. Известно, что поверхность перелома всегда микроскопически неконгруэнтна. При сдавлении выступающие части ломаются с образованием одной обширной зоны контакта, в которой наступает прямое новообразование костной ткани, как правило, без образования периостальной мозоли (Rahn, 1987).

Контактное заживление кости начинается с непосредственного внутреннего ремоделирования в зонах контакта без образования костной мозоли. При этом внутренняя перестройка Гаверсовых систем, соединяющая концы фрагментов, как правило, приводит к образованию прочного сращения. Важно отметить, что прямое сращение не ускоряет темпов и скорости восстановления костной ткани. Установлено, что площадь непосредственного контакта в пределах перелома находится в прямой зависимости от величины приложенной силы, создаваемой системой внешней фиксации (Ashhurst, 1986).

Непрямое сращение кости сопровождается формированием грануляционной ткани вокруг и между костных фрагментов, которая затем замещается костной, за счет процессов внутреннего ремоделирования Гаверсовых систем. Если напряжения в регенерате превысят допустимые пределы, то вместо образования костной мозоли может наблюдаться обратный процесс, связанный с остеолизом и стимуляцией образования стромальной ткани. Рентгенологически этот процесс характеризуется образованием периостальной мозоли, расширением зоны перелома, с последующим заполнением дефекта новой костью (Хэм, Кормак, 1983; Aro et al., 1989, 1990).

В настоящее время нет четких критериев по осознанному использованию биомеханических подходов к заживлению переломов, оптимизирующих процессы репаративной регенерации и снижающих развитие осложнений. Это справедливо как для накостного, так и чрескостного остеосинтеза. Мы стоим только в начале пути понимания этих сложных механизмов, которые требуют более глубокого изучения (Шевцов и др., 1999; Chao, 1983; Woo et al., 1984).

В этом контексте важно подчеркнуть, что скорость регенерации костной ткани в норме и патологии представляет собой в какой-то мере постоянную величину. В связи с этим у травматологов и ортопедов до сих пор нет единого мнения о преимуществе тех или иных методов фиксации, так как практика показывает, что при правильном интрамеддулярном, экстракортикальном или внешнем остеосинтезе сращение переломов происходит примерно в одинаковые сроки (Анкин, Шапошников, 1987). До настоящего времени, даже при использовании всех известных ростовых факторов и иных подходов, никому в мире не удалось ускорить этот процесс. Нестабильность костных отломков, нарушение оксигенации, развитие воспаления и другие неблагоприятные факторы только замедляют процессы пролиферации и дифференцировки остеогенных клеток (Фриденштей, Лалыкина, 1973; Фриденштейн и др., 1999; Илизаров, 1983, 1986; Шевцов, 2000; Альбертс и др., 1994; Chao, Aro, 1991).

Так как уровень наших знаний не позволяет изменить темп восстановления кости, то нужно при лечении переломов использовать прагматичный подход на создание благоприятных биомеханических и биологических условий для реализации имеющегося потенциала сохранившейся костной ткани и вспомогательных клеток для оптимизации процессов их функционирования.

Конечная фаза заживления кости подчиняется закону Вольфа, в соответствии с которым кость ремоделируется к своей исходной форме и прочности, позволяющей ей нести привычную нагрузку. Клеточно-молекулярные механизмы, лежащие в основе этой закономерности, до сих пор остаются не расшифрованными. Для практика следует помнить, что закон Вольфа применим более к губчатой кости. Адаптация кортикального слоя происходит медленно, и потому данный закон не имеет большого значения (Мюллер и др., 1996; Roux, 1885, 1889; Wolf, 1870, 1892).

Ремоделирование кости занимает определенное время в пределах, в которых кость имеет слабые механические свойства. Так, жесткие пластины не могут быть безопасно удалены из диафиза до прошествия 12-18 месяцев после фиксации. Часто после удаления жестких имплантатов наблюдаются повторные переломы кости вследствие отсутствия образования костной мозоли. При этом первичное заживление кости, обеспечиваемое или жестким наложением пластин или жесткой внешней фиксацией, требует, чтобы регенерирующая зона перелома поддерживалась и защищалась, пока кость не достигнет достаточной прочности для того, чтобы предотвратить повторный перелом или изгиб, когда она случайно испытает функциональные напряжения. С одной стороны, жесткая фиксация предотвращает развитие костной мозоли, с другой - приводит к длительному применению систем для остеосинтеза, прежде чем произойдет адекватное ремоделирование кости и станет возможным удалить имплантат. Это недостаток был присущ ранним аппаратам внешней фиксации, в которых были предприняты попытки воспроизвести стабильность за счет увеличения жесткости рамок в многопланарных конфигурациях. Часто для повышения стабильности конструкции используются дополнительные межфрагментарные стержни. Хотя эти жесткие конструкции иногда давали анатомическое восстановление кости, но в ряде случаев они сопровождались задержкой - вплоть до полного предотвращения - срастания перелома. Внешняя фиксация зависит, конечно, от правильной фиксации винтов, стержней или спиц к кости. При этом в момент наложения внешнего фиксатора начинается «состязание» между заживлением перелома и снижением прочности конструкции за счет расшатывания стержней и других имплантируемых частей фиксатора. С теоретических позиций, методы, в которых полагаются на слишком жесткие конструкции, и поэтому требующие более длительного времени фиксации стержней и сохранения рамки, часто будут оканчиваться неудачей, поскольку перелом не сможет адекватно ремоделироваться к моменту ослабления стержней и снятия фиксатора.

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

При благополучном исходе лечения перелома поврежденная кость может переносить привычные нагрузки, фактически возвращаясь в исходное состояние до травмы - это идеальный вариант. Однако прежде костная ткань должна пройти определенные «испытания» - стадии заживления.

Разрушительная энергия: как возникает перелом

Травматологи используют несколько классификаций переломов, одна из которых основана на силе воздействия на кость при травме. Врачи выделяют низкоэнергетические, высокоэнергетические и очень высокоэнергетические переломы.

При малой силе воздействия на кость энергия рассеивается, и кость, близлежащие мягкие ткани будут иметь относительно небольшие повреждения - человек может даже отделаться парочкой трещин. Но если же мощное механическое воздействие в течение очень короткого отрезка времени «ударяет» по кости, она накапливает огромное количество внутренней энергии, которая резко высвобождается - это приводит к более серьезному разрушению структуры кости и даже повреждает близлежащие ткани.

Таким образом, энергетика перелома кости определяет в итоге сложность и характер травмы. Например, низкоэнергетическим будет простой перелом лодыжки при кручении, а высокоэнергетические переломы встречаются при авариях на дороге. Понятно, что в первом случае будут значительно ниже, чем во втором.

Стадии заживления переломов кости

Заживление перелома можно условно разделить на три стадии - повреждение, восстановление (регенарция) и ремоделирование (перестройку) кости.

Все, конечно же, начинается с повреждения. Параллельно с разрушением кости при переломе непосредственно после травмы в пострадавшей области нарушается кровоснабжение и развивается воспаление, развивается некроз тканей. Нарушения кровообращения не менее значимы, чем повреждение кости - они могут ухудшить заживление: кровь питает все органы и системы нашего организма, и скелет не исключение. Если в области перелома кровообращение нарушается - процесс заживления замедляется. И наоборот: наличие в области перелома полноценной сети кровеносных сосудов положительно повлияет на процесс восстановления.

Следующая стадия - восстановления, или регенерации кости, протекает за счет окостенения новых клеток. При стабильном остеосинтезе омертвевшие области концов перелома могут замещаться новой тканью путем ремоделирования - «перестройки». Это называется контактное заживление, которое зависит от выравнивания (совпадения) отломков, стабильности фиксации перелома и кровоснабжения в поврежденной области.

Формирование костной мозоли - один из ключевых моментов сращения переломов. Костная мозоль накрывает фрагменты перелома, стабилизирует их и служат в дальнейшем основой в качестве биологического матрикса для благополучного срастания и ремоделирования кости.

Костная мозоль образуется следующим образом: в зоне перелома начинается активное деление новых клеток и возникает их избыток - за этот счет и образуется мозоль. На этом этапе важно, чтобы врач определил степень жесткости иммобилизации: слишком жесткая нарушит местное кровообращение, слишком нестабильная - замедлит сращение перелома. Затем между отломками кости образуются мостики, происходит перестройка костной мозоли - перелом начинает «зарастать». Постепенно костная мозоль преобразуется в губчатую кость, в ней накапливается кальций и она становится прочнее.

Ускорить сращение? Вполне возможно!

Этот сложный, и чего уж скрывать, продолжительный процесс можно существенно ускорить. Для этого специалисты французской фармацевтической компании Pierre Fabre разработали уникальный препарат . Остеогенон - препарат, который поможет сократить все стадии заживления перелома, а также снизить риск образования ложных суставов и возникновения повторных переломов.

Эффективность препарата объясняется тем, что его состав полностью идентичен составу кости человека. Он содержит минеральную составляющую (гидроксиапатит - кальций с фосфором в физиологичном соотношении 2:1), а также органическую часть (оссеин). В состав оссеина входят специальные белки, факторы роста (ТФР β, ИФР-1, ИФР-2), коллаген I типа; остеокальцин. Остеогенон является не только строительным материалом и восполняет травмированную костную ткань, но и стимулирует образование новой костной ткани.

На сегодня это единственный препарат, содержащий физиологическую соль кальция, что обеспечивает максимально высокую биодоступность кальция, которую получают пациенты с приемом Остеогенона (38%) по сравнению с обычными солями кальция. Важно, что при этом риск развития нежелательных побочных эффектов минимален: кальций из гидроксиапатита высвобождается медленно и равномерно, поэтому не создает риска развития аритмий и опасных лекарственных взаимодействий.

Благодаря присутствию фосфора кальций из Остеогенона фиксируется именно в костях, а не в почках и не провоцирует развитияобострения мочекаменной болезни. Таким образом, Остеогенон отлично переносится среди пациентов с заболеваниями мочевыделительной системы.

В сравнительных исследованиях Остеогенон значительно сокращал сроки заживления переломов: пациенты, принимавшие Остеогенон, становились на ноги на 2-3 недели раньше, по сравнению с контрольной группой больных. Важно и то, что эффект Остеогенона был ярко выражен независимо от локализации перелома, как в случае острой травмы, так и при замедленном процессе сращения кости. С целью ускорения сращения переломов Остеогенон принимают по 2 таблетки 2-3 раза в сутки. Курс лечения составляет около 3-6 месяцев, но длительность терапии определяет врач.

Перед применением препарата обязательно посоветуйтесь с врачом и внимательно прочитайте инструкцию.

Активный образ жизни – это основа здоровья человека. Однако чрезмерная и/или неадекватная физическая нагрузка влечет за собой повреждение костей, мышц, связок.

Мыщелком называют утолщение на конце кости, к которому прикрепляются связки и мышцы.

Он более хрупкий, так как покрыт хрящевой тканью. Причиной травмы являются:

  • сильные удары при падении;
  • автомобильные аварии;
  • неудачное выпрямление ноги.

Виды и симптомы

По существующей классификации выделяют медиальный и латеральный, передний и задний, наружный и внутренний переломы мыщелка большеберцовой кости. Учитывают особенности пострадавшего анатомического отдела, наличие отломков кости, а также наличие / отсутствие повреждений обоих мыщелков.

Общая симптоматика отражается болью, припухлостью. Место повреждения тактильно теплее остальной части ноги. Отличительный признак при переломах одного мыщелка – деформация колена. По интенсивности боли нельзя судить о степени повреждения. Для уточнения характера перелома используют рентген, реже – компьютерную томографию.

Компрессионный перелом

Нарушение целостности костной ткани, связанное со сдавливанием. Такие травмы являются последствием длительного воздействия повреждающего агента. При внутрисуставном переломе затрагивается поверхность большеберцовой и малоберцовой кости.

Читайте также: Транспортная иммобилизация при переломе костей голени

Раздробленный перелом

Часто возникает в результате автомобильных аварий, сопровождается рассечением кости на осколки, которые повреждают окружающие мягкие ткани и сосуды. Тип перелома опасен внутренним кровотечением и сложен в лечении.

Для фиксации обломков кости и возможности ее восстановления используют аппарат Илизарова.

Импрессионный перелом

Иначе называют вдавленным. Удар приходится в область межмыщелкового возвышения, что приводит к травме. Причиной может быть прыжок с высоты.

Консолидированный перелом

Повреждение костной ткани на стадии консолидации, то есть восстановления. Сращивание происходит не всегда гладко, особенно если имеется множество осколков. Костная мозоль легко подвергается воздействию и повреждается.

Перелом латерального мыщелка

Наиболее часто встречается после перенесенной автомобильной аварии и у спортсменов. Рентген покажет, как сильно сместился латеральный мыщелок большеберцовой кости. Линия разлома будет косой или вертикальной. Если воздействие травмирующего агента продолжается, осколки будут смещаться. Стоит обеспечить покой поврежденной ноге.

Читайте также: Переломы латерального мыщелка бедренной кости

Перелом наружного мыщелка

Данный тип травмы встречается, если на момент происшествия колено согнуто более чем на 45°, а также в спорте и после ДТП. Рентгенологически рассмотреть повреждение можно в прямой или боковой проекции. Если на стандартных снимках не видно проблемы, а болевой синдром остается, то перелом наружного мыщелка большеберцовой кости выявляют с помощью косой проекции.

Диагностика

Симптоматика имеет общие черты с переломами бедра. Для постановления правильного диагноза необходим рентген. Обязательна консультация с хирургом-ортопедом. Клиническая картина и сбор анамнеза важны, но без рентгеновского снимка оценить ситуацию и продумать тактику лечения будет весьма затруднительно.

Визуально диагностировать перелом можно с помощью манипуляций:

  1. Осторожно взять руками поврежденную конечность и попробовать согнуть в колене. Пациент почувствует боль, но нога останется неподвижной.
  2. На предварительно обездвиженной ноге при попытке нажать пальцами на надколенник он будет неестественно двигаться, вызывая неприятные ощущения.
  3. Постукивание по пятке и голени усилит боль.

Если поврежденная область болезненна и заметно опухла, как можно скорее обратитесь к специалисту.

Лечение перелома

В основе лежат два метода: консервативный и хирургический. Тактика лечения определяется состоянием пациента. Самостоятельное вправление не допустимо!

Тактика оздоровительных мероприятий зависит от типа перелома:

  1. Без смещения: имеет наиболее легкое течение. Используют давящие повязки на срок от 4 до 8 недель, следят за динамикой и рекомендуют не нагружать ногу.
  2. Локальная компрессия: берут в расчет локализацию повреждения, наличие осколков и сопутствующих нарушений целостности связок. При госпитализации используют гипсовую фиксацию.
  3. Частичный отрыв мыщелка: необходима точная рентгеновская диагностика для выявления положения частей кости. Показана гипсовая иммобилизация до скелетного вытяжения.
  4. Отрыв мыщелка: подразумевает отщепление 8 мм и более. Лечение оперативное.
  5. Откол: захватывается внутренний мыщелок. Применяют открытую репозицию с внутренней фиксацией.
  6. Оскольчатый: при таких переломах подразумевают наличие внутреннего кровотечения. Строго соблюдая правила асептики, госпитализируют пациента для скелетного вытяжения. Рентген поможет понять расположение осколков.

Читайте также: Первая помощь при вывихе коленного сустава

Консервативные методы

Показаны при небольшом смещении мыщелка и отсутствии осколков. Используют холод для снятия опухлости, давящие повязки и иммобилизацию колена в ортопедическом аппарате. Смещение отломков предупреждается гипсовой повязкой. Нагрузки на ногу противопоказаны.

Хирургические способы

При более тяжелых случаях для лечения перелома мыщелка коленного сустава используют оперативные методы лечения.

  • открытая и закрытая репозиция;
  • остеосинтез;
  • закрепление осколков с помощью аппарата Илизарова.

Любой метод лечения подразумевает стационарное наблюдение.

Реабилитация

В период срастания образовывающаяся костная мозоль сильно подвержена воздействию внешних факторов и легко может быть повреждена. Врач следит за тем, чтобы медиальный и латеральный край суставной поверхности восстанавливались одинаково. Для ускорения процесса используют:

  • включение в рацион продуктов, содержащих кальций;
  • возобновление движений в коленном суставе;
  • ограничение нагрузок на травмированную ногу;
  • физиотерапевтические процедуры, препятствующие развитию дистрофии;
  • растирание и лечебный массаж.

Кроме известных молочных продуктов, много кальция содержится в капусте, щавеле, рыбе и миндале.

Осложнения

После повреждения берцовой кости существует большой риск столкнуться с последствиями:

  • полная или частичная потеря движений в области перелома;
  • развитие дегенеративного артроза;
  • деформация коленного сустава;
  • повреждение связок осколками кости;
  • осложненное инфекцией хирургическое лечение.

Руки играют одну из важных ролей в жизни человека. Они позволяют им выполнять любую работу и вести полноценный образ жизни. Перелом кости руки значительно снижает качество жизни. Поэтому, если пострадавший сломал руку, то необходимо добиться полного восстановления ее функциональности.

Перелом руки – одно из самых часто встречающихся повреждений в практике травматологов.В большинстве случаев сломанная рука характеризуется как бытовая или производственная травма, нередко она возникает и при занятиях спортом.Чтобы лучше понять механизм перелома и последующую лечебную тактику, следует знать простейшие элементы анатомии верхних конечностей.

Анатомия

Человеческие руки состоят из большого количества костных элементов, которые включают в себя пояс верхней конечности и свободную часть. Самые крупные из них, это ключица, лопатка, плечевая, лучевая и локтевая кости. Отдельно стоит уделить внимание кисти, которая состоит из запястья, пястья и фаланг пальцев. Длинные кости являются трубчатыми, как и пястные, фаланги пальцев, губчатую структуру имеют только кости. Чаще всех травмируются трубчатые кости.

Причины травмы

Основной причиной, приводящей к тому, что рука сломана, является падение на вытянутую в отведенном положении верхнюю конечность. Так же нарушить целостность кости руки можно сильным ударом по конечности или, при повышенном физическом воздействие на конечность, ослабленную после ряда заболеваний или в результате естественного старения организма.

Переломы рук стоят на лидирующей позиции среди всех видов переломов. К самым часто встречающимся факторам данных травм можно отнести:

  • Бытовые повреждения.
  • Падение с большой высоты.
  • Неправильное приземление на руку.
  • Удар тяжелым тупым предметом.
  • Спортивные тренировки.
  • Удар во время борьбы, драки.

Классификация

Перелом руки относится к собирательным понятиям, в который собраны все виды переломов рук. Данные повреждения характеризуются по таким параметрам, как количество сломанных костей, характер травмы – перелом руки со смещением, расположение к близлежащим суставам, травма мышц и сосудов, открытый перелом руки и непосредственное место излома.

По количеству сломанных костей переломы делят на:

  • Одиночный или множественный.
  • Имеется сдвиг или нет.
  • Открытый или закрытый перелом руки.
  • Вколоченный.
  • Оскольчатый.
  • С вывихом сустава расположенного рядом.

По отношению перелома руки к близлежащим суставам:

  • Травма, затрагивающая сустав.
  • Диафизарный или не затрагивающий сустав перелом.

Повреждение руки почти всегда сопровождается нарушением целостности мягких тканей и может быть открытым – кожный покровов поврежден и закрытым – без повреждения кожного покрова.

Отношение смещенных обломков также имеет большое значение, от этого зависит выбор лечения при переломе руки:

  • Перелом со смещением костей в пределах линии травмы.
  • Травма руки без смещения.
  • Повреждение кости руки со смещением и нарушением оси пораженной кости.

По месту локализация перелома:

  • Травма плечевой кости.
  • перелом костей предплечья.
  • Повреждение костей запястья.
  • Травмирование пястных костей и фаланг кисти.

Форма линии слома:

  • Поперечный излом — линия располагается в перпендикулярной плоскости к оси кости.
  • Продольный разлом — линия перелома находится продольно относительно оси сломанной кости.
  • Косой, формирует острый угол между осью кости и линией перелома.
  • Винтообразный перелом — костные обломки разворачиваются по оси, но остаются на одной линии.

Перечисленная выше классификация переломов руки помогает доктору понять, что произошло и как лечить перелом. Терапия повреждения может значительно различаться и быть как консервативной, так и оперативной с открытой репозицией костных обломков.

Как определить перелом руки? Распознать повреждение можно по симптомам, при переломе руки возникающим.

Симптомы

Зная симптомы перелома руки, даже человек, не имеющий специального образования, сможет отличить перелом от обычного вывиха или сильного ушиба.

Абсолютные признаки перелома, указывающие на то, что рука сломана:

  • Положение руки неестественно, она необычно изогнута.
  • При повреждении суставов, сегментов конечности становятся подвижными.
  • Наличие характерного для переломов похрустывания при пальпации зоны поврежденного участка руки.
  • Визуализация костных обломков.
  • Наличие открытой раны.

Относительные симптомы перелома, вызывающие подозрение в его наличии и позволяющие распознать:

  • Болевой синдром, локализованный в поврежденном месте или отдающий в близлежащие участки.
  • Характер боли становится прострельного типа при малейшей попытки пострадавшего двигать поврежденной конечностью.
  • Сильный отек с кровоподтеком.
  • Ощущение холода в верхней конечности, данный симптом относится к наиболее опасным признакам и свидетельствует о разрыве артерии или развившемся тромбе.
  • Гематома.
  • Деформация конечности — одна рука может визуально казаться короче другой конечности.
  • Ограниченная подвижность суставов, находящихся в зоне повреждения.
  • При нарушении целостности нервных волокон возникает паралич руки.
  • Возможно, температура при переломе руки поднимется до 37,5.

Что делать при переломе руки? Какую доврачебную помощь необходимо оказать пострадавшему?

Первая помощь

Первая помощь при переломе руки имеет большое значение для того, что бы кости правильно срослись и последствия травмы были незначительными. Оказывать ее должен только тот человек, кто знаком с алгоритмом действий и способен узнать какую травму получил пострадавший и ее разновидности. Связано это с тем, что, к примеру, первая помощь при открытом переломе носит немного другой характер, чем, если травма закрытая.

Рассмотрим подробней все действа:

  • Иммобилизация – обездвиживание руки, возможно, добиться при помощи наложения шин из подручных материалов. Это могут быть дощечки, крепкие прутья, ровные палки. Подобранную конструкцию следует прибинтовать к поврежденному сегменту руки, тем самым обеспечив ей неподвижность, что значительно уменьшит боль и смещение обломков. При повреждении пальцев для шины можно использовать расческу или пилочку для ногтей или прибинтовать сломанный палец к соседнему пальцу. Нельзя использовать усилие, для выравнивания поврежденного сегмента руки, пытаться самостоятельно вправлять кость. Достаточно просто подвесить поврежденную конечность на косынку.
  • Обезболиваниепри сильном болевом синдроме подойдет любой анальгетик, находящийся в аптечке.
  • Перелом руки, а особенно перелом кисти и пальцев, часто сопровождается отечностью пальцев. Для купирования нарастания отека и предотвращения омертвления пальца, в первые минуты желательно избавиться от колец и других имеющихся на руке украшений. Но нельзя силой пытаться снять кольцо. За пару часов вред оно не принесет, а специалист в больнице снимет его более грамотно и безболезненно.
  • Открытый перелом сопровождается кровотечением. По – этому нужно помнить, что накладывать жгут необходимо только при кровотечении из крупных артерий. В остальных случаях будет достаточно тугой повязки из бинта.

Если человек не знаком с правилами оказания помощи, то у него могут возникнуть трудности с обеспечением фиксации плечевого и локтевого суставов. Поэтому, чтобы не навредить и не доставить лишних страданий, можно ограничиться подвешиванием руки на косынку.

Любой пострадавший при получении травмы задается вопросами. Сколько срастается перелом руки, можно ли его лечить в домашних условиях, какие медикаменты могут понадобиться и как лечить его вообще? А также — сколько ходить в гипсе, какой срок срастания и можно ли ускорить срастание костей? На эти и многие другие вопросы специалист даст ответ, только после того, как будет диагностирован перелом.

Диагностика и лечение

Для того, что бы правильно назначить лечение необходимо провести ряд обследований. При данных травмах главным методом диагностики является исследование при помощи рентгенографии. При сложных случаях, если перелом сопровождается повреждением нервной ткани, если отломки смещаются, и для выявления двойного повреждения кости применяют компьютерную томографию или магнитно-резонансную терапию.

Важно! лечение перелома руки должно проводиться только специалистом. Только от правильности его действий будет зависеть, сколько заживает излом, как выглядит рука после полученной травмы. Самолечение недопустимо.

Получив результаты диагностики, лечащий врач определяет какой способ терапии необходимо применить для эффективного сращивания костей при данном повреждении. Ведь скорость заживления зависит от выбранного метода лечения.

Большая часть закрытых переломов верхней конечности лечится консервативно с использованием методов длительной иммобилизации при помощи гипсовой повязки. Осуществляется подобное лечение при отсутствии смещения обломков, в противном случае без хирургического вмешательства не обойтись.

После определения типа перелома врач проводит ручную репозицию костей — сопоставляет их. После этого пострадавшему накладывается гипсовая повязка и назначается контрольный рентген. Время ношения гипсовой повязки зависит от тяжести перелома. При легких травмах, когда затронута одна кость, в гипсовой повязке ходят примерно на 6-8 недель. Сращение излома должно произойти за этот срок.

Если произошел совместный перелом локтевой и лучевой кости, то гипсовая повязка накладывается на 8 — 12 недель. Кости за это время срастаются, если отсутствует осложнение.

В редких случаях закрытые переломы лечат хирургическим путем, особенно если произошло смещение обломков кости.Также операция назначается, когда лечение консервативным методом провести невозможно.

Данная операция основана на том, чтобы восстановить анатомическую целостность кости путем сопоставления обломков и закреплении их металлическими пластинами и винтами. Нагрузка на прооперированный участок допускается раньше, так как кость зафиксирована, и риска смещения не возникнет.

После сращения костей пластины и винты можно удалить, но этого можно и не делать, поскольку они рассчитаны на пожизненное использование.

Открытые травмы лечатся только хирургическим вмешательством. Специалист сопоставляет костные отломки, если необходимо, то для фиксации используют накостный или внутрикостный остеосинтез пластинами, штифтами. При применении дополнительных средств гипсовая повязка не накладывается, так как кости фиксированы титановыми пластинами или штифтами. Но чаще используют аппараты внешней фиксации или аппарат Илизарова. Данная методика позволяет ухаживать за раной, увеличить или уменьшить степень сдавливания отломков по мере их заживления.

Как ускорить реабилитацию излома верхней конечности? При последующем лечении переломов руки в домашних условиях для ускорения восстановительных процессов рекомендуется применять ряд дополнительных процедур, проводить комплексную лекарственную терапию антибиотиками, средствами для заживления раны и усиливающими микроциркуляцию. Больному обязательно прописываются специальные витаминные комплексы, направленные на укрепление иммунной системы.

Пострадавший постоянно нуждается в повышенном количестве белковых продуктов, коллагена, которые способствуют образованию костной мозоли. Так же обязательно нужно принимать микроэлементы — кальций и магний. Данные вещества помогают формировать новые клетки костной ткани и укрепляют опорно-двигательный аппарат.

Важно! После окончания формирования костной мозоли, больной должен посетить лечебное заведение для контрольной рентгенографии. Только после подтверждения доктором о правильно сросшемся изломе пациент может считать себя здоровым.

Сроки лечения и прогноз

Общие сроки терапии, реабилитации, для различных зон повреждения колеблются. Если перелом хирургической шейки плеча, то функция руки восстанавливается через 3 месяца, травма тела плечевой кости – 4 месяца, повреждение костей предплечья — 3 месяца, лучевой кости от 1 до 2 месяцев, сломы костей кисти — до 3 месяцев, ладьевидной кости – до 6 месяцев, переломы пальцев – около одного месяца.

При наличии ограничения движений суставов и при открытых переломах сроки терапии намного увеличиваются и достигают полугода и более. А при наличия инфекции в кости или повреждении нервных окончаний лечение затягивается на годы.

Не стоит тянуть с диагностикой и лечением заболевания!

Запишитесь на обследование у врача!

Любой перелом костей становится крайне неприятным событием. Однако перелом костей ног к прочим бедам прибавляет ощутимое затруднение – ограниченность движения. При подобном переломе человеку тяжело ходить.

Помните, вовремя оказанная полноценная медицинская помощь позволит протекать процессам выздоровления как можно быстрее.

Самолечение при сломанных костях ног недопустимо. При получении тяжёлой травмы полагается обратиться к врачу-травматологу и пройти амбулаторное лечение. Если случай крайне непростой, лечение проходит в стационаре. Исключительно врач-травматолог сможет правильно определить особенности травмы, расположение костных осколков, проконтролировать, насколько правильно кость срастается, отмерит необходимое время и прочее.

Врач стремится к нормализации положения осколков костей ноги, возвращение в исходное положение, до травмы. Затем травматолог стремится, чтобы осколки находились в неподвижном положении, пока кость срастается.

Вправить и зафиксировать отломки возможно при помощи гипсовых повязок, специализированных аппаратов, в чрезвычайно тяжёлых случаях — способом проведения хирургической операции, когда используются разного рода металлоконструкции.

В случае лечения открытого перелома обычно используют компрессионно-дистракционный аппарат Илизарова, сопутствующее лечение антибиотиками. В обязательном порядке промывается рана, обрабатывается место поражения, предотвращая возникновение гнойных и инфекционных воспалений.

Больному выдаются направления на массаж, ЛФК, прочие процедуры, направленные на предотвращение последствий перенесённой травмы. Рацион больного обогащается кальцием, витаминами группы С, В и D.

Если пострадавшему пришлось проходить лечение в условиях стационара, при обнаружении положительной динамики человека отправляют домой. Под положительной динамикой в данном случае подразумевается правильное сращивание кости ноги, когда травмированная ткань постепенно заживает.

В условиях дома больному предстоит окончательно поправиться, восстановить функции конечности. Человек вправе продолжать курс массажа и ЛФК.

После перенесённых травм ноги человеку потребуется немало времени, терпения и сил, чтобы реабилитироваться и полностью вылечиться. К лечению полагается отнестись с терпением, отводя столько времени, сколько нужно. Если врач смог правильно определить особенности перелома, назначить оптимальную программу лечения и реабилитации, проследить чёткое соблюдение его инструкций со стороны больного – перечисленные положения помогут быстрее привести пострадавшую конечность в норму без осложнений.

Как долго носят гипс

Многих людей интересует указанный вопрос. Гипс, особенно на ноге, доставляет неудобства при перемещении больного в пространстве. Время ношения гипса во многом зависит от сложности травмы, вида, развившихся осложнений. Сроки, описанные в медицинской литературе, весьма условны, врач определяет время индивидуально.

В среднем, выделяют подобные сроки:

  • Если сломана лодыжка, гипс носят 4 — 7 недель. Если перелом отягощён смещением – срок ношения гипса увеличится до 4-х месяцев.
  • требует фиксации на срок 100 дней, при смещении – до четырёх месяцев. Причём больным с подобным переломом придётся месяц лежать на вытяжке, после которой уже накладывается гипс.
  • Лёгкий требует фиксации на срок до двух месяцев.
  • Фаланга заживает быстрее – максимум за 20 дней, без осложнений.
  • Перелом малой берцовой кости требует наложения гипса до колена, снимут повязку по истечению 30 дней.

Кость ноги срастается в разный срок, повреждённые ткани будут долго проходить восстановление. Возобновление нормальной работы сухожилий во многом зависит от специфики перелома. Важен возраст человека, скорость и особенности проходящих в его организме процессов. Разумеется, кости молодого человека намного быстрее срастутся, а ткани восстановятся, нежели у пожилого. Сильный организм быстрее справится с последствиями травмы, чем ослабевший.

Когда сроки ношения гипса продлеваются

Нередко людям с переломом кости приходится до трёх раз делать рентгеновские снимки, чтобы проконтролировать срастание. Благодаря процедуре доктора точно определяют время снятия гипса. При подозрениях на неполное срастание кости удаление повязки придётся отложить. Запрещено снимать повязку самостоятельно, действие чревато серьёзными осложнениями. Полагается терпеливо дождаться окончания лечения и полного срастания сломанных костей.

Процесс срастания костей ноги бывает осложнён различными заболеваниями: остеопороз, сахарный диабет, иные хронические заболевания и прочее. Хронические пациенты ходят с гипсом намного дольше, иногда лечение бывает длиннее стандартного в два раза.

На качество и скорость срастания костей влияет непосредственно способ наложения гипса. Не допускается наличие перегибов и складок, распределение бинта обязано быть равномерным. Подобные условия ощутимо влияют на скорость сращивания.

Части ноги, испытывающие дополнительную нагрузку, усиливаются дополнительными слоями гипсового бинта. Чаще оговорёнными местами становятся суставы и подошвы. В отсутствие переломов пальцев, гипсуют повреждённую часть ступни, оставляя их открытыми. Врач продолжает вести наблюдение за состоянием фиксированной части конечности. Пальцы хуже снабжены кровью, их движение позволяет нормально функционировать стопе.

Способы наложения повязок также влияют на время ношения. Если гипс накладывают непосредственно на кожу, смазав предварительно специальным маслом (чаще вазелиновым), предполагается недолгое ношение. Если перед наложением гипсовой повязки делают прослойку из ваты, становится понятно — гипс рассчитан на длительное ношение.

Правила предосторожностей при ношении гипса

Ношение гипса занимает немаленький период времени, человеку приходится адаптироваться к новым условиям жизни. Полная фиксация ноги ведёт к обездвиживанию конечностей, предполагающему возникновение трудностей, особенно при передвижении. Помните, неподвижность – необходимость, без которой невозможно добиться нормального выздоровления. Приходится жить, помня о неких ограничениях.

Первое – нельзя, чтобы гипс намокал. Предвидятся трудности при мытье. Недавно стали выпускаться специальные водонепроницаемые чехлы, позволяющие спокойно помыться в душе или принять ванну.

Особые затруднения вызывает обучение пользованию палочкой или костылями. Первоначально на приспособлениях крайне сложно ходить, однако, если не лениться и тренироваться, организм привыкнет к необычной ситуации. Ходить нужно как можно больше, чтобы исключить возможные застойные явления в мышцах.

Листок нетрудоспособности и страховка

Перелом предполагает длительное пребывание на лечении. Соответствующий лист нетрудоспособности выдаётся лечащим врачом, справка предоставляется по месту работы. Бюллетень выдают врачи государственных и частных поликлиник.

Выдача справки, подтверждающей наличие травмы, оставляет возможность на получение страховки, которая выплачивается при наступлении страхового случая (при наличии соответствующего договора). Выдача страховки производится при предоставлении документов:

  • Заявление с просьбой о выдаче страховки;
  • Справка из медицинского учреждения, подтверждающая факт наступления страхового случая;
  • Паспорт;
  • Договор страхования.

Страховая компания вправе попросить представить другие документы. Когда документы изучены и факты проанализированы, страховая компания назначает размеры и сроки выплаты страховки.